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Abstract: High quality photovoltaic (PV) power prediction intervals (PIs) are essential to power
system operation and planning. To improve the reliability and sharpness of PIs, in this paper, a new
method is proposed, which involves the model uncertainties and noise uncertainties, and PIs are
constructed with a two-step formulation. In the first step, the variance of model uncertainties is
obtained by using extreme learning machine to make deterministic forecasts of PV power. In the
second stage, innovative PI-based cost function is developed to optimize the parameters of ELM
and noise uncertainties are quantization in terms of variance. The performance of the proposed
approach is examined by using the PV power and meteorological data measured from 1kW rooftop
DC micro-grid system. The validity of the proposed method is verified by comparing the experimental
analysis with other benchmarking methods, and the results exhibit a superior performance.

Keywords: PV power generation forecasting; extreme learning machine (ELM); bootstrap; prediction
intervals (PIs); DC micro-grid system

1. Introduction

Photovoltaic (PV) is known as one of the fast-growing sustainable energy systems throughout
the world [1,2]. In particular, solar power is going to supply up to 14% of U.S electricity demand by
2030 and 27% by 2050 [3]. However, solar power is susceptible to chaotic weather conditions, and
has the characteristic of intermittent and inconsistency. With the increasing of the proportion of PV
power generation in power system, it has become a big challenge to power system safety and reliable
operation [4,5]. To deal with this issue, the accurate and reliable short term PV power forecasting
becomes very important to reduce the operation costs and potential risks in power system [6].

According to the existing research achievements, PV power generation forecasts can be divided
to two groups: deterministic estimation and probabilistic forecasting [7]. The deterministic method
has been extensively used in solar power generation forecasting. Literature like [8] proposed a hourly
solar irradiance prediction method with support vector machine (SVM). In [9], an online short-term
solar power forecasting model is proposed by using an autoregressive (AR) method. Literature
like [10] proposes a day ahead PV power forecasting model based on back propagation (BP) artificial
neural network (ANN) approach. In [11], a hybrid short-term solar power prediction algorithm is
proposed by using leaping algorithm and artificial neural network (ANN). These approaches exhibit
good performance for PV power forecasting. However, errors of deterministic approaches cannot
be completely eliminated [12,13]. The reliability of the deterministic forecasts relies on historical
performance of regression models and it is predetermined, therefore, the deterministic forecasts are
difficult to estimate the uncertainties of real-time data. Moreover, the PV power generation depends
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highly on the chaotic weather conditions [14]. To solve this problem, several probability forecasting
approaches are developed, which use the prediction intervals (PIs) to represent the uncertainties [15].
PIs is a range (difference between upper and lower bounds) with corresponding coverage probability
for a random variable in future [16]. When compared with deterministic forecasting, PIs cannot
only provide point forecasting value, but also can provide reliabilities information of the estimation
value [17]. Therefore, the PIs are more valuable and informative for decision makers to make
well preparation for the worst and the best possible condition ahead [18]. Indeed, the PIs have
recently become a popular tool to cover different uncertainties in power systems [19–21], such as
electricity price [18], wind power forecasting [19], and short-term load forecasting [19]. For solar
power forecasting, several PIs construction approaches have been developed. The global horizontal
solar irradiance is estimated in [22]. A recursive ARMA-GARCH model is applied to estimated the
short term solar irradiance in [23]. An exponential smoothing state space model [24] are examples.
In these three methods, statistical time series models are developed for PIs. However, these linear
models are difficult to accurately model the heteroskedasticity of PV power. In [25], by using support
vector regression, a type of interval forecasts model is proposed to directly compute interval forecasts
from historical solar power and meteorological data.

Traditional Neural works (NNs) are widely used to construct PIs owing to outstanding
generalization performance and approximation ability [26]. There are many methods that have
been proposed to construct PIs based on NNs, delta technique, Baysian method, the mean-variance
approach, and bootstrap method are among them [27]. When compared to other methods, the bootstrap
method has the advantages of simplicity and it is easy to implement, and has a lot of successful practice
in applications [28,29]. In [29], based on traditional NNs, the moving block bootstrap approach is
proposed to construct PIs for wind power forecasting. However, this method makes an assumption
that residual is in standard distribution, and that it can be obtained by maximum likelihood estimation
(MLE). In [30], a modified bootstrap method is proposed to construct optimal PIs based on the LUBE
and original bootstrap method. The hybrid NNs based bootstrap method can obtain higher quality
PIs than the original method. However, since the traditional NNs use the gradient descent method to
search the network parameter, bootstrap methods have problems of heavy computational burden and
local minimum.

As a kind of emerging feed forward neural networks, Extreme Learning Machine (ELM) has
a fast learning speed for its iterative-free learning mechanism [30]. In ELM, the input weights and
hidden biases are randomly given, and the output weights of hidden layer are directly calculated by
a Moore-Penrose generalized inverse operation [31]. When compared with traditional NNs, ELM
has faster speed and better generalization ability [32]. In [33], an ELM based bootstrap method is
proposed to forecast the electricity price. However, the uncertainties of data noise are ignored in this
approach. In addition, the constructed PIs only considers PIs reliability and does not take the PIs width
into account. An ELM based bootstrap method is proposed in [34] for wind power forecasting, two
ELM bootstrap models are used to calculate the variance of ELM model and data noise, respectively.
However, the performance of this method depends highly on the quality of measured PV power and
meteorological data. In [19], a hybrid ELM based bootstrap approach is proposed for electricity price
forecasting. It has been demonstrated that this method could achieve superior performance than
bootstrap by traditional NNs, it still has room to be improved, since the variance of data noise is
obtained by a traditional NNs model, which leads to low computation efficiency, and the parameters
of traditional NNs are trained based on maximum likelihood estimation (MLE), which does not take
quality of overall PIs into account.

In this paper, a novel hybrid approach combining the ELM, bootstrap technique, and improved
DE algorithm is proposed to construct the optimal PIs for short-term PV power forecasting. The PIs has
covered uncertainties of both regression models and data noise with fast speed, light computational
burden, and high quality for five minutes ahead PV power forecasting. Firstly, based on ELM
deterministic forecasting of PV power, the bootstrap technique is applied for quantifying uncertainties
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of ELM models with the term of variance. Moreover, the uncertainties of data noise are investigated by
rebuilding the residual training data samples, and the noise variance is estimated by an ELM regression
model, whose parameters are optimized by an improved DE algorithm with PI based cost function.
The optimal PIs with coverage probability and sharpness are then constructed by combining variances
of both ELM models and data noise. Finally, the proposed approach is tested by the measured PV and
meteorological data, which is taken from 1 kW rooftop PV system. The forecasting results demonstrate
that, when compared with other ELM based bootstrap approaches, the proposed method is more
reliable and effective.

The rest of this paper is organized as follows. The mathematical background of the ELM, improved
differential evolution algorithm, PIs construction and assessment, and the traditional bootstrap method
for PIs construction are introduced in Section 2. Section 3 describes the proposed method. Experimental
results are presented and discussed in Section 4. Finally, the contributions and conclusions of the paper
are summarized in Section 5.

2. Methodology

2.1. ELM

ELM is a kind of SLFNs. The diagram of ELM is shown in Figure 1. Consider N distinct samples
(xi, ti), if ELM with L hidden nodes and activation function g(·) can approximate the target with zero
errors, it can be modeled by

ti =
L

∑
j=1

β jg(wj · xi + bj) i = 1, . . . , N (1)

where β j is the output weight vector, bj is the hidden bias vector, wj is the input weight vector, ti is the
target output vector, and xi are inputs vector.

The compact form of Equation (1) can be rewritten by

T = Hβ (2)

where T = [t1, t2, · · · , tN ], β = [β1, β2, · · · , βL], H is called the hidden layer output matrix, and can be
defined as

H =

 g(w1 · x1 + b1) · · · g(wL · x1 + bL)

· · · · · · · · ·
g(w1 · xN + b1) · · · g(wL · xN + bL)


N×L

(3)

Normally, the number of hidden nodes is less than the number of the training sample, the target
is hard to approximated by ELM with zero errors. In ELM, the input weights and the hidden bias are
randomly determined. After given wj and bj, the output weight vector can be analytically calculated
by a least squares method, and the special solution can be expressed as

β∗ = H+Y (4)

where H+ is the generalized Moore Penrose inverse of H.
ELM exhibits many significant properties, which make it became a type of appealing SLFN

approach. First, ELM presents very fast learning speed since its network parameters is determined by
the way of iterative free. Second, ELM uses a least squares method to approach the training sample,
and the smaller training error can be obtained. In addition, ELM overcomes the many problems faced
by traditional NNs, such as local minima, the overtraining, learning rate, and so on.
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Figure 1. Diagram of ELM.

2.2. Improved DE

Differential evolution algorithm (DE) is proposed by Storn and Price as a kind of population
optimization algorithm and it is widely used in nonlinear and complex optimization problems [35].
The basic steps of DE can be described as follows:

(1) Initialization: given a set of vector xD
iG, (i = 1, 2, . . . , NP). NP is the number of population. D is

the dimension of each population. For each individual population, the Gth generation vectors can be
expressed by

xD
i,G = [xD

i,G, . . . , xD
NP,G] (5)

(2) Mutation: a mutation vector can be defined as

vD
i,G+1 = xD

r1,G + F× (xD
r2,G − xD

r3,G) (6)

where vD
i,G+1 is called a the G+1th generation mutation vector, r1, r2, r3 ∈ [1, 2, . . . , NP] and r1 6= r2 6=

r3 6= i. F is Scaling factor, which is a constant factor and is used for scaling the difference vectors, its
value usually is chosen during [0.4, 1].

(3) Crossover: in this step, a Gth generation trial vector can be expressed as

uD
i,G = (u1

i,G, u2
i,G, . . . , uD

i,G) (7)

Then, a G+1th generation trial vector can be formed as

uj
i,G+1 =

{
ν

j
i,G if rand ≤ C or j = jr

xj
i,G otherwise

(8)

where C is a random number in [0, 1] and called crossover rate. jr is denoted a dimensional index and
randomly chosen in [1, D].

(4) Selection: the selection process is defined as

xD
i,G+1 =

{
uD

i,G if f (uD
i,G) > f (xD

i,G)

xD
i,G otherwise

(9)

where the f (.) is the fitness function.
The original DE has a good performance for global search, but its convergence speed is slow.

To overcome this limitation, the mutation vector is replaced by [35]
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vD
i,G+1 = xb + F× (xD

r2,G − xD
r3,G) (10)

where xb is denoted the best individual in the population.
In order to improve the balance between global and local search ability, the Gth generation

constant fact FG can be replaced as
FG = 2.0× FrG − 1.0 (11)

where FrG is randomly chosen in [0,1]. The trial vector can be expressed by

vi,G+1 = xb + FG × (xr2,G − xr3,G) (12)

2.3. PIs Construction and Assessment

2.3.1. PI Formulation

Given a training data sample D =
{
(xi, ti)

N
i=1

}
, xi is an input dataset that include historical

information (solar power, wind speed, wind direction, ambient temperature, cell temperature, solar
irradiance). ti is five minutes ahead PV power, which is used as the target. PIs are constructed to cover
the target ti with the prescribed confidence level (1− α), named as PI nominal confidence (PINC)
100(1− α)%, for the i-th target, the PIs Gα

t (xi) can be defined as

G(xi) = [L(xi), U(xi)] (13)

where L(xi) and U(xi) denote the lower and upper bounds of PIs, respectively. The coverage rate of
PIs can be described as

P(ti ∈ [L(xi), U(xi)]) = 100(1− α)% (14)

The ti is the i-th measured target, it can be defined as

ti = y(xi) + µ(xi) = f (xi, ϑ) + ε(xi) (15)

where y(xi) is mean of true regression and ε(xi) mean of noise with zero mean. f (xi, ϑ) describes a
mapping between input xi and true regress value y(xi). In this paper, ELM algorithm is chosen as a
regression model to approach the true regress value. Therefore, the mean of the true regress y(xi) can
be approximate with output of ELM model f (xi, ϑ̂)

ŷ(xi) = f (xi, ϑ̂) = E(ti/xi) (16)

where ŷ(xi) represents prediction value of target, the prediction error can be defined as

ti − ŷ(xi) = [y(xi)− ŷ(xi)] + ε(xi) (17)

where ti − ŷ(xi) means the total prediction error and denotes the error between measure value ti
and real estimate value ŷ(xi). The [y(xi) − ŷ(xi)] denotes the error between the expectation true
regress output and actual ELM output. ε(xi) denotes the noise with zero mean. PIs are constructed to
quantify the uncertainties by the total prediction, which consist of two independence statistical parts:
[y(xi)− ŷ(xi)] and ε(xi). Therefore, the total variance can be defined as

σ2
t (xi) = σ2

ŷ (xi) + σ2
ε (xi) (18)

where σ2
ŷ (xi) is the variance of model uncertainties and σ2

ε (xi) is the variance of data uncertainties.
The low bound Lα

t (xi) and upper bound Uα
t (xi) can be rewritten as
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Lα
t (xi) = ŷ(xi)− z1−α/2

√
σ2

t̂ (xi) (19)

Uα
t (xi) = ŷ(xi) + z1−α/2

√
σ2

t̂ (xi) (20)

where z1−α/2 is the 1− α/2 quantile of standard normal distribution.

2.3.2. Metrics for PIs Quality

The PIs coverage probability (PICP) and PIs’ width is two key indicators. To assess the quality of
PIs, several metrics and indicators are introduced.

PICP is the most important indicator to assess reliability of PIs, whose value indicates probability
level that PIs cover the future target. Larger PICP value indicates that the PIs have a greater probability
of coverage target. For the N training samples, the PICP can be defined as

PICP =
1
N

N

∑
t

δt (21)

where δt is a Boolean value which can be expressed as

δt =

{
1, ti ∈ Gα

i
0, ti /∈ Gα

i
(22)

The interval width is other very important indicator evaluate the quality of PIs. If interval width
is ignored, we only take the PICP into account, and even the high PICP value has been obtained, then
decision-maker is also difficult to obtain useful forecasting information. Therefore, a higher quality PIs
should fully consider PICP and sharpness of PIs. Mean prediction interval width (MPIW) can be used
to quantify the sharpness of PIs.

MPIW =
1

NR

N

∑
i=1

(Uα
t (xi)− Lα

t (xi)) (23)

where the R is the target range, N is the number of test dataset.

2.4. Traditional Bootstrap Method for PIs Construction

2.4.1. Variance of Model Uncertainty

The bootstrap method, a resampling technique, is introduced and named in 1979 [36]. Due to its
advantages of simplicity and robustness, it is widely used to estimate almost unknown distribution
by an empirical distribution. In regression application, bootstrap methods are applied to estimate
uncertainties of regression models [19]. In this paper, it is used to estimate the uncertainties of the
ELM model, which is caused by structure misspecification and randomly given input parameters.
The variance is used to represent model uncertainties.

For the paired bootstrap method, an original training data sample is defined as
Dorin = {(xi, ti)}N

i=1, the B training sub-datasets Dsub = {(xi, ti)}N∗
i=1 are uniformly re-sampled from

Dorin with replacement. The output of each ELM model is ŷs(xi). The true regression value can
be approximated by the mean of the bootstrap ELMs outputs. For B ELM models, it can be can be
expressed as

ŷ(xi) =
1
B

B

∑
s=1

ŷs(xi) (24)

The variance can be used to quantify the uncertainties of ELM models, based on the B times ELM
estimated results, the variance of model uncertainties can be written as
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σ2
ŷ (xi) =

1
B− 1

B

∑
s=1

(ŷs(xi)− ŷ(xi)) (25)

2.4.2. Variance of Data Noise

The uncertainties of regression model and residual noise are combined to construct the PIs. After
determining the variance of the model uncertainties, the variance of data noise σ2

ε (xi) also should be
estimated to construct PIs. Based on Equation (17), the total variance σ2

t (xi) can be rewritten as

σ2
t (xi) = E[(ti − ŷ(xi))

2|xi] (26)

According to Equations (18) and (26), the variance of data noise can be expressed as

σ2
ε (xi) = σ2

t (xi)− σ2
ŷ (xi) = E[(ti − ŷ(xi))

2|xi]− σ2
ŷ (xi) (27)

Equation (27) shows relationship between σ2
ε (xi) and xi. Therefore, a regression model can be

used to fit σ2
ε (xi) with input xi. The squared residual error can be expressed as

r2(xi) = max ([ti − ŷ(xi)]
2)− σ̂2

ŷ (xi), 0) (28)

where the ŷ(xi) and σ̂2
ŷ (xi) can be obtained from Equations (24) and (26), respectively. The residual

errors and the corresponding the inputs can be built a new dataset as

Dr2 =
{

xi, r2(xi)
}N

i=1
(29)

Data noise can be supposed to a normally distributed with zero mean [19]. Based on the normal
assumption in Equation (28), it can be defined as

P(r2(xi); σ̂2
ε (xi)) =

1√
2πσ̂2

ε (xi)
exp(− r2(xi)

2σ̂2
ε (xi)

) (30)

Noise variance is a kind of effective formulation to approximate the noise uncertainty of PV data.
A separate ELM model is used to estimate the unknown noise σ2

ε (xi), the parameters of ELM is trained
to maximize the probability for the new samples in Dr2 . Minimizing the negative value of a variable is
equivalent to maximizing the positive value of a variable, therefore, after ignoring the constant part in
Equation (30), the cost function for training the ELM model can be obtained and defined as

CML =
1
2

n

∑
i=1

(ln(σ2
ε (xi)) +

r2(xi)

σ2
ε (xi)

) (31)

Since the variance is always positive, the sigmoid function selected as activation function of the
ELM. The evolutional algorithm can be applied to optimize the parameters of ELM (ELMMLE) by
minimizing the cost function Equation (31).

After obtaining both σ2
ε (xi) and σ2

ŷ (xi), the PIs can be construct according to Equations (19) and (20)
with the confidence level.

3. Proposed Method

For the traditional bootstrap method, the variance of noise is estimated based on the assumption
that the data noise is normally distributed with zero mean [19]. The cost function of maximum
likelihood estimation is used to train the ELM parameters, rather than the one is defined by using
evaluation indicators of the overall PIs performance. Therefore, the traditional PIs cannot always
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obtain optimal PIs. To solve this issue, in this paper, a novel PI based cost function, which takes the
PICP and interval width into account, is proposed to obtain variance of data noise.

3.1. PIs Based Cost Function

Performance evaluation of PIs should include two aspects: both MPIW and PICP. It is meaningless
if the performance of PIs is revealed only by one aspect. A PI based cost function, named coverage
width based criterion (CWC) is defined as

CWC = MPIW + γPICPλ× |µ− PICP| (32)

where µ denotes the prescribed probability, equal to the PIs nominal confidence (PINC) level
100(1− α)%. λ is a hyper-parameter and its value is set between 10 and 100 to penalize the invalid PIs,
and γPICP is a function of PICP. If the value of PICP is more than µ, the γPICP value will be set to 0, and
the value of CWC is determined by MPIW. This means that the PIs’ width will be maintained. Whereas,
if the value of PICP is less than µ, the γPICP value will be set to 1, and the CWC is the sum of both
MPIW and λ ∗ |µ− PICP|, this indicates that the wider PIs should be obtained to get more suitable
the PICP value. The CWC value is normalized by nominal PV power and its value is expressed as a
percentage in this paper. If a smaller CWC value is obtained at the given confidence level 100(1− α)%,
a better performing PI has been achieved.

As shown in Figure 2, the proposed PIs are constructed by combining the variance of both the
model uncertainties and data noise. To obtain optimal PIs, it is critical to obtain the accurate estimation
variance of data noise. In this study, an ELM model is developed to estimate the variance of data
noise and the improved DE (IDE) is employed to optimize parameters of ELM model by minimizing
the CWC. Therefore, based on the Equation (32), the PI based objective function is proposed for IDE
as follow:

F = Minimize (CWC) (33)
Energies 2017, 10, 1669  9 of 16 

 

 

Figure 2. Diagram of proposed approach. 

For the two constraints, the first one is automatically satisfied as long as the calculation is correct. 

The other one indicates that when smaller confidence level (1 )  is set for the same datasets, the 

narrower PIs should be obtained. 

3.2. Overall Procedures 

Generally, the proposed technique can be divided into two stages. The detail process can be 

defined as follows. 

The first stage, the bootstrap technique is used to estimate variance of model uncertainties. 

Step (1) resample B training samples *

1{( , )}N

sub i i iD x t   with replacement from the original PV 

training dataset 
1{( , )}N

t i i iD x t  . 

Step (2) ELM regress model is used to estimate each training sample and obtain 
1

ˆ{ ( )}B

s i sy x 
. 

Step (3) Based on step 2, the mean output of B ELMs models ˆ( )iy x  and variance of model 

uncertainty 2( )y ix  are calculated by Equations (23) and (24), respectively. 

Step (4) residual sample 
2

2

1{ , ( )}N

i i ir
D x r x   is built by the Equation (27). 

The aim of the second stage is to estimate the variance of data noise and to construct optimal PIs. 

An ELM model is used to estimate variance of data noise. Since the input weights and hidden 

biases of ELM are randomly given, it is unavoidable that some of them are non-optimal parameters. 

Moreover, it is proved that performance of ELM relies on the quality of input weights and hidden 

biases [37]. In this paper, to obtain the optimal PIs, the IDE algorithm is used to find the optimal ELM 

parameters (input weights and biases) by minimizing the PIs based cost function. 

Step (1), randomly generate the population, and the candidate solution iv  is composed of a set 

of input weights and hidden biases, the i-th individual can be express as  

 

Input Layer Hidden Layer Output Layer

…

…

…

…

…

…

PV Data

Weather 

Data

…

…

…

Variance 

of noise



 




…

ELM1

ELMB

ELM and IDE

E
L
M

 a
n
d
 ID

E

ELM
B

E
L
M

1

…

……

Target

y B

… V
a

ria
n

c
e

 o
f m

o
d

e
l 

u
n

c
e

rta
in

ty
V

a
ria

n
c
e

 o
f d

a
ta

 n
o

is
e

Total 

Variance 

Up 

bound

Lower 

bound

Target

PIs(t+1)

Figure 2. Diagram of proposed approach.



Energies 2017, 10, 1669 9 of 16

The constraints can be defined as

U(x) > L(x) ≥ 0 (34){
if αi ≤ αj
Lαi (x) ≥ Lαj(x) and Uαi (x) ≥ Uαj(x)

(35)

For the two constraints, the first one is automatically satisfied as long as the calculation is correct.
The other one indicates that when smaller confidence level (1− α) is set for the same datasets, the
narrower PIs should be obtained.

3.2. Overall Procedures

Generally, the proposed technique can be divided into two stages. The detail process can be
defined as follows.

The first stage, the bootstrap technique is used to estimate variance of model uncertainties.
Step (1) resample B training samples Dsub = {(xi, ti)}N∗

i=1 with replacement from the original PV
training dataset Dt = {(xi, ti)}N

i=1.
Step (2) ELM regress model is used to estimate each training sample and obtain {ŷs(xi)}B

s=1.
Step (3) Based on step 2, the mean output of B ELMs models ŷ(xi) and variance of model

uncertainty σ2
y (xi) are calculated by Equations (23) and (24), respectively.

Step (4) residual sample Dr2 =
{

xi, r2(xi)
}N

i=1 is built by the Equation (27).
The aim of the second stage is to estimate the variance of data noise and to construct optimal PIs.
An ELM model is used to estimate variance of data noise. Since the input weights and hidden

biases of ELM are randomly given, it is unavoidable that some of them are non-optimal parameters.
Moreover, it is proved that performance of ELM relies on the quality of input weights and hidden
biases [32]. In this paper, to obtain the optimal PIs, the IDE algorithm is used to find the optimal ELM
parameters (input weights and biases) by minimizing the PIs based cost function.

Step (1), randomly generate the population, and the candidate solution vi is composed of a set of
input weights and hidden biases, the i-th individual can be express as

vi = [w11, · · · , w1L, w21, · · · , w2L, · · · , wn1, wnL, b1, · · · , bn] (36)

Step (2), each individual population consist of a set of weights and hidden biases. The
corresponding output weights are calculated by using Equation (2), and σ̂2

ε (xi) is estimated.
Step (3), calculate the total variance σ̂2

t (xi) based on Equation (18), and calculate low bound L̂α
t (xi)

and upper bound Ûα
t (xi) based on Equations (19) and (20), respectively.

Step (4), the fitness cost function the CWC can be calculated based on Equation (32), Equation (21)
and Equation (23).

Step (5), improved ID algorithm is developed to adjust ELM parameters for obtain the optimal
σ̂2

ε (xi) based on objective function Equation (33) and constraints Equation (34).
Step (6), the PIs is constructed based on step 5 and step 3.

4. Experimental Analysis

4.1. Experimental Data Description

The proposed method in this study has been tested by actual historical PV and meteorological
data, which were measured from a laboratory-scale DC micro-grid system (at Singapore Polytechnic
(1.35 N, 103.68 E and 41 m elevation above the sea level). As shown in Figure 3, the DC micro-grid
system can operate on grid model and off grid model. The maximum operation power of rooftop
PV system 1 kW, which is constituted by a series of four solar panels (CSP6P-250). The weather
information is collected by the weather station (HOBO weather station). The web box monitors and
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stores the measured data including solar radiation, ambient temperature, PV module temperature,
wind speed, and PV output power. The DC micro-grid system operates with no gap and sampling time
resolution of measured data is 5 min. The data time (7:00 to 19:00) are used to construct the dataset
from January 2013 until December 2014.
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4.2. Experimental Results and Analysis

To evaluate the proposed approach, the persistence method [37], MLE-Bootstrap method [19],
double bootstrap method [34], and bootstrap based traditional NNs (BNN) approach [29] are used for
benchmarking the forecasting performance of solar power. The persistence ensemble (PeEn) method
is used to construct PIs for PV power, of which the forecast errors are assumed to be randomly and
normally distributed [37]. Its mean is derived from the 10 last available power measurements, and
the variance is computed using the 10 latest observations. The MLE-Bootstrap method and Double
bootstrap method, and our proposed the method are all used ELM as regress model. The regress
model of BNN approach is traditional NNs. MLE-Bootstrap approach [19] obtains the variance of
data noise by using maximum-likelihood cost function, (MLE-Bootstrap). Double bootstrap methods
(Double-Bootstrap) proposed in [34], and the variance of data noise is also obtained by using a bootstrap
model. BNN approach obtains the variance of data noise using the cost function same as our proposed
method. In this study, the number of bootstrap replicates is 100 for MLE-Bootstrap method, double
bootstrap method, BNN approach and proposed method. They are all operating on a PC with Intel
Core i7-2670QM, CPU @2.2 GHz. For power system operation, if we can obtain forecasted information
of high confidence levels, it is more helpful to reduce the risks. Therefore, in this study, the proposed
method is tested at different high confidence levels (90%, 95%, and 99%).

The level of uncertainties in PV power generation has a strong correlation to chaotic climate
systems. The weather conditions and the patterns of solar radiation vary greatly in different seasons.
Singapore has a tropical climate and its climate is characterized by two monsoon seasons separated
by inter-monsoonal periods. To verify the performance of the proposed approach, four periods in
Singapore: northeast monsoon season (December to March), inter-monsoon period (April to May),
southwest monsoon season (June to September), and inter-monsoon period (October–November) are
investigated, respectively. In each season, the corresponding model is developed. When considering
the seasonal difference and diversity, Northeast monsoon 2013, the Inter monsoon (Northeast monsoon
to southeast monsoon NS) 2013, southeast monsoon 2013, and inter monsoon (Southeast monsoon
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to northeast monsoon, SN) 2013 are selected to constructed test dataset to verify the proposed the
approach, and remain data are used as training dataset.

As shown in Table 1 and Figure 4, the proposed approach always exceeds the persistence method,
the double bootstrap method, and MLK bootstrap method. The larger PICP value is obtained than the
corresponding nominal confidence. It indicates that the PIs, which has a higher probability of covering
the 5 min ahead, PV power than the expected value. When compared to the other benching models,
the proposed method obtained the greatest PICP value. Moreover, the MPIW value of the proposed
approach is smaller than other benchmarking models. It indicates that the proposed method achieved
narrower intervals.

Table 1. Performance comparison of various constructed PIs in different seasons.

Seasons PINC Value Persistence BNN Double
Bootstrap

MLE
Bootstrap

Proposed
Bootstrap

Northeast
monsoon

90%
PICP 76.74 94.65 93.75 94.10 94.79

MPIW 19.01 13.19 17.83 16.90 12.53

95%
PICP 79.86 96.21 95.28 95.93 96.38

MPIW 26.83 17.21 20.57 20.32 15.26

99%
PICP 83.98 98.35 96.75 98.32 98.79

MPIW 37.12 18.92 20.82 22.90 18.53

Inter
monsoon

(NS)

90%
PICP 75.35 93.13 91.35 92.71 93.06

MPIW 14.88 12.57 15.70 13.88 12.38

95%
PICP 77.39 96.23 94.35 95.65 96.12

MPIW 24.71 14.92 18.12 16.15 14.84

99%
PICP 78.81 98.50 96.78 97.69 98.52

MPIW 35.36 17.67 21.26 19.73 17.32

Southwest
monsoon

90%
PICP 78.82 92.95 90.63 91.67 93.06

MPIW 20.06 13.64 17.62 15.77 13.35

95%
PICP 78.82 95.72 94.63 95.21 95.98

MPIW 26.06 16.59 20.15 18.59 16.23

99%
PICP 78.82 97.36 90.63 91.67 97.25

MPIW 34.06 20.12 23.27 21.14 19.80

Inter
monsoon

(SN)

90%
PICP 75.27 92.68 89.93 90.28 92.71

MPIW 26.54 13.25 17.66 14.09 12.57

95%
PICP 76.93 95.57 94.93 95.28 95.62

MPIW 36.57 15.89 20.95 17.38 15.83

99%
PICP 78.56 98.65 97.93 97.28 98.71

MPIW 46.51 19.53 22.16 20.17 19.13

To further evaluate the effectiveness and applicability of the proposed approach under different
weather conditions, the three typical daily weather types are selected (sunny conditions, cloudy
conditions, and thunderstorm). The experimental results of the proposed method and four
benchmarking models are shown in Figure 5 and Table 2. The proposed method achieves a greater
PICP value in three weather conditions than the benchmark models. When the confidence level is 90%,
the proposed method generates the PICP 95.14% in sunny conditions, 93.18% in cloudy conditions,
and 90.07% in thunderstorm. Furthermore, the proposed method obtains the narrower PIs width than
other methods, especially for the persistence method.
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Figure 4. The 5-min ahead PV power forecasting results of four seasons in Singapore: (a) northeast
monsoon sunny conditions; (b) Inter monsoon (NS); (c) southwest monsoon; and, (d) Inter monsoon
(SN) (PIs constructed by proposed model, double bootstrap, MLE-bootstrap and PeEn respectively)
with 90% confidence level.
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Figure 5. The 5-min ahead photovoltaic (PV) power forecasting results of typical weather conditions:
(a) sunny conditions; (b) cloudy conditions; and (c) thunderstorm (PIs constructed by proposed model,
double bootstrap, MLK bootstrap and PeEn, respectively) with 90% confidence level.

As shown in Figures 4 and 5, Tables 2 and 3, the BNN approach and the proposed approach
have relatively comparable performance. The BNN approach also can achieve much better quality PIs
than the persistence method, MLK bootstrap method and Double bootstrap under different weather
conditions and seasons. This is not hard to understand that BNN approach has relatively close
performance to the proposed method, because the NNs have good nonlinear mapping capability.
However, the traditional NNs have the significant disadvantage of high computational burden.
As shown in Table 3, the training time is the average time of training 30 days dataset and the test
time is the average time of testing one day dataset. The proposed hybrid approach, Double Bootstrap
approach, and MLE Bootstrap approach all perform more than 60 times faster than the BNNs approach,
and it demonstrates that the ELM based bootstrap method has a significantly higher efficiency. The
training time of proposed approach is slightly faster than Double approach, it indicates the number of
iterations of DE is less than the number of bootstrap replicates number.
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Table 2. Performance comparison of various constructed prediction intervals (PIs) under different
weather conditions.

Weather
conditions PINC Value Persistence BNN Double

Bootstrap
MLE

Bootstrap
Proposed
Bootstrap

Sunny

90%
PICP 88.89 95.03 94.44 93.75 95.14

MPIW 8.00 6.96 9.72 8.53 6.81

95%
PICP 89.83 97.10 96.15 96.58 97.14

MPIW 16.12 12.15 15.81 13.87 11.76

99%
PICP 91.65 98.93 97.64 98.15 98.87

MPIW 23.25 15.96 19.63 18.52 15.95

Cloudy

90%
PICP 81.94 93.15 92.36 93.06 93.18

MPIW 17.55 9.79 14.94 11.76 9.83

95%
PICP 83.94 96.68 95.03 95.37 96.79

MPIW 31.55 15.89 19.12 16.19 15.83

99%
PICP 84.94 98.35 96.36 97.01 98.25

MPIW 39.65 16.57 23.06 19.76 16.23

Thunderstorm

90%
PICP 78.47 90.87 90.07 90.28 90.97

MPIW 19.74 10.96 15.90 13.17 10.88

95%
PICP 81.63 95.50 94.86 95.28 95.96

MPIW 39.74 16.70 20.14 18.20 16.65

99%
PICP 84.57 98.15 96.39 96.28 98.03

MPIW 48.74 21.94 25.51 23.17 21.72

Table 3. The average training time and test time comparison.

Method Training Time (s) Test Time (s)

BNN Bootstrap 8579.32 5.730

MLE Bootstrap 138.67 0.425

Double Bootstrap 147.19 0.836

Proposed Bootstrap 135.53 0.421

5. Conclusions

Solar power short term forecasting is crucial to power system operation and economic cost. In this
paper, a novel short term PIs forecasting approach is proposed for uncertainties quantification of PV
power generation by using extreme learning machine and bootstrap technique. The uncertainties
of both data noise and the regression model are used to construct PIs. The bootstrap technique is
used to estimate uncertainties of ELM models, and a hybrid model of ELM and IDE with PIs best
cost function is proposed for quantifying the uncertainties of data noise. The proposed method is
tested under different seasons conditions and three different weather conditions by using actual
lab-scale PV micro-grid data. When compared to both MLE-bootstrap and Double-bootstrap approach,
experimental results show the proposed method significantly improves the quality of the PIs for
five-minute-ahead short term PV power forecasting. Due to the fast learning speed of ELM, the
proposed approach can be more than 60 times faster in the training process and be 10 times faster in
the test process than BNNs approach, which indicates that the proposed method has a high online
application potential for short-term PV power generation forecasting in future.
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