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Abstract: This paper proposes a learning-based adaptive imputation method (LAI) for imputing
missing power data in an energy system. This method estimates the missing power data by using
the pattern that appears in the collected data. Here, in order to capture the patterns from past power
data, we newly model a feature vector by using past data and its variations. The proposed LAI then
learns the optimal length of the feature vector and the optimal historical length, which are significant
hyper parameters of the proposed method, by utilizing intentional missing data. Based on a weighted
distance between feature vectors representing a missing situation and past situation, missing power
data are estimated by referring to the k most similar past situations in the optimal historical length.
We further extend the proposed LAI to alleviate the effect of unexpected variation in power data and
refer to this new approach as the extended LAI method (eLAI). The eLAI selects a method between
linear interpolation (LI) and the proposed LAI to improve accuracy under unexpected variations.
Finally, from a simulation under various energy consumption profiles, we verify that the proposed
eLAI achieves about a 74% reduction of the average imputation error in an energy system, compared
to the existing imputation methods.

Keywords: missing data; power data; imputation; kNN algorithm; learning; smart meter;
energy system

1. Introduction

To efficiently and reliably manage and operate a distributed energy system (DES),
which encompasses a diverse array of energy generation, storage, monitoring and control solutions,
emerging data from smart meters and other sensors have begun to be accumulated and utilized [1,2].
This massive amount of collected data plays an import role in making a DES intelligent by providing
valuable underlying information. Notably, to guarantee reliable and useful information from the
collected data, the quality of raw data should be considered prior to refinement of raw data. Here, it is
noted that the quality of raw data is measured by the amount of missing values in raw data [3,4].
However, while storing the incoming measurement data in a database, missing values easily can
occur due to harsh working conditions or uncontrollable factors, such as malfunctions of devices
and imperfect communication signals. This could pose a critical problem when the measurement
data are used for real-time control solutions, real-time scheduling for energy trading or a customer
service such as a billing system [5–7]. Nevertheless, most previous studies related to power data have
concentrated on designing a demand forecasting mechanism or robust methods to missing data [8–10].
The limitations of these previous research efforts have recently motivated studies focused on handling
missing data in energy systems [11,12].
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There are two primary methods for handling missing power data in the literature of energy
systems. One common imputation method employed in energy systems is to use interpolation with
adjacent available measurement data. This approach is very simple, but powerful if the measured
data have a consistent behavior or the intervals of missing data are short. However, in the cases of
inconsistent behavior or long missing intervals, it will result in low accuracy. Another way is to employ
the nearest-neighbor (NN), which uses non-missing data in a certain fixed range around missing
points. For example, data collected at the same time the previous week or the following week are used.
This is reasonable when the power data have a distinct periodic pattern, and thus, a valid estimated
value can be obtained from the fixed range. However, power data will not always have a distinct
periodic pattern. Similar to NN, non-parametric regression (NPR) also uses non-missing data selected
as useful data for missing data imputation to increase the chance of obtaining a valid estimated value.
In an energy system, this methodology can be applied by browsing and utilizing similar load patterns
based on the premise that energy data repeat over time with human activities. Although NPR has
more complexity compared to interpolation or simple NN, it outperforms the latter two methods
when a vast amount of data represents certain patterns. In addition, NPR does not generate a complex
model, and it is a promising approach with a massive amount of data [13]; further, some guidelines to
handle missing power data in the energy industry are based on the concept of NPR, as well as NN.
However, even though a large amount of power data is being generated and this amount will increase,
a method that makes use of NPR to estimate missing power data has not been clearly suggested thus
far. Recently, by utilizing the correlation between power data, voltage and frequency data of different
homes, the authors in [11] newly suggested a novel approach for imputation of missing power data
for real-time scheduling in a microgrid. In addition to power data, the work in [11] requires voltage or
frequency data for each appliance. Thus, if only the power data of the whole household are collected,
this method is difficult to apply, which is a limitation of this work.

On the other hand, in order to efficiently utilize the above methods, in the energy industry,
if missing intervals are shorter than one or two hours, the point-to-point linear interpolation (LI)
method is applied. In contrast, if missing intervals are longer than one or two hours, the historical
average (HA) methods such as NN or NPR are applied for imputation by considering the trade-offs
between calculation complexity and imputation accuracy [14–18]. Here are some examples of HA in
the energy industry: First, in [16], if the missing interval exceeds 2 h, the missing data are substituted
using data of the nearest equivalent day. For instance, missing data on Wednesday can be imputed
from the data on last Wednesday, or data from last Tuesday or Thursday can be used unless the data
from last Wednesday are available. In the case of public holidays, the nearest Sunday is used as
the nearest equivalent day. The work in [18] also considers the meter data of the equivalent day for
imputation. The main difference with [16], which imputes missing data from a single equivalent day,
is to select three equivalent days and impute the missing data from the average value of those selected
three values. The use of LI and HA is reasonable if we assume that small or consistent variations only
exist in one or two hours or less. Nevertheless, there is still a high possibility for large or inconsistent
variations to occur even in short intervals (e.g., two hours or less), and thus, this assumption is not
always satisfied. In this sense, the LI results in poor performance of imputation even in short missing
intervals. Accordingly, method selection criteria based only on fixed missing interval lengths without
considering each load pattern cannot optimally be adapted to unpredictable variations in the energy
system. Recently, to resolve this issue, Peppanen et al. in [12] suggested an optimally-weighted
average (OWA) data imputation method. The work in [12] imputes missing data with a weighted
sum of LI and their own HA. In addition, this method employs an optimal weight factor to enhance
the imputation performance. However, since they aim to impute missing data with available data
in a fixed time range (e.g., +8–−8 days and +1 and −1 times), it requires the strong assumption that
non-missing data within this fixed range provide valid estimated values for missing data. Moreover,
because the proposed optimal weight factor depends on missing intervals, it is seriously affected by
LI at a short missing interval. In addition, as they also refer to some collected data after the missing
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data, it is difficult to apply this approach to instant imputation for real-time applications in an energy
system. Thus, the previously proposed work in [12] still has shortcomings that should be addressed,
and this is the inspiration for the present work.

In this paper, we propose a novel learning-based adaptive imputation method (LAI) that
imputes missing power data by browsing and utilizing similar load patterns from past situations.
Here, to represent a past situation from power data, we model feature vectors by using past data
and their variations. Furthermore, the optimal length of the feature vector and the optimal historical
length for imputing missing power data are decided in the learning process. Finally, the missing power
data are estimated by referring to the k most similar past situations in the optimal historical length.
Furthermore, we extend our proposed LAI to alleviate the effect of unexpected variation in power
data and refer to this approach as an extended LAI method (eLAI). The eLAI then further improves
the accuracy by selecting a method between LI and the proposed LAI. In addition, since the proposed
methods impute missing data immediately after the first succeeding non-missing data arrive, it is not
necessary to refer to future data; they are therefore suitable for the application to situations where
instant imputation is needed. We verify that the proposed eLAI achieves about a 74% reduction of
average imputation error in an energy system, compared to the existing methods.

The contributions of this paper are summarized as follows.

• A novel feature vector is modeled for representing the patterns of past power data under an
NPR-based model for missing power data imputation.

• Through learning, the optimal length of the feature vector and the optimal historical length
are decided. Furthermore, the proposed LAI imputes accurate missing power data by using a
weighted distance within an optimized historical length.

• The proposed method is extended to improve the accuracy of missing data imputation considering
an unexpected variation of power data by adaptively selecting between LI and the proposed LAI.

• From the simulation under various energy consumption profiles, the proposed method is analyzed
and validated. Finally, the proposed eLAI achieves about a 74% reduction of average imputation
error in an energy system, compared to the existing methods.

This paper is organized as follows. The proposed method is explained in detail in Section 2.
In Section 3, the performance evaluation with various missing lengths and missing ratios is discussed.
Two significant hyper parameters of the proposed method and future work are discussed in Section 4.
Finally, the conclusion of this paper is provided in Section 5.

2. Learning-Based Adaptive Imputation Method

We consider that meter data are collected periodically (e.g., 15 min), and when there is missing
data, imputation is conducted immediately after the first succeeding available data are observed.
Let xt be the observed power data at time index t ∈ {1, 2, · · · } where the one-dimensional vector
x represents the collected data vector. Then, as illustrated in Figure 1, if missing data occur during
the missing interval l with the first missing data at t = n, the missing data are estimated as
xmiss = (xn, xn+1, · · ·, xn+l−1) immediately after the first non-missing data xn+l arrive.
Here, the proposed method aims at generating an accurate xmiss vector.

2.1. Proposed LAI Method

The proposed LAI imputes a missing power data by browsing and utilizing similar load patterns
from past power data. Here, by using this past power data as input data, the optimal length of the
feature vector and the optimal historical length for imputing missing power data, which are significant
hyperparameters of the proposed LAI, are decided in the learning process. Finally, missing data are
estimated by referring to k most similar past situations in the optimal historical length.
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Figure 1. Example of collected power data and missing data.

Let the time index at which the data loss occurred be zero and x0 = (x−p, · · ·, x−1, x0, · · ·, xl−1, xl)

denote the missing situation. The missing situation contains p previous data (x−p, · · ·, x−1), one first
succeeding datum (xl) and l missing data (x0, · · ·, xl−1). The former two, p previous data and the
first succeeding data, denote surrounding data of the missing situation, xsurr

0 = (x−p, · · ·, x−1, xl),
and the last one denotes missing data, xmiss

0 = (x0, · · ·, xl−1). Moreover, these representations
are applied to define the past situation. Thus, the first past situation is denoted by
x1 = (x−p−1, · · ·, x−2, x−1, · · ·, xl−2, xl−1). Likewise, x1 is decomposed into xsurr

1 and xmiss
1 representing

the surrounding data of the first past situation and the data corresponding to xmiss
0 . It should be

noted that xmiss
1 is the past power data used for imputation, while xmiss

0 is the actual missing data.
The proposed LAI then browses and utilizes past situations x1−xtmax for imputing xmiss

0 in x0. Here,
a past situation has the index set P = {1, 2, · · ·, tmax} where tmax, which is called the historical length,
is the maximum number of past situations for imputation. Figure 2 illustrates an example of a missing
situation, the first past situation and the last past situation with historical length tmax. In each situation
in Figure 2, the shaded area represents the surrounding data, and the area with mark X represents the
missing data.

Figure 2. Example of a missing situation and the first and the last past situation.
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In order to model a past situation used for imputation, we newly define the feature vector that
contains not only the values of surrounding data (xsurr

i ), but also the information on the variation
(xsurr′

i ) to best reflect the pattern of situations. Here, xsurr′
i is given as follows, and the index n represents

each data point in xsurr
i and xsurr′

i .

xsurr′
i [n] = xsurr

i [n + 1]− xsurr
i [n], n ∈ {0, · · ·, p−1}.

The feature vector is then defined by fi = (xsurr
i , xsurr′

i ), i ∈ {0} ∪ P . f0 denotes the feature vector
of the missing situation, and fi, i ∈ P denotes that of the i-th past situation. Here, care is taken not to
use feature vectors of past situations that include missing entries. For example, if there are any missing
data in a feature vector, this feature vector is excluded.

Next, the distance between f0 and fi is calculated for choosing the k most similar past situations.
This is based on the idea of the kNN algorithm. At this time, a linear weight to each point of the
feature vector is used based on the time distance from the missing data point. This means that the
closer the value is to the missing point, the greater the significance is when we find past similar
situations to a missing situation. w is a linear weight matrix whose diagonal entries are given by
{1, 2, · · ·, p, p, 1, 2, · · ·, p−1, p−1} with other entries zeros, and di is a weighted distance between f0

and fi, given by:

di =
√
(fi − f0)w(fi − f0)T ,

where:

w =



1
. . . 0

p
1

0 . . .
p−1


.

Finally, the missing data are imputed as follows. Note that J = {n1, n2, · · ·, nk} is the index set of
the selected past situation. The actual missing data xmiss

0 are then filled with the weighted summation
of xmiss

j , j ∈ J , using a weight in inverse proportion to the square of dj. Thus, imputed data, which are

denoted by xLAI, are calculated by the following equation. Here, 1miss and 1surr are one-by-l and
one-by-(p+1) vector of one, respectively.

xLAI = ∑
j∈J

(xmiss
j + cj · 1miss)

d2
j

/
∑
j∈J

d2
j ,

where the compensation factor cj is the difference between the missing and past situations to improve
the accuracy, such that:

cj =
1

p + 1
(xsurr

0 − xsurr
j ) · 1surr.

In the proposed LAI, the length of the feature vector (p) and the historical length (tmax) impact
the imputation accuracy, as well as the complexity. Specifically, p relates to how well a situation is
described to find more similar past situations and tmax relates to how similar past situations are found.
Due to a trade-off relationship between the accuracy and the complexity of the proposed LAI, it is
important to decide appropriate values for them. Hence, these parameters should be carefully decided.
On the other hand, k, a parameter of the kNN algorithm, also has a critical effect on the performance
of the kNN algorithm. If the value of k is too large, it may lead to a large model bias. Conversely, if the
value of k is too small, the model would become too sensitive to outliers. Therefore, k also should be
carefully chosen as an appropriate value. The general approach to choose the value of k is conducted
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by measuring the error on the training data and picking a value that gives the best generalization
performance [19]. As such, the method of selecting p and tmax is also similar to the process in which k
is selected considering the bias and the variance of the kNN algorithm. Correspondingly, we design a
learning method to find the optimal length of the feature vector (p) and the optimal historical length
(tmax), as presented in Algorithm 1. In this algorithm, n intentional missing situations are generated
to learn the optimal p and tmax. At this step, n intentional missing situations can be understood as a
training dataset to find optimal p and tmax. Then, as both the p and tmax increase, each n intentional
missing datum is estimated, and the average imputation error of this missing datum is calculated.
If the current calculated error is less than the error calculated from the previous p and tmax, the optimal
hyper parameter value is updated to the current p and tmax. Furthermore, if the difference between
the previous error and the current error converges to the pre-defined threshold value, the learning
process is completed and returns the current p and tmax as optimal values.

Algorithm 1 Learning algorithm for optimal p and tmax selection.

INPUT:
M = {m1, m2, · · ·mn} (set of intentional missing situation),
P, Tmax, initial error, error condition
OUTPUT: p∗, tmax∗

1: procedure OPTIMAL p AND tmax
2: error = initial error
3:
4: for all p ∈ {1,· · ·, P} and tmax ∈ {1,· · ·, Tmax} do
5: for all mi do
6: calculate mLAI
7: end for
8:
9: if |average error over M - error| < error condition then

10: return p and tmax
11: end if
12:
13: if average error over M < error then
14: error = average error over M
15: p∗ = p
16: tmax∗ = tmax
17: end if
18:
19: end for
20: end procedure

2.2. Extended LAI Method

In the proposed LAI, k past situations, which have the most similar pattern to the missing situation,
are used. This is based on the assumption that collected power data tend to have a similar pattern over
time with human activities, as used in the literature [8]. This assumption, however, may not be satisfied
under the unexpected variation in the missing interval. This means that there can be an unexpected
variation in missing intervals, which differs from past situations despite there being a similar pattern in
surrounding data. Here, to alleviate the impact of this unexpected variation, we extended the proposed
LAI as the extended LAI method (eLAI), which adaptively selects between LI and the proposed LAI.
The procedures of eLAI consist of the following two steps.

Step 1: Similar past situations are selected for deciding the imputation method. In this selected
past situations, intentional missing data corresponding to the actual missing data are made and
estimated through LI and LAI. Therefore, as LAI finds k similar past situations for missing power data
imputation, s past situations that have high similarity to the missing situation are selected.
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Step 2: Intentional missing data are estimated for each s selected past situations by using two
methods, LI and LAI, and the results of the two methods are compared in terms of imputation accuracy
for each s past situation. Then, one method is selected by a majority vote of s results, and one selected
method is finally used for the actual missing data imputation. Figure 3 illustrates the procedure of
eLAI. In Figure 3, the results of estimating the intentional missing power data for each s past situations
show that the LAI will be more accurate than when using LI, and consequently, LAI is selected for the
actual missing data imputation.

Figure 3. The procedure of extended LAI method (eLAI). The shaded areas represent selected
past situations.

In this way, eLAI not only utilizes historical data, but also the information on the method with
better results in similar past situations through intentional missing data. By using another piece of
information that can describe the actual missing situation, eLAI alleviates the effect of unexpected
variation of the actual missing data on missing data estimation.

3. Performance Evaluation

We evaluate the proposed LAI and eLAI by comparing them to existing methods, LI and
OWA [12], which are commonly used or suggested for missing power data imputation. In addition to
two comparison methods, the probabilistic principle component analysis (PPCA)-based imputation
method, which had been proven to be one of the most effective imputing methods in traffic data [20,21],
is also compared. In this evaluation, various missing lengths and missing ratios are considered,
and all missing data are intentionally generated with these missing lengths and missing ratios.
The performance is measured by the mean absolute percent error (MAPE) and the root mean square
error (RMSE). The well-known metrics to evaluate the accuracy of imputation, MAPE and RMSE,
are defined as follows [12,13]:

MAPE =
100

l

l

∑
t=1

|xreal
t − xest

t |
xreal

t
[%],

RMSE =

√√√√1
l

l

∑
t=1

(xreal
t − xest

t )2,

where xreal
t and xest

t denote the actual data and the estimated data at time t, respectively.

3.1. Comparison Method

In this subsection, PPCA-based imputation is described briefly. It should be noted that PPCA
is based on PCA, which is well known for feature extraction. Specifically, PCA provides principal
components of each data where the principal component is the projection of each data into the space
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of the principal axes. Here, this principal axes maximizes the variance of the data in the projected
space. Additionally, the principal axes, which are computed as eigenvectors of the dataset’s sample
covariance matrix, represent the distribution of the given dataset. On the other hand, PPCA introduces
the probability model for finding principal axes and principal components of the dataset so that
both of them can be found even when missing data exist. That is, PPCA can be considered as a
maximum-likelihood reformulation of PCA [20,22]. Therefore, PPCA is applied to missing data
imputation using principal axes and principal components found from non-missing data inversely.
In this performance evaluation, data from the time the data loss occurred up to 21 days ago was used
for PPCA-based imputation.

3.2. Data

For the evaluation, two types of data were used. The first one is meter data simulated for the U.S.
Department of Energy (DOE) commercial buildings, such as offices, hotels, restaurants and schools
over 17 years (1998–2014) for 15 sites in the continental U.S. The time unit of the data is 30 min, and the
data are published at the Open Energy Information (OpenEI) [23]. Figure 5a shows an example of one
power consumption datum among 45 different buildings.

The second dataset is meter data collected by Korea Electric Power Corporation (KEPCO).
At KEPCO, the types of electricity supply are divided into residential, general, educational, industrial
and agricultural, depending on the application, and each type is divided again into high (H) and low (L)
voltage based on the supply voltage. Among these, the general type includes the electricity supplied to
commercial office buildings and some of the electricity for residential, industrial and agricultural types,
according to the stipulations of the electricity supply contract, excluding the remaining categories.
In this paper, we used general H and L active power data collected from 1 January 2015–10 August 2016
(H) and 16 February 2014–10 August 2016 (L) in the Gwangju area of Korea. The measurements from
1000 (H) and 700 (L) smart meters are recorded every 15 min. From the actual measured data, we can see
the following two facts. First, it is observed that 13.34% (H) and 11.60% (L) of the total data are missing.
Second, the missing data for up to three hours (i.e., missing interval 12 in this dataset) account for
about 68.3% at H and about 85.9% at L. Histograms of the cumulative frequency distribution of missing
data depending on the missing interval are shown in Figure 4a,b. Figure 5b,c shows examples of
power consumption data actually measured. Furthermore, Figure 6 shows examples of meter data
collected on every Monday for one year in each dataset. As can be seen in Figure 6, the real meter
data have much more diverse patterns than the simulated data despite the same day of the week,
and pattern irregularity in the real meter data seems large. This makes missing data imputation of the
real meter data more difficult. In this performance evaluation, reflecting the frequency distribution
of real missing data, the missing length ranges from 1 to 12. The missing ratio ranges from 1 to 30%,
to observe the robustness of the proposed method across various missing ratios.
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(a) KEPCO-high voltage
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(b) KEPCO-low voltage

Figure 4. Histogram of cumulative frequency distribution of missing data.
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Figure 5. Example of data used in the performance evaluation. (a) DOE; (b) KEPCO-high voltage;
(c) KEPCO-low voltage.
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Figure 6. Example of data used in performance evaluation (every Monday for one year). (a) DOE;
(b) KEPCO-high voltage.

3.3. Parameter Selection

Prior to performance evaluation, the parameters of the proposed algorithm (i.e., k, s, p and tmax)
were determined as follows. First, 500 intentional missing situations for each missing length were
randomly selected in each dataset as training data for parameter selection. This is to reflect diverse
and large amounts of power consumption data. Here, one missing situation is a random ordered pair;
(smart meter ID, time where intentional data loss occurred). For example, Figure 7 shows an example
of the training dataset when the missing interval is three. Then, these parameters are selected based on
the measured error in the missing power data imputation performed on the value of the parameter
within the appropriate range. Table 1 shows the heuristically optimized k and s in the first dataset.
In the second dataset, k is three and s is nine for all missing lengths. Next, heuristically optimized
p∗ = 2l, t∗max = 21 days were used in this performance evaluation.

Figure 7. Example of training dataset when missing interval is three.

Table 1. Heuristically-optimized k and s for each missing length in the first dataset.

Missing Length 1 2 3 4 5 6 7 8 9 10 11 12
Optimized k 1 3 4 4 3 2 4 4 3 2 5 8
Optimized s 7 11 7 3 11 13 9 3 11 11 11 9

3.4. The Result of the Performance Evaluation

The accuracy of the proposed methods were compared to LI, OWA and PPCA with respect to
missing intervals in terms of MAPE and RMSE. Figures 8 and 9 show the average MAPE and RMSE
with the 95% confidence interval over 1000 random test cases for each missing interval. One test
case is a randomly selected intentional missing situation as in parameter selection (smart meter ID,
time where intentional data loss occurred). These randomly selected test cases reflect various missing
situations. They are independent of the missing situations used in parameter selection.

First, the MAPE and RMSE measured in the first dataset with distinctly repeated patterns as
simulated data are shown in Figures 8a and 9a. In this dataset, the missing ratio is 0%, and missing data
during from a minimum of 30 min to a maximum of 6 h were estimated. In Figures 8a and 9a, we note



Energies 2017, 10, 1668 11 of 20

that the eLAI shows the lowest average MAPE, RMSE and the shortest 95% confidence interval in most
missing length. PPCA also showed relatively accurate imputation results. On the other hand, naturally,
the longer the missing interval, the more MAPE and RMSE of LI increased. OWA, which imputes
missing values by calculating the weighted sum of estimated values of LI and HA, also increases
the error rate as the missing interval becomes longer. Specifically, in this dataset, the proposed eLAI
improves about 74.4%, 60.8% and 14.5% average MAPE compared to LI, OWA and PPCA, respectively.
In addition, these was about a 3.2% improvement compared to the proposed LAI. In the sense of
average RMSE, eLAI achieves about 69.8%, 59.2% and 20.0% improvement over LI, OWA and PPCA
and about a 1.1% improvement over LAI. Furthermore, Tables 2 and 3 show the results of LAI and eLAI
when information on the variation is used or not for the feature vector. In most cases, the measured
errors with no information on the variation are larger than the values with the information on variation.
This result indicates that the accuracy of missing data imputation can be improved when the slope
information is included in the feature vector.

Table 2. Specific MAPE (%) and RMSE with information on the variation (numbers in parentheses are
upper bounds of a 95% confidence interval).

MAPE

1 2 3 4 5 6 7 8 9 10 11 12 Avg

LAI 2.59 2.25 3.00 3.22 3.18 3.48 3.40 3.85 3.67 4.04 4.35 4.53 3.46
(0.621) (0.387) (0.457) (0.500) (0.458) (0.442) (0.358) (0.443) (0.436) (0.463) (0.412) (0.465) (0.454)

eLAI 2.42 2.28 2.83 3.07 3.11 3.29 3.31 3.63 3.61 3.90 4.32 4.43 3.35
(0.549) (0.402) (0.440) (0.499) (0.465) (0.430) (0.410) (0.426) (0.434) (0.444) (0.416) (0.450) (0.447)

RMSE

LAI 1.75 1.59 2.21 2.46 2.23 2.76 3.13 2.78 3.56 3.26 3.66 3.77 2.76
(0.563) (0.317) (0.413) (0.446) (0.359) (0.443) (0.523) (0.389) (0.667) (0.462) (0.527) (0.531) (0.470)

eLAI 1.73 1.59 2.19 2.33 2.22 2.63 2.97 2.70 3.57 3.31 3.74 3.76 2.73
(0.562) (0.370) (0.423) (0.440) (0.374) (0.423) (0.501) (0.381) (0.665) (0.469) (0.550) (0.520) (0.473)

Table 3. Specific MAPE (%) and RMSE with no information on the variation (numbers in parentheses
are upper bounds of a 95% confidence interval).

MAPE

1 2 3 4 5 6 7 8 9 10 11 12 Avg

LAI 2.77 2.45 3.12 3.28 3.26 3.52 3.53 3.82 3.59 4.03 4.28 4.36 3.50
(0.626) (0.419) (0.457) (0.501) (0.466) (0.470) (0.384) (0.441) (0.411) (0.463) (0.407) (0.434) (0.456)

eLAI 2.58 2.42 2.90 3.16 3.18 3.37 3.52 3.58 3.58 3.84 4.25 4.30 3.39
(0.556) (0.414) (0.430) (0.450) (0.469) (0.454) (0.442) (0.422) (0.416) (0.438) (0.407) (0.414) (0.447)

RMSE

LAI 1.80 1.82 2.38 2.62 2.37 2.82 3.30 2.83 3.61 3.30 3.66 3.73 2.85
(0.562) (0.396) (0.437) (0.466) (0.391) (0.430) (0.540) (0.395) (0.631) (0.452) (0.510) (0.502) (0.476)

eLAI 1.84 1.76 2.34 2.48 2.32 2.73 3.33 2.76 3.69 3.24 3.68 3.78 2.83
(0.582) (0.392) (0.445) (0.459) (0.387) (0.420) (0.553) (0.390) (0.635) (0.443) (0.512) (0.511) (0.4772)
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Figure 8. Average MAPE and 95% confidence interval of each method. (a) DOE; (b) KEPCO-high
voltage; (c) KEPCO-low voltage.
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Figure 9. Average RMSE and 95% confidence interval of each method. (a) DOE; (b) KEPCO-high
voltage; (c) KEPCO-low voltage.

Next, the MAPE and RMSE measured from the real meter data are shown in Figures 8b,c and 9b,c.
Each was measured in H and L, respectively. In this dataset, missing data during a minimum of 15 min
to a maximum of 3 h were estimated. In these figures, we could see at a glance that the results of
the second dataset are very different from the first dataset. This is due to the fact that the interval
of the measurement time is shorter than the simulated data, the missing ratio of the real meter data
is about 10%, and it has very diverse and irregular patterns. First, the overall MAPE of H and L is
compared. In most imputation methods, the average MAPE at L is about 1.6-times higher than H.
This means that the estimation of the missing data at L is more difficult than the estimation at H.
Second, in most of the cases of Figure 8b,c, MAPE of OWA is larger than MAPE of LI. As mentioned
before, OWA imputes missing data by calculating the weighted sum of LI and HA. If a missing length
is short, OWA is affected by LI, and if the missing length is long, it is affected by HA. Therefore, at this
time, a larger error than LI means that HA accuracy is very low, which is again caused by unpredictable
characteristics of the real meter data. Furthermore, it can be seen that PPCA shows a very high error
rate. Here, PPCA also uses data from the time the data loss occurred up to 21 days ago for comparison
with the proposed methods. Under this same condition, PPCA showed good performance in the first
dataset, but did not in the second dataset. It can be understood that it is difficult to find latent variables
in the second data by only 21 days of data. On the other hand, the proposed eLAI shows the lowest
error rate in most cases even in this dataset, which is likely to have unexpected patterns, although the
proposed LAI shows some inaccurate estimates compared to other comparison methods.

From these results, it can be verified that the proposed methods estimate the missing power
data more accurately than the existing methods. Especially, the proposed eLAI estimates the missing
power data accurately in both datasets. In the case of the confidence interval, the length of the eLAI is
shorter than the comparison methods. This indicates that the proposed algorithm can perform more
reliable imputation. Table 4 shows the overall average of MAPE and RMSE measured in each method.
Figure 10 shows an example of missing power data imputation using four methods. Since eLAI selects
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one of LI and LAI, the chosen method is replaced by eLAI in this figure. These are the results of
estimating 12 missing data. As seen in Figure 10, in the case of eLAI, it is seen that LAI is well selected
between LI and LAI as an imputation method in this time period, and it is highly accurate compared
to the existing methods.

Table 4. The overall average of MAPE (%) and RMSE (numbers in parentheses are upper bounds of a
95% confidence interval).

MAPE (%) RMSE

LI OWA PPCA LAI eLAI LI OWA PPCA LAI eLAI

Avg 13.07 8.54 3.92 3.46 3.35 9.03 6.69 3.41 2.76 2.73
DOE (0.885) (0.631) (0.430) (0.454) (0.447) (1.019) (0.810) (0.527) (0.470) (0.473)

Avg 11.47 12.24 16.26 11.87 10.16 4.73 6.53 7.40 3.34 3.66
HIGH (0.990) (0.976) (1.275) (0.999) (0.878) (4.726) (6.528) (7.400) (3.337) (3.662)

Avg 19.47 19.52 25.94 18.32 16.80 0.96 0.43 0.12 0.08 0.07
LOW (1.471) (1.432) (1.649) (1.427) (1.341) (1.927) (0.782) (0.024) (0.020) (0.019)
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Figure 10. Example of missing power data imputation.

3.5. Performance Evaluation According to the Missing Ratio

Next, a performance evaluation of the proposed eLAI is performed according to the missing ratio
with the first dataset. For each test case randomly selected, this algorithm is applied after missing data
by the missing ratio in corresponding historical data as shown in Figure 11. Because the proposed
eLAI uses historical data, the missing ratio is an important factor affecting performance. As shown in
Figure 12 and Table 5, as the missing ratio increases, the error rate and the confidence interval also
increases. In particular, the increase in average MAPE was most prominent at the 10–20% missing rate.
In addition, at some point of the high missing ratio of historical data, performance analysis cannot be
conducted for each missing length, as shown in Table 5. This is a limitation from using the complete
past situation for missing data imputation. A discussion on this limitation is also included in Section 4.

Figure 11. Setting for performance evaluation according to the missing ratio.
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Figure 12. The average MAPE (%) of the proposed eLAI with various missing ratios.

Table 5. The average MAPE (%) of the proposed eLAI with various missing ratios (numbers in
parentheses are upper bounds of a 95% confidence interval).

Missing Ratio of Historical Data (%)

1 5 10 20 30 40 50 60 70 80 90

1 2.33 2.39 2.72 2.78 3.61 3.94 5.25 6.87 9.95 11.96 12.17
(0.495) (0.503) (0.547) (0.521) (0.634) (0.603) (0.686) (0.775) (0.969) (1.150) (2.805)

2 2.29 2.71 2.94 3.38 6.19 9.66 15.15 29.73 41.10 48.62 -
(0.389) (0.442) (0.418) (0.451) (0.674) (0.823) (1.197) (2.539) (6.014) (22.450) -

3 3.01 3.53 3.86 7.70 12.85 21.32 28.43 29.84 46.64 - -
(0.500) (0.532) (0.494) (0.797) (0.996) (1.423) (3.089) (7.497) (43.579) - -

4 3.12 3.81 5.58 12.22 24.27 31.43 34.16 32.52 - - -
(0.471) (0.523) (0.655) (1.006) (1.505) (3.111) (8.284) (16.606) - - -

5 3.44 4.93 7.22 20.71 33.07 35.80 55.13 - - - -
(0.423) (0.583) (0.698) (1.356) (2.280) (5.489) (20.628) - - - -

6 3.93 5.61 9.18 28.09 40.80 47.30 37.79 - - - -
(0.477) (0.648) (0.854) (1.673) (3.623) (9.715) (12.384) - - - -

7 4.83 7.10 13.46 34.95 46.97 45.91 64.69 - - - -
(0.593) (0.737) (1.118) (2.068) (5.869) (18.011) (0.969) - - - -

8 4.11 7.38 16.71 39.77 51.13 52.98 - - - - -
(0.416) (0.720) (1.267) (2.631) (10.450) (21.932) - - - - -

9 4.76 8.83 20.12 45.41 45.81 53.83 - - - - -
(0.551) (0.914) (1.444) (3.547) (8.259) (82.396) - - - - -

10 4.76 9.41 25.75 48.31 60.38 - - - - - -
(0.510) (0.903) (1.681) (4.677) (13.452) - - - - - -

11 5.22 11.10 31.37 49.30 55.09 - - - - - -
(0.560) (0.993) (1.831) (5.211) (25.101) - - - - - -

12 6.34 12.74 36.39 48.95 78.31 - - - - - -
(0.668) (1.058) (2.028) (7.129) (22.444) - - - - - -

4. Discussion and Future Work

This section contains the discussion on the impact of two hyperparameters (i.e., p and tmax) used
in LAI, the limitations of the proposed methods and future work to improve it. First, Figure 13 shows
the average MAPE over 500 random test cases for each missing length according to the p values.
At all missing lengths, the larger the p value, the lower the MAPE is obtained. This means that when
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searching for similar past situations, the more data that are used to generate a feature vector, the more
accurate the missing data estimation will be. However, there is also a case where the MAPE increases
when the p value increases, especially at a short missing interval. This is due to fact that if there is
an unexpected variation in the missing interval, a larger p value cannot guarantee a more accurate
estimation. Next, the value tmax is observed. The average MAPE over 500 random test cases for each
missing length when the value of tmax is increased as in the previous one day, 1 week, 2 weeks and
3 weeks is shown in Figure 14. As seen in this figure, the error rate decreases sharply every time as the
historical length increases by one week. However, if the historical length exceeds about three weeks or
four weeks, the error rate tends to converge to a constant value. This means that there is an optimal
historical length at this convergence point. Beyond this optimal point, the increment of historical
length only leads to a longer execution time without any improvement of the error rate, as shown
in Figure 14, where the execution environment was Inter(R) Xeon(R) CPU E3-1230 v3 @ 3.30 GHz.
The heuristically-optimized hyperparameters in LAI help to find useful historical data for missing
data imputation, contributing to accurate estimation and computational efficiency.
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Figure 13. Average MAPE according to p.
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Figure 14. Average MAPE according to tmax.

However, since the proposed LAI is based solely on historical meter data, we can consider two
situations where its performance is rather poor. First, the proposed methods may be degraded when
historical data are lost extensively, as seen in Section 3.5. This leads to an inaccurate imputation
because it is difficult to detect similar and complete past situations. However, this problem might be
also a critical issue for other imputation algorithms, especially learning-based algorithms. In order to
improve these problems, it is essential to develop an imputation method that utilizes not only power
consumption, but also other environmental variables (weather, occupancy rate, etc.).
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Second, suppose we have found several past situations similar to the missing situation using
the surrounding data. However, in a situation that corresponds to the actual missing data, there may
be situations with unpredictable power consumption patterns. Although eLAI has been proposed
to alleviate this problem, unpredicted variation still leads to an inaccurate missing data imputation.
Figure 15 shows some cases corresponding to this situation. Figure 15 illustrates intentional missing
data, imputed data and the past situation selected based on the similarity of surrounding data.
The surrounding data of the selected past situation show a pattern similar to the surrounding data
of the missing situation. However, some past situations in Figure 15a,b show a completely different
pattern from the real missing data. Conversely, in Figure 15c, the real power consumption data show
a different pattern from the selected past situations. In these cases, missing data imputation will
result in a large error with the actual value. This is because the past situation selected for imputation
contains the unpredictable power consumption in the time corresponding to the actual missing data.
The problem of unpredicted patterns of selected past situation can be improved by the following two
improvements of the proposed methods: (1) how to select historical data to be used and (2) how to
utilize selected historical data.

0 5 10 15 20 25 30 35 40

Time

0

5

10

15

20

25

30

35

A
c
ti
v
e

 p
o

w
e

r 
[k

W
h

]

Imputed data-LAI

Missing data

(a)

0 5 10 15 20 25 30 35 40

Time

0

5

10

15

20
A

c
ti
v
e

 p
o

w
e

r 
[k

W
h

]
Imputed data-LAI

Missing data

(b)

0 5 10 15 20 25 30 35 40

Time

0

20

40

60

80

100

A
c
ti
v
e

 p
o

w
e

r 
[k

W
h

]

Imputed data-LAI

Missing data

(c)

0 5 10 15 20 25 30 35 40

Time

0

5

10

15

20

A
c
ti
v
e

 p
o

w
e

r 
[k

W
h

]

Imputed data-SVR

Missing data

(d)

Figure 15. Example of difference between imputed data and missing data. (a) Unexpected variation in
past situations for imputation, normal case; (b) unexpected variation in past situations for imputation,
extreme case; (c) unexpected variation in current missing situation; (d) an example of imputation
using SVR.

First, when choosing past data to use for imputation, we can introduce a method to consider
similar past situations with incomplete data; or a method considering attribute that can be define
through environmental variables in each situation as [24] may be considered. The second is
an improvement on how to use selected historical data. Considering the unpredictable power
consumption in the selected historical data as one outlier, it is possible to introduce a learning technique
such as SVR, which is robust to these outliers [25–27]. For example, Figure 15d shows the example of
missing data imputation using basic SVR in the same situation as Figure 15b. There is still an error,
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but it may be less affected by the unexpected pattern in the past situation than in LAI. This shows the
room for improvement of the proposed algorithm and becomes the future work of this paper.

Finally, in this paper, it is stipulated that the situation where imputation is necessary is when
the first non-missing meter data come in. This is because if the missing data are interpolated as
soon as it occurs, it is a kind of a prediction, not an imputation. However, this situation would
be important for user-oriented applications (e.g., real-time demand management, smart-metering
service, etc.). It should be noted that even in LI, it is not able to perform missing data imputation in
such a situation. Nevertheless, in the proposed scheme, by slightly modifying the proposed scheme,
it is able to interpolate data without using the first succeeding non-missing data. Specifically, in the
similar pattern search step of the proposed algorithm, only the data before the missing interval can be
used for the interpolation. Table 6 is the numerical results using the modified algorithm. In this case,
MAPE was somewhat higher than that of the conventional LAI or eLAI, but there is no significant
difference when compared with other methods.

Table 6. The overall average of MAPE (%) with algorithm modification (numbers in parentheses are
upper bounds of a 95% confidence interval).

DOE HIGH LOW

LAI 5.65 14.73 21.03
(1.017) (1.190) (1.576)

eLAI 4.22 10.63 17.71
(0.590) (0.916) (1.393)

5. Conclusions

In this paper, we proposed a learning-based adaptive imputation method (LAI) for missing power
data. In detail, the proposed LAI estimates the missing power data regardless of missing intervals by
using the pattern of power data. To this end, we modeled a feature vector to represent a situation,
and the optimal length of the feature vector and the historical length are decided through a learning
process. Furthermore, a mechanism to consider unpredicted variation in power data is suggested as
an extended LAI (eLAI). In the proposed eLAI, the optimal imputation method is adaptively selected,
which also contributes to the accuracy of the missing data imputation under unpredicted variation.
The performance of the proposed eLAI was evaluated with various energy consumption profiles,
and we achieved about a 74% improvement of the average MAPE compared to other existing methods.
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