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Abstract: Despite the predictability and availability at large scale, wave energy conversion (WEC)
has still not become a mainstream renewable energy technology. One of the main reasons is the large
variations in the extracted power which could lead to instabilities in the power grid. In addition,
maintaining the speed of the turbine within optimal range under changing wave conditions is another
control challenge, especially in oscillating water column (OWC) type WEC systems. As a solution
to the first issue, this paper proposes the direct connection of a battery bank into the dc-link of the
back-to-back power converter system, thereby smoothening the power delivered to the grid. For the
second issue, model predictive controllers (MPCs) are developed for the rectifier and the inverter of
the back-to-back converter system aiming to maintain the turbine speed within its optimum range.
In addition, MPC controllers are designed to control the battery current as well, in both charging and
discharging conditions. Operations of the proposed battery direct integration scheme and control
solutions are verified through computer simulations. Simulation results show that the proposed
integrated energy storage and control solutions are capable of delivering smooth power to the grid
while maintaining the turbine speed within its optimum range under varying wave conditions.

Keywords: active front end rectifier; finite control set-model predictive control (FCS-MPC); two-level
voltage source inverter; wave energy conversion (WEC)

1. Introduction

Wave energy is a vast, sustainable and low environmental impact renewable energy source
which is gaining popularity among the research community [1–4]. Numerous studies have been
conducted and various technologies have been developed to convert wave energy into electricity
since mid-twentieth century [5]. Nevertheless, practical implementations of these technologies have
always been challenging, with varying degrees of success [5]. According to [6], only four countries
have fully operational wave energy conversion (WEC) systems so far, while a few other countries,
including Australia, are rapidly progressing towards commercial deployment. As reported in [2],
there are several WEC projects in various stages of progress along the southern Australian coastline
aiming to increase the renewable share in the grid. These projects use different WEC technologies, out
of which the King Island project conducted by Wave Swell Energy (WSE) uses the oscillating water
column (OWC) technology which is simple, cost effective and easy to maintain [7].

This particular WEC system employs a bottom-standing OWC plant which is positioned about
700 m from the shoreline of King Island at a mean sea level depth of 10 m [8]. This design concept
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focuses on oscillation of the ocean wave inside a fixed and partially submerged hollow concrete
structure, known as the OWC chamber. The passing ocean waves which rise and fall inside the OWC
chamber make the air trapped inside the chamber compress and decompress. This produces a varying
differential pressure in the OWC chamber with respect to the atmosphere. When the pressure inside
the OWC chamber is low, atmospheric air is drawn into the chamber through a unidirectional air
turbine which is coupled to a generator to generate electricity. When the air chamber pressure is above
atmospheric pressure, the trapped air is passed through passive non-return air flow valves built into
the OWC chamber [8]. Therefore, this turbine generates power only during the inhale stage resulting
in pulses in the generated electrical power. The characteristics of the particular air turbine are different
from those of the traditional turbines such as Wells turbine and impulse turbine, and thus its control
objective is different to what has been reported in the literature [7,9].

Amidst the drawback of power pulses, WSE and other companies commissioning similar types
of commercial scale projects believe that the OWC system will be reliable, require less maintenance
and be cost effective compared to other onshore renewables and fossil fuels in coming years [3,6,7,10].
To achieve these objectives and promote WEC as a competitive renewable energy technology, it is
essential to achieve the maximum overall efficiency from wave to wire and comply with the grid codes
applicable to the WEC system. This involves maintaining the turbine within its optimum speed range
and delivering smooth power to the grid.

Similar to wind energy conversion systems, the back-to-back converter arrangement is the most
popular grid integration technology for WEC systems as it decouples the generator dynamics from
the grid and allows the turbine to run at different speeds to optimise the energy capture [11,12].
Nevertheless, the aforementioned power pulses still propagate into the power grid through the power
converter which could lead into instabilities in the grid [11–13]. Therefore, energy storage systems
(ESS) that can absorb power fluctuation and thereby ensure smooth power delivery to the grid are
becoming an integral part of WEC systems.

The inclusion of energy storage to absorb power fluctuations in renewable energy systems is well
explored and there are numerous publications proposing various topologies and control techniques.
In fact, the application of battery energy storage in WEC systems is also not new [14]. The common
approach of integrating an ESS, in the form of a battery bank and/or a supercapacitor bank, is the use of
an interfacing dc-dc or dc-ac converter [11,15,16]. This enables direct control over the charge/discharge
current of the ESS. Nevertheless, as shown in Figure 1, this paper proposes to connect a battery ESS
(BESS) directly into the dc-link of the WEC system without an interfacing converter. The problem with
this approach is the absence of direct control over the battery current. Neither the rectifier nor the
inverter shown in Figure 1 can directly control the battery current. In addition, the dc-link voltage,
Vdc, is also not controlled and allowed to vary depending on the battery state of charge (SoC) and
its current. In the proposed system, inverter controller regulates the current (in other words power)
injected into the grid while the rectifier controller controls the generator current (to regulate the speed).
Since the battery is directly connected to the dc-link, battery current is the difference between the
current supplied by the rectifier and the current taken out by the inverter (the capacitor is there to
absorb high frequency components). Both of these currents are controllable. Therefore, this paper
proves that the battery current is also controllable, which is one of the novel aspects presented in this
paper. As this is an indirect control of the battery, the system is designed and the grid power reference
is chosen in a way that the battery current in both charging and discharging states will not exceed safe
operating limits.

The conventional control uses pulse width modulation (PWM) methods which linearize power
converters while power converters and drive systems are controlled in cascade multi loop systems
with proportional integral (PI) regulators [17–20]. New strategies proposed in [19,20], etc. improve the
performance of this controller in the presence of nonlinear loads. Nevertheless, in general, linear control
methods with a modulation applied to nonlinear systems lead to uneven performance throughout
the dynamic range [21]. The implications of this method have been identified as very challenging
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to modern power converters such as multi-level, matrix converters, etc. [21]. Moreover, system
constraints and technical requirements cannot be directly include into the conventional control designs.
To overcome these issues, modern digital control methods are introduced for the power converters.
The recent developments of microcontrollers and fast powerful digital signal processors make these
digital control methods a reality.
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Figure 1. Schematic diagram of the proposed oscillating water column (OWC) air turbine
generator—grid interface system.

Apart from the direct connection of the battery into the dc-link, this paper proposes a finite control
set model predictive controller (FCS-MPC) for the rectifier and inverter. With the advancement of
microprocessor technologies, model predictive control (MPC) has become popular as a simple and fast
digital control technology for power electronic converter systems [22]. Moreover, the absence of tuning
makes MPC more attractive over conventional PI controllers. In [23], a current control scheme for a
three phase rectifier has been introduced using modulated MPC (M2PC) to reduce switching frequency
and total harmonic distortion (THD) in phase currents, by three times compared to conventional MPC.
In [24], a similar control scheme for a three phase grid connected inverter has been introduced using
M2PC with a moving average filter-phase lock loop considering distorted grid conditions. Apart from
improving the THD, the other main concern of [23,24] is the large computational effort required in the
controller. In the field of renewable energy, FCS-MPC has recently been proposed for variable speed
wind energy conversion systems [25] with a model reference adaptive system (MRAS) observer to
estimate the generator rotor speed and position. Nevertheless, the applicability of FCS-MPC in OWC
WESs has not been tested so far.

The objective of the MPC proposed in [25] is to extract maximum power from the wind by
controlling the generator speed according to the actual wind speed. Similar variable speed operations
have been proposed for WECs to track the maximum power point (MPP) using different control
strategies other than MPC [5,26]. Nevertheless, the choice of variable or fixed speed operation of the
turbine depends on its design and operating requirements. Therefore, the objective of the associated
power take-off (PTO) controller should also vary accordingly. The particular turbine considered
in this study targets to operate at a pre-designed operating speed range to achieve the optimum
turbine efficiency regardless of the change in differential air pressures [7]. Therefore, the objective of
the proposed controller is to maintain the turbine speed within the optimum range under varying
wave conditions.

The operation of the proposed battery energy storage integration system and effectiveness of the
controllers are verified through MATLAB/Simulink software simulations. The paper is organized
as follows: Section 2 reviews the electrical grid and grid codes requirements applied to the King
Island WEC system in Australia. Section 3 presents the overall system modelling of OWC. The model
predictive controllers (MPCs) for both the power converters are presented in Section 4. Section 5
presents simulation results and discusses the implications of the results. Conclusions derived from the
discussion are presented in Section 6.
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2. Electrical Grid and Grid Codes in Australia-King Island

In Australia, all grid connected inverters should comply with the requirements of
‘AS4777—Australian guidelines for grid connection of energy systems through inverters’ and
‘AS3100—Approval and test specification general requirements for electrical equipment’. These guidelines
are based on the IEC61000-6-3:2006 and IEEE1547 standards. The same standards apply to the
grid-connected wind turbine generators and solar inverters [2,27,28]. According to [27] which is an
Australian body that administers the accreditation of renewable energy installers and grid-connected
inverters in Australia, fewer Australian policies and standards have been published for renewable
energies except for the solar photovoltaic (PV) industry to date. Therefore, most of the small scale
renewable energy system interconnections are assessed on a case by case basis [27,28]. The power
grid, where the WEC system considered in this paper is going to be connected, is a standalone hybrid
off-grid transmission network of 11 kV, isolated from both mainland Australia and Tasmania [29].

Australian transmission system operators (TSOs) require all grid-connected power plants to be
compliant with the grid codes. This means that the WEC system should have adequate capability to
act as a conventional power plant. The important steady state operation conditions required by the
TSO are identified as [13,26]:

• The power plant should be able to control its active power output according to the limits set by
TSO to maintain system security and reliability.

• The power factor is required to be maintained as PFind equal to1.0 and PFcap equal to 0.95 at both
100% and 50% power.

• The frequency should be maintained between 47 Hz and 52 Hz.
• The operating voltage should be kept at±10% of the rated voltage at the point of connection (POC).
• The voltage quality standards such as rapid voltage changes, harmonic voltages, voltage variations

and flicker should comply with the standards of IEC 61000-3-2 and IEEE1547.

The grid connected converter of the OWC WEC system should adhere to all these grid codes.
Therefore, the proposed back-to-back full scale power converter should be able to ensure the quality of
the power supply to the grid regardless of the intermittencies present in the output of the air turbine
generator system. Therefore, energy storage is essential to absorb power fluctuations, maintain a
smooth dc-link voltage and ensure a smooth power delivery to the grid [15].

3. Overall System Modelling

3.1. OWC Air Turbine Model

A prototype of the single stage unidirectional air turbine, which is used in this study, is shown in
Figure 2. Compared to conventional bi-directional air turbines used in WECs, this particular turbine is
expected to achieve higher energy conversion efficiency [7]. Preliminary tests of the turbine model
have been carried out in the model test basin at the Australian Maritime College.
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As mentioned above, this turbine produces power only during the air intake. The graph in
Figure 3a depicts the predicted efficiency curve of the air turbine which peaks around 650 rpm. As this
particular turbine does not necessarily require variable speed operation [7,8] 650 rpm is set as the
control objective for this study. Figure 3b illustrates a distinctive pressure profile experienced by
the turbine at the point of its design speed which was obtained from the tests carried out with the
prototype mentioned above [7]. The torque generated by the pressure drop profile is taken as the
mechanical input to the generator. The empirical relationship between the pressure drop and the
torque was obtained as:

Tm = 10.785 ∆P2 − 228.89 ∆P (1)

where Tm is the mechanical torque produced by the turbine in Nm and ∆P is the pressure drop
dynamics through the turbine in kPa. This mechanical torque has been used as the input to the
generator for the simulation purposes.
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3.2. PMSG and Grid Model

The behaviour of three-phase machines is usually described by their voltage/current equations
and inductances. The coefficients of the differential equations that describe their behaviour are time
varying. The relationship between the generated three-phase voltages can be expressed as [30]: fa

fb
fc

 = f

 cos (ωt)
cos (ωt− 2π

3 )

cos (ωt− 4π
3 )

 (2)

where f represents voltage, current, flux linkages, or electric charge while ωt is the actual angle.
To reduce the complexity of the algorithm three-phase quantities are converted to the dq rotating

reference frame. Firstly, three-phase quantities are converted into an orthogonal component system
(αβ stationary reference frame) by taking the projections of the three-phase quantities on an orthogonal
axis using Clark’s Transformation. Then the results are converted into dq rotating reference frame
using Park’s transformation to obtain the desired results as [30]: fd

fq

f0

 =

√
2
3
∗ f

 cos (ωt)
sin (ωt)

0

 (3)
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The active and reactive power of the generator output in the αβ reference frame, assuming a
balanced three-phase system are given as [3,31]:

P = vsαisα + vsβisβ (4)

Q = vsβisα − vsαisβ (5)

where P and Q are active and reactive power respectively, vs and is are the source voltage and current
respectively while subscripts α and β represent the real and imaginary axes respectively. The space

vector models of the three-phase source voltage (
→
v ) and source current (

→
i ) derived from the phase

voltages (vsa, vsb, vsc), and currents (isa, isb, isc) can be represented by [3,32]:

→
v s =

2
3
(vsa +

→
ωvsb +

→
ω2vsc) (6)

→
i s =

2
3
(isa +

→
ωisb +

→
ω2isc) (7)

where
→
ω = e

j2π
3 . The mathematical model of the variable speed multi-pole permanent magnet

synchronous generator (PMSG) in the dq synchronous rotating reference frame, assuming symmetrical
stator windings, negligible stator slots’ effect on the rotor inductances with rotor position, negligible
magnetic hysteresis and saturation effects, and constant power losses in windings can be given
by [3,33–35]:

vsd = Rsisd + Ld
disd
dt
−ωeLqisq (8)

vsq = Rsisq + Lq
disq

dt
+ ωe Ldisd + ωeΨpm (9)

while the PMSG’s flux and electromagnetic torque are:

Ψsd = Ldisd + Ψpm; Ψsq = Lqisq + 0 (10)

Te = 1.5np
[
(Ld − Lq)isdisq + Ψpmisq

]
= 1.5npΨpmiq (11)

Rewriting (4) and (5) in the dq synchronous rotating reference frame one gets:

P = Teωm = 1.5(vsdisd + vsqisq) (12)

Q = 1.5(vsqisd − vsdisq) (13)

where isd and isq are the physical current quantities transformed into the dq frame, vsd and vsq are the
physical voltage quantities transformed into the dq frame, Rs is the stator’s resistance, Ld = Lq are the
inductances of the PMSG on the dq axis, Ψpm is the permanent magnet flux, Ψsd and Ψsq are the flux
components respectively in the d and q axes, Te is the generator’s electromagnetic torque, and ωm is
the mechanical angular speed of the generator.

The formulas associated with the turbine and generator rotor, considering the direct drive system
of the turbine generator and zero rotational damping coefficient can be written as [3,26,34]:

J·dωm

dt
= Tm − Te (14)

where J = Je +
Jt
ng

; Je, Jt and J are the inertia of the generator, turbine and the combined system
respectively, Tm is the mechanical torque of the turbine, ng is the gear ratio which is 1. The generator
rotor electrical angular speed (ωe) can be written with reference to the number of pole pairs (np) and
the electric frequency ( fe) as:

ωe = np·ωm = 2π fe (15)

Both PMSG and power grid models have been designed using Equations (2)–(15).
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3.3. Li-Ion Battery Storage Model

As mentioned above, energy storage, which improves the dynamic behaviour of the overall
system, is becoming an integral part of WEC systems, allowing stable operation regardless of the
variations in waves. The storage system stores the excess electricity production making wave
energy more dispatchable; with continuous supply shifts [36,37]. Even though supercapacitor or
superconductive magnetic energy storage has advantages of long life, continuous power and an
attractive temperature range, batteries were found to be more suitable for this project due to the
requirement of the storage system to supply shifts which demand long charge/discharge periods [36].
Li-ion batteries were selected among all the other commercially available battery types in the market
due to its advantages over others, explained in [38]. According to [39,40] Li-ion batteries have been
improved significantly in recent years and are readily available in the market. Some of the advantages
of using these batteries are desirable charging efficiency (~98%), high energy density (J/m3), high
volume density (W/m3), satisfactory specific power (W/kg) with continuous power supply and
relatively cheaper value per usable kWh per cycle [36,37,39]. All these desirable characteristics also
permit the storage system to use the least amount of space while providing high energy and power [36].

According to [40], up to 255, 12 V Li-ion battery modules could be connected to achieve the
required voltages and capacity for the proposed BESS. The battery specification sheet [39], confirms
that industrial lithium-ion battery single modules with 88.8 VDC can be connected in unrestricted
series and unlimited parallel configurations and provide up to 15,000 charge/discharge cycles at 80%
depth of discharge (DoD). Since the DoD percentage used in this study’s BESS is much less under
normal sea conditions the batteries can last for the maximum engineered design life which is about
10 years. The SoC control and energy management of the battery are not discussed in this paper. In the
proposed system, the battery current is the difference between the current supplied by the rectifier
and the current taken out by the inverter. The battery current is not directly controlled in this design.
Instead, both of the other currents are controlled using MPC to control the battery current indirectly.
The design sets the grid power reference as not to exceed safe operating limits of the battery current in
both charging and discharging states.

The mathematical equations for the Li-Ion battery charging (Ibat < 0) and discharging (Ibat > 0)
could be illustrate as neglecting RC circuits and effect of the change of temperature [41,42]:

Vb dc = V0 − Kb·
Q

Q− it
·Ibat − Kb·

Q
Q− it

·it + A·e(−B·it) (16)

Vb ch = V0 − Kb·
Q

it + 0.1·Q ·Ibat − Kb·
Q

Q− it
·it + A·e(−B·it) (17)

where Vb dc and Vb ch are the nonlinear voltages of the battery during discharging and charging
conditions, respectively. V0 is the constant voltage, Ibat is the battery’s low frequency current dynamics,
Kb is the polarization resistance, it is the extracted capacity, Q is the maximum battery capacity, A is
the exponential voltage and B is the exponential capacity. The electrical power conversion system is
designed to maintain the Ibat in desired current limits for normal sea conditions.

4. MPC for the Power Conversion System

The FCS MPC with short prediction horizon has been proposed for OWC power converters
over many other modern control schemes such as fuzzy logic control, neural networks, sliding mode
control, etc. due to its simplicity and fast response [3]. The FCS-MPC fulfills the function of the PWM
block and cascade multi loop PI control [21]. This facilitates software-based optimal solutions with
industrial flexibility and simplicity. These software-based solutions also permit one to address several
objectives simultaneously.

As mentioned in [3], in this control scheme, a model of the system is considered to predict the
future behaviour of the variables [31,43]. According to [21,32], MPC controllers are not only simpler
than voltage oriented control (VOC)-based pulse width modulators (PWMs) but can also accurately
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track the reference value by generating the optimum switching signal. Also, the MPC algorithm is
easy to configure with constraints and non-linearity [31,32,43]. The FCS-MPC requires high processing
power and high accuracy of model parameters. At present powerful microprocessors overcome the
issue of computational complexity with their high speed and reduced cost [43]. The inaccuracy or
variations of parameters could be addressed with adaptive technologies which observe the behaviour
of the system for given inputs and update the parameters accordingly.

Fast microcontrollers such as the TMS320F28377S (200 MHz) [44] with high speed calculations
enable fast sampling which permits online implementation of MPC, to simplify system optimisation
problems with the aid of the discrete nature of power converters. To design an MPC for the control of
a power converter, first the power converter should be modelled identifying all possible switching
states and its relation to the input and output parameters such as current, voltage, etc. Then the
discrete time models should be obtained to predict the future behaviour of the variables that are
to be controlled. The last step is to define the cost function to gain the desired outcome [21,31].
In 2016, Abdelrahem et al. [25] proposed a similar sensor-less FCS-MPC for a variable speed wind
turbine system with MRAS observer to estimate the generator rotor speed and position. According
to [21,25,31] this sensor-less FCS-MPC with short prediction horizon control strategy is a promising
control technology for achieving accurate control of the converters. As these calculations are based on
the generator model it is simple, acts fast and does not require tuning.

In an OWC system, as the torque varies, input power to the generator varies and thus the active
front end (AFE) rectifier has to control the speed of the turbine to either a set speed, or different
speed levels to maintain the turbine speed at an optimum level to achieve the maximum efficiency
of the turbine. The project that this research is based on requires its turbine speed to be maintained
at 650 rpm [7,8]. This control objective is given to the proposed MPC which predicts the speed in the
next sampling interval for all the switching combinations of the rectifier and selects the combination
which has the lowest speed error. Figure 4 shows the bloc diagram of the proposed control system.
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Figure 4. Model predictive controller (MPC) for an active front end (AFE rectifier) rectifier and two-level
voltage source inverter.

The control objective of the 2L-VSI controller is to control active and reactive power electrical
variables to pre-set values. The 2L-VSI MPC predicts the active and reactive power in the next sampling
interval for all the switching combinations of the inverter and selects the combination which has the
lowest power error.

4.1. Active Front End Rectifier (AFE Rectifier) Model

The rectifier consists of six IGBT-diode switches. The circuit is fed by the ac voltage (vs), generated
by the PMSG, through combination of source and line filter inductances Ls = [(Lsa + Lfa), (Lsb + Lfb),
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(Lsc + Lfc)]T and resistances Rs = [(Rsa + Rfa), (Rsb + Rfb), (Rsc + Rfc)]T. A dc-link capacitor (Cdc) reduces
the voltage ripples. The IGBT switches operate in such a manner that two IGBTs connected to the same
phase are operated as a contrary pair to avoid short circuits (e.g., when Sa1 is ON, Sa2 is OFF, and vice
versa). The rectifier’s switching state is determined by the gating signals Sa, Sb and Sc. These three
switching signals can produce eight consequent switching states resulting in eight possible voltage
vectors as presented in Table 1 [3,25,32].

Table 1. Switching states and voltage space vectors of three phase voltage source.

Switching States Voltage Space Vector

Sa Sb Sc
→

vAFE
0 0 0 →

v0 = 0
1 0 0 →

v1 = 2vdc/3
1 1 0 →

v2 = vdc/3 + j vdc/
√

3
0 1 0 →

v3 = −vdc/3 + j vdc/
√

3
0 1 1 →

v4 = −2vdc/3
0 0 1 →

v5 = −vdc/3− j vdc/
√

3
1 0 1 →

v6 = vdc/3− j vdc/
√

3
1 1 1 →

v7 = 0

The switching function vector (
→
S) can then be written as:

→
S =

2
3
(Sa +

→
ωSb +

→
ω2Sc) (18)

while the rectifier’s space vector (
→
v AFE) related to phase to neutral voltages (va0, vb0, vc0) and dc bus

voltage (vdc) can be written as [3,32,45]:

→
v AFE =

2
3
(va0 +

→
ωvb0 +

→
ω2vc0) (19)

→
v AFE =

→
S · vdc (20)

The relationship between the generated three-phase voltage vectors and the rectifier’s input voltage
vectors can be obtained by applying Kirchhoff’s voltage law to the input side of the rectifier as [3]:

→
v s = Ls

→
dis

dt
+ Rs

→
i s +

2
3
(va0 +

→
ωvb0 +

→
ω2vc0)−

2
3
(vn0 +

→
ωvn0 +

→
ω2vn0) (21)

The input current dynamics of the rectifier, derived from (19) and (21), and assuming
2
3 (vn0 +

→
ωvn0 +

→
ω2vn0) = −vn0

2
3 (1 +

→
ω +

→
ω2) = 0, can be written as [3,32]:

→
dis

dt
= −Rs

Ls

→
i s +

1
Ls

→
v s −

1
Ls

→
v AFE (22)

The MPC-based controller is formulated in the discrete-time domain. Therefore, the rectifier’s
input current and rectified voltage have to be derived in a discrete-time model, using Euler’s
approximation method with one switching period where Ts is the sampling time (Ts > 0; kTs ≤
t ≤ (k + 1)Ts) and k is the sampling instant of [3]:

→
dis

dt
≈
→
i s(k + 1)−

→
i s(k)

Ts
(23)

for the (k + 1) sampling instant from (22) and (23) as [3,31,32,45,46]:

→
i s(k + 1) =

(
1− RsTs

Ls

)→
i s(k) +

Ts

Ls

(→
v s(k)−

→
v AFE (k)) (24)
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4.2. FCS-MPC for AFE Rectifier

The proposed control structure is designed to maintain the turbine speed at 650 rpm.
The FCS-MPC algorithm minimizes the error between reference and predicted angular speeds, denoted
respectively by ω∗ and ωp. The discrete time model for the (k + 1) sampling time instant is [3]:

ωp = ωm(k + 1) = ωm(k) +
Ts

J
(Tm − Te(k + 1)) (25)

In the control system, the future value of current, is(k + 1) = ip
s is calculated from measured

vs(k), is(k) and vdc(k) by MPC controller using (19) for each one of eight possible switching vectors

(
→
S ). Then, ip

s is converted into dq frame (i.e., ip
d and ip

q ) to calculate ωp of the turbine rotor, before it is
compared to ω∗ using the cost function of (grec) from [3]:

grec =
∣∣∣ω∗ − ωp|+ K·

∣∣∣i∗d − ip
d

∣∣∣ (26)

to select the switching state which minimizes the cost function. The error between d axis current
reference (i∗d = id_re f (k + 1)) and predicted d axis current (ip

d = id(k + 1)) is added to the cost function
with an arbitrary constant K to reduce the d-axis current in the generator and thereby, avoid flux
weakening. Figure 5a illustrates the proposed FCS-MPC control algorithm for the AFE rectifier [3].
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4.3. Two-Level Voltage Source Inverter (2L-VSI) Model

As shown in Figure 1, the 2L-VSI inverter connects the DC link to the AC grid through the line
filter inductances Lg = [(Lgu + Lfu), (Lgv + Lfv), (Lgw + Lfw)]T and resistances Rg = [(Rgu + Rfu), (Rgv + Rfv),
(Rgw + Rfw)]T. This is designed to control the output active and reactive power as required by the
grid code [31,45,47]. 2L-VSI’s IGBT switches are operated in a similar manner as the AFE rectifiers.
The inverter switching state is determined by the gating signals Su, Sv and Sw.

The relationship between the grid three phase AC voltage and inverter input voltage vectors are
obtained by applying Kirchhoff’s voltage law to the output side of the 2L-VSI as:

→
v VSI = Lg

→
dig

dt
+ Rg

→
i g +

2
3
(vgu +

→
ωvgv +

→
ω2vgw) +

2
3
(vE0 +

→
ωvE0 +

→
ω2vE0) (27)

where vg is the grid voltage and ig is the grid current. The input current dynamics of the 2L-VSI is
written as [32]:

→
dig

dt
= −

Rg

Lg

→
i g −

1
Lg

→
v g +

1
Lg

→
v VSI (28)

The FCS-MPC controller proposed for this system is formulated in the discrete time domain similar
to the AFE rectifier controller. The discrete time model for the (k + 1) sampling instant is [32,45,46]:

ig(k + 1) =
(

1−
RgTg

Lg

)
ig(k) +

Ts

Lg

(
vVSI(k)− vg(k)

)
(29)

4.4. FCS-MPC for 2L-VSI

The proposed control structure is designed to minimize the errors between reference power and
predictive power. The errors between active power denoted respectively by P∗ and Pp and errors
between reactive power denoted respectively by Q∗ and Qp. The reference power values are fixed
for the 2L-VSI according to the TSO requirements. In the control system, the future value of Pp and
Qp is calculated using future current ip

g which is ig(k + 1). This is calculated from (29) for each one

of eight possible switching vectors (
→
S ). Then the ip

g and vp
g is converted into dq rotating reference

frame denoted as ip
d , ip

q , vp
d , vp

q to calculate predictive power values using equations (12) and (13) before
they are compared to the reference power value to select the switching state which minimise the cost
function (ginv) as [31,32]:

ginv = |Q∗ − Qp| 2 + |P∗ − Pp| 2 (30)

Figure 5b illustrates the proposed FCS-MPC control algorithm for the 2L-VSI.

5. Simulation Results and Discussion

Simulations were carried out using the Matlab/Simulink software to evaluate and confirm the
performance of the proposed FCS-MPC. The parameters given in Table 2 are used to design the
PMSG, filters and dc link. The generator and battery parameters are taken from [39,48], respectively.
The simulation results shown in Figure 6 are used to evaluate the FCS–MPC performance of the AFE
rectifier. The performance of the storage system and its ability to uphold the supply power to a set
value is evaluated by simulation results shown in Figure 7. The simulation results shown in Figure 8,
are used to evaluate the FCS-MPC performance of 2L-VSI.
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Table 2. System parameters used in the design.

PMSG Generator Side Filter

Rated Power 2 MW Inductance 0.5 mH
Rated rotate speed 650 rpm Resistance 0.01 Ω

Rated Voltage 690 VAC dc-link
Rated current 1673.5 A Capacitance (Cdc) 470 mF

Number of pole pairs 6 dc-link voltage ~1000 V
Resistance (Rs) 0.0024 Ω Grid side Filter

Inductances (Ld = Lq) 0.355 mH Inductance 1 mH
Magnetic flux (Ψpm) (0.119 Wb× 6) 0.666 Wb Resistance 0.1 Ω

Li-ion battery storage Grid
Nominal voltage/Fully charged voltage 1000 V/1050 V - -

Rated capacity @ nominal voltage 150 Ah (75 Ah × 2) Voltage 690 Vrms
Rated current @ nominal voltage 900 A (450 A × 2) Frequency 50 Hz

Initial state of charge in % 65% Other

Reference Values Sample time 10−5 s
Active Power 270 kW Simulator run-time 20 s

Reactive Power 0 Total Inertia (J) 0.25 kgm2
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Figure 6. The FCS-MPC performance of AFE rectifier: (a) Mechanical torque profile; (b) PMSG stator
current in dq rotational reference frame; (c) Generator active power P (W) and reactive power Q (VAr);
(d) Generator rotor angular speed ωm (rad/sec); (e) Generator peek voltage Vpk (V); (f) Generator peek
current Ipk (A).



Energies 2017, 10, 1631 13 of 17

Energies 2017, 10, 1631 13 of 17 

 

The torque profile obtained from the research data from [7] which is used as the mechanical 
input to the PMSG is shown in Figure 6a. Figure 6b, shows the stator current in dq rotational 
reference frame. The d-axis current remains closer to zero while the q-axis current varies in 
proportion to the torque input. This variation of the q-axis current directly affects the active power 
drawn from the generator which also varies in proportion to the torque as shown in Figure 6c. 

 

(a) (b)

 
(c)

Figure 7. The performance of energy storage and the dc-link: (a) dc link voltage dc (V); (b) dc link 
current Idc (A) and battery current Ibat (V); (c) state of charge of the battery SoC%. 

(a) (b)

(c) (d) 

Figure 8. The FCS–MPC performance of 2L-VSI: (a) Active power output to the grid P (W); (b) 
Reactive power output to the grid Q (VAr); (c) Grid peek voltage Vpk (V); (d) Grid peek current Ipk (A). 

Figure 7. The performance of energy storage and the dc-link: (a) dc link voltage vdc (V); (b) dc link
current Idc (A) and battery current Ibat (V); (c) state of charge of the battery SoC%.

Energies 2017, 10, 1631 13 of 17 

 

The torque profile obtained from the research data from [7] which is used as the mechanical 
input to the PMSG is shown in Figure 6a. Figure 6b, shows the stator current in dq rotational 
reference frame. The d-axis current remains closer to zero while the q-axis current varies in 
proportion to the torque input. This variation of the q-axis current directly affects the active power 
drawn from the generator which also varies in proportion to the torque as shown in Figure 6c. 

 

(a) (b)

 
(c)

Figure 7. The performance of energy storage and the dc-link: (a) dc link voltage dc (V); (b) dc link 
current Idc (A) and battery current Ibat (V); (c) state of charge of the battery SoC%. 

(a) (b)

(c) (d) 

Figure 8. The FCS–MPC performance of 2L-VSI: (a) Active power output to the grid P (W); (b) 
Reactive power output to the grid Q (VAr); (c) Grid peek voltage Vpk (V); (d) Grid peek current Ipk (A). 

Figure 8. The FCS–MPC performance of 2L-VSI: (a) Active power output to the grid P (W); (b) Reactive
power output to the grid Q (VAr); (c) Grid peek voltage Vpk (V); (d) Grid peek current Ipk (A).

The torque profile obtained from the research data from [7] which is used as the mechanical input
to the PMSG is shown in Figure 6a. Figure 6b, shows the stator current in dq rotational reference frame.
The d-axis current remains closer to zero while the q-axis current varies in proportion to the torque
input. This variation of the q-axis current directly affects the active power drawn from the generator
which also varies in proportion to the torque as shown in Figure 6c.



Energies 2017, 10, 1631 14 of 17

This figure also illustrates the generator’s reactive power which is maintained at zero. Figure 6d
confirms that the rotor angular speed is following the reference value 68 rad/s which is set as the
target operating conditions of the air turbine. Figure 6e,f illustrate the PMSG’s output voltage and
current respectively which are nearly sinusoidal. The MPC controller maintains the voltage input at a
nearly constant level to the rectifier while current varies according to the power input. These results
confirm the ability of the proposed controller to extract power from OWC air turbine under varying
input torque.

Figure 7a depicts the dc-link voltage which varies within a small range (5%) in proportion to
the power captured by the turbine. Figure 7b shows dc-link current and battery current, which vary
with the input power. The battery current remains within its charge and discharge currents limits and
thus these results confirm that the battery power is indirectly controlled by the rectifier controller and
inverter controller. Figure 7c illustrates the percentage of the battery’s SoC which remains nearly at an
initial value with about 0.03% variation for the given sea conditions. These results show that battery
charges when the input power is higher than the set power output and discharges when the input
power is lower. Therefore, the proposed battery direct-connection method and the control technology
are able to deliver smooth power output to the grid without going into unstable conditions under
varying input power conditions.

Figure 8a,b shows the active and reactive power supplied to the grid, respectively. The figures
depict smooth power output with almost 0% deviation from the set power refernces. Figure 8c,d
confirms that the 3-phase output voltage and current are in-phase and the THD of the three phase
currents (Iuvw) is around 0.68% which is much lower than the IEEE standards (5%) [49]. These results
depict the ability of the proposed MPC to deliver the constant and quality power to the ac grid under
varying dc-link voltages.

6. Conclusions

This paper proposes a FCS-MPC strategy for electrical power control of OWC air turbine
generators which uses a back-to-back power converter system and Li-ion BESS directly connected
to the dc-link. Simulation results confirmed that the proposed control strategy along with the
direct-connected BESS enable smooth power delivery to the grid. The FCS-MPC applied to the
AFE rectifier is able to control the speed of the turbine at the set point of 68 rad/sec to maintain the air
turbine within its optimum efficiency range under varying wave conditions. The 2L-VSI’s FCS-MPC
is able to maintain the output power, minimising the error between the set point and the supply.
The Li-ion BESS helps improve the smooth power delivery to the grid by absorbing fluctuations
present in the input power. The THD of the output current is below the grid code requirement of 5%.
The battery charge and discharge currents are indirectly controlled by the controllers of the back-to-back
power converter system to remain within safe operating limits. In overall, the proposed electrical
power conversion system has confirmed its ability to improve the quality of power supply to match
the grid codes irrespective of the intermittencies present in the extracted power from the waves under
varying wave conditions. Although the results obtained from this study are very promising, further
investigations and implementations are required for experimental validations and the development of
an adaptive system against parameter variations.
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