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Abstract: This article presents a study of optimal control strategies for an energy storage system 
connected to a network of electrified Rubber Tyre Gantry (RTG) cranes. The study aims to design 
optimal control strategies for the power flows associated with the energy storage device, 
considering the highly volatile nature of RTG crane demand and difficulties in prediction. 
Deterministic optimal energy management controller and a Model Predictive Controller (MPC) are 
proposed as potentially suitable approaches to minimise the electric energy costs associated with 
the real-time electricity price and maximise the peak demand reduction, under given energy storage 
system parameters and network specifications. A specific case study is presented in to test the 
proposed optimal strategies and compares them to a set-point controller. The proposed models used 
in the study are validated using data collected from an instrumented RTG crane at the Port of 
Felixstowe, UK and are compared to a standard set-point controller. The results of the proposed 
control strategies show a significant reduction in the potential electricity costs and peak power 
demand from the RTG cranes. 

Keywords: energy storage system; Rubber Tyre Gantry (RTG) crane; cost optimization; model 
predictive control; stochastic load; forecast 

 

1. Introduction 

An Energy Storage System (ESS) is a significant tool for a more energy efficient ecosystem and 
help to decrease environmental concerns [1,2]. In general, the objective of an ESS is to reduce the cost 
of electricity and avoid the need to upgrade the distribution network by shifting energy consumption 
from peak to valley periods [2]. ESS’s are expected to be more frequently applied to a wide range of 
demand side applications. Recently, sea ports are moving towards replacing diesel RTG cranes [3,4], 
which move containers on a port platform and organise container storage in the yard area, with 
electric RTG cranes to reduce green gas emissions and improve energy efficiency [1–3]. In RTG crane 
system, most of electricity energy or fuel consumption comes from hoisting containers with different 
weights to several heights. Furthermore, the peak demand increases when the RTG crane moves 
heavier containers [5]. The details of RTG crane energy topology are discussed in Section 2. The shift 
to the use of electrified RTG cranes can reduce the costs for equipment repairs and maintenance by 
around 30% compared to diesel RTG cranes. However, as electricity demand on the ports’ electrical 
distribution networks augments due to the electrification of RTG cranes, port operators will be forced 
to reinforce the network to meet this increased demand [3,4]. The traditional reinforcement solutions 
focus on upgrading or replacing existing electrical infrastructure such as cables and substations. This 
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solution is effective but commercially expensive, which motivates the consideration of different ESSs 
technologies and control methods for supporting the power grid. In ports, ESS could play a vital role 
in reducing peak demand, the carbon gas emissions and Rubber Tyre Gantry (RTG) crane operation 
costs [4]. RTG crane load profiles have a highly volatile and stochastic behavior compared to other 
low and medium voltage loads including domestic customers. The nature of the electrified RTG crane 
load as well as the vague physically explanatory relationships between the crane load and exogenous 
variables such as temperature, wind speed and seasonality trends increase the challenges and 
difficulties in forecasting RTG crane load demand compared to low and medium voltage loads [5]. 
Difficulty in generating accurate crane load forecasts and the unpredictable load behaviour make it 
substantially more challenging to control and improve storage performance using forecast data. Most 
peak demand reduction strategies in the RTG crane and port applications equipped with ESS mainly 
focus on using a set-point control strategy to charge and discharge the storage based on the voltage, 
power or State of Charge (SoC) level. Furthermore, to the best of the author’s knowledge, there are 
no studies which specifically consider the electrified RTG crane load forecast as an input to a control 
strategy. 

In RTG crane systems, the majority of the energy consumption is produced by lifting containers 
to different heights. In order to increase the energy savings in electrified or diesel RTG crane systems, 
ESSs have been used for peak shaving during the lifting period by using recovered potential energy 
that has accrued during the lowering period and avoid dissipating energy through the dump resistors 
as heat [1,6–11]. In the literature, ESS control algorithms on an RTG crane system, which can be either 
a diesel or electrified crane, mainly focus on using conventional control strategies that use a reference 
value (set-point control) of power [1,9], SoC [7] or voltage [3,11] to store recovered potential energy 
and regenerate it during the lifting phase which helps to increase energy savings and reduce gas 
emissions. Table 1 summarises the peak reduction algorithms used in an RTG crane model produced 
by different authors along with their achievements and limitations. Table 1 shows that the majority 
of studies used set-point controller to increase energy saving of RTG crane systems and no research 
models use an MPC controller. Also, this table shows that there is limited literature on using different 
optimal control algorithms for increasing the energy efficiency of RTG cranes. To the best of the 
authors’ knowledge, there are no studies on using the electricity bill cost in the objective function and 
load forecast profile to optimise the energy flow in RTG cranes network system by using optimal 
power management strategies or an MPC controller. 

Pietrosanti et al. [1] present an optimal management strategy for RTG cranes with flywheel 
energy storage located at the DC side of the crane. The control strategy aims to find the optimal 
operation conditions for ESSs by charging the storage during the lowering mode and discharging it 
during the lifting mode, under uncertainties of the duration of RTG crane stochastic power loads [1]. 
Baalbergen et al. [12] developed diesel RTG crane systems equipped with battery storage. The authors 
in [12] presented a power management system which aims to increase the energy savings and 
minimise costs by regenerating the recovery energy. In this paper, we introduce an optimal peak 
shaving control strategy, which minimises the energy costs of an RTG crane system equipped with 
an ESS using real-time data. Unlike previous works that used the recovery energy from the lowering 
phase to minimise the cost and increase energy savings [1,12], the proposed optimal control in this 
paper aims to maintain an optimal charging and discharging schedule by using real-time electricity 
prices and RTG crane load data. 

Furthermore, the focus of this paper is to minimise the peak demand and the energy costs for 
electrified RTG cranes by developing a model predictive control (MPC) strategy, to take into 
consideration the high level of uncertainty in the forecasts of RTG crane demand. This paper presents 
control algorithms using real-time data collected from electrified RTG cranes at the Port of 
Felixstowe, UK, to control the energy storage system located at the substation side of RTG crane 
network systems. 

MPC controller has been used effectively within microgrids and low voltage network 
applications which involve high uncertainties in demand applications [2,13,14] to decrease the 
operation costs and increase the system efficiency. For example, Rowe et al. [2] presented a MPC 
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controller that allows distribution network operators to control the energy storage systems on the 
low voltage network, which feeds domestic customers. The MPC controller integrates a deterministic 
forecast with the objective of maximising the peak reduction of the distribution network [2]. As in the 
study of Rowe et al., Oh et al. [13] developed an optimisation scheme for an islanded microgrid, using 
an MPC strategy [13]. The use of a multi-step MPC controller performed well for controlling diesel 
power sources and renewable energy sources with an ESS to minimise the energy cost operation [13]. 
Stochastic forecast loads with scenario-based MPC models of a microgrid system with Electric 
Vehicle (EV) integration have been presented in [14], where Ji et al. [14] developed a forecast model 
based on knowing of EVs charging schedules in advance, so they assume that they know when the 
electric vehicle needs charging. In case there are unknown charging requests, the MPC controller will 
apply the worst-case scenario and set the boundary at the greatest possible charging loads. In order 
to meet the demand scheduling of the grid, Xiong et al. [15] presented real-time MPC to optimise the 
power flow for a wind farm system equipped with an ESS. The objective function of the MPC 
controller contained three sub-objectives: firstly, it aimed to reduce the impact of a wind curtailment 
factor; secondly, to increase the ratio of generated wind power fed to the power grid; thirdly, to 
maintain the generation of power to the grid plan. The MPC controller successfully followed the 
power plan of the electrical power grid system [15]. In addition, other authors have used MPC 
controllers for large scale ESS located at wind power plants to improve the energy dispatchability 
[16]. The simulation results have shown that an ESS with model predictive control (MPC) can reduce 
the generation plan errors to meet the power grid needs by approximately 80% [16]. The work 
successfully shows the impact of the scheduling horizon on the generation plan error, where shorter 
scheduling horizons reduce the error in the generation plan by approximately 15% [16]. These sets of 
studies show the usefulness and capabilities of using MPC as an ESS control technique. 

The literature has shown that an ESS can be beneficial for decreasing the energy costs and peak 
demand; accordingly, it is important to develop an optimal control strategy that maximises the 
advantages of the ESS and minimises the costs. An adequate power control strategy for electrified 
RTG cranes system equipped with ESS could be of great interest worldwide, as it will help ports 
around the world to decrease the electricity bill and gas emission. This is particularly important since 
RTG cranes are vital ingredients in the export and import goods processes. Aiming to fill the gap in 
the literature, this paper attempts to present and compare optimal energy management and MPC 
controllers for the control of ESS on the low voltage networks that feed electrified RTG cranes. The 
main objective of both controllers is presented to minimise electricity bills and peak demand. The 
optimisation algorithms in this paper will be tested to establish their appropriateness for electrified 
RTG cranes with ESS control by testing the control algorithms on data sets that have been collected 
over different RTG crane operation days. Therefore, the paper has three key new contributions that 
are listed as follows: 

(1) We present an optimal energy management controller with the aim of minimising the energy 
costs and achieving the greatest peak demand reduction. This is contrast to the limited literature 
focused on using the regenerative power to increase energy savings in RTG crane systems. 

(2) We predict half hourly electrified RTG crane power demand for one day-ahead and the forecast 
model is updated at each time step by including the real-time readings and the forecast error. 

(3) Unlike previous studies, which often use the set-point controls to increase energy saving in an 
RTG crane system and neglect the forecast algorithm as inputs to improve the ESS efficiency, we 
present an MPC controller that helps to decrease the energy costs and achieve maximum 
possible peak reduction by using the RTG crane load forecast data as the main input parameter. 

The remaining sections of this paper are organised as follows: Section 2 describes the topology 
of the ESS and RTG crane demand model. Section 3 introduces the RTG crane load demand and cost 
problem and the optimal controller. In Section 4, the model predictive controller is presented and 
discussed. The simulation results and analysis are discussed in Section 5. Finally, a summary of the 
work and conclusions are presented in Section 6. 
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Table 1. Summary of the research for port cranes conducted by different authors along with their 
achievements and limitations. 

Study Domain Control Technique Achievement Using Optimisation 
Algorithm 

Zhao et al. [6] 
Investigate the benefits of 
Hybrid-ESS for RTG cranes. 

Closed-loop PI 
controller. 

Increase the energy 
saving. 

NO 

Niu et al. [7] 
Present a hybrid power source 
for an RTG crane with Active 
Front End. 

Set-point control (SoC). 
Improved battery 
storage efficiency. 

NO 

Ovrum and Bergh [8] 
Investigate the benefits of 
hybrid power sources for ship 
cranes. 

Optimal power 
management system. 

Increase the energy 
saving and reduce 
gas emissions. 

YES 

Flynn et al. [9] 
Investigate the benefits of 
flywheels energy storage for 
RTG cranes. 

Set-point control 
(Power, voltage). 

Increase the energy 
saving and reduce 
gas emissions. 

NO 

Pietrosanti et al. [1] 
Investigate the benefits of ESS 
for RTG cranes. 

Optimal power 
management system. 

Increase the energy 
saving and reduce 
peak demand. 

YES 

Antonelli et al. [10] 
Evaluate the energy flows for 
ESS equipped with RTG 
cranes. 

Optimal energy 
management strategy. 

Increase energy 
savings. 

YES 

Baalbergen et al. [12] 
Investigate the benefits of 
storing regenerated energy. 

Power management 
system based on 
energy savings point. 

Increase energy 
savings. 

YES 

Kim and Sul [11] 
Improve the performance of 
diesel RTG cranes with ESS. 

Set-point control 
(Power, frequency). 

Improve the energy 
efficiency of a RTG 
crane 

NO 

Alasali et al. [3] 
Investigate the benefits of 
peak shaving for RTG cranes. 

Set-point control 
(voltage). 

Reduce peak 
demand. 

NO 

2. ESS and RTG Crane Demand model Topology 

This section introduces the ESS and RTG crane model topology and addresses the RTG crane 
demand characteristics. The electrified RTG used in this work is shown in Figure 1a and it has been 
retrofitted to be powered by the distribution power network at the port via a conductor bar of length 
217 m. This crane is manufactured by Shanghai Zhenhua Heavy Industries (ZPMC, Shanghai, China) 
and is currently used at the Port of Felixstowe [1], the numerical specifications of the RTG crane 
model is presented in Section 5.1. In addition, the half hourly RTG crane power demand P୐ (t) in 
Figure 1b shows a highly volatile and stochastic nature. The schematic diagram, shown in Figure 2, 
displays the power flow P(t) from the energy sources (the power grid P୥ (t)) and ESS Pୱ(t) to the 
RTG crane load  P୐ (t). The power flow diagram shows that the power grid P୥ (t) supplies all the 
required power consumption to operate both the RTG crane P୥ (t) and charge the ESS Pୱ(t). In case 
the ESS starts discharging, the power grid P୥ (t) will only supply power of the RTG crane load  P୐ (t) 
minus the discharged ESS power Pୱ(t). The power flow can be described in the following equation 
[1,17]: P୥ (t) = P୐ (t) − Pୱ(t), t ∊ ℝା. (1) 
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(a) (b)

Figure 1. Crane system: (a) electrified RTG crane at the Port of Felixstowe; (b) an example of the actual 
electrified RTG crane demand for a specific day. 

 
Figure 2. The power flow directions of the electrified RTG crane equipped with ESS. 

2.1. The Energy Storage System 

The primary energy source in the electrified RTG crane model is a substation (11 kV/415 V). The 
secondary side of the substation is connected to the DC bus in the crane system through a diode 
rectifier. In this paper, the Energy Storage System (ESS) is located at the low voltage side (415 V) in 
order to minimise the peak power and cost, as shown in Figure 3, at the substation side based on the 
real-time electricity price cost through the proposed optimal and Model Predictive Control (MPC) 
controller. As in [2,15,18], the ESS used in this paper is described by Equations (2)–(8): 

Eୱ(t) =  Eୱ (t − 1) + η෤ ( Pୱ △ tESSୡୟ୮ୟୡ୧୲୷). (2) 

The stored energy Eୱ  in the ESS is calculated as in Equation (2), with the storage system 
operating under the following constraints: 

• The energy limitation: Eୱ୫୧୬ ≤ Eୱ(t) ≤ Eୱ୫ୟ୶ , (3) △ Eୱ୫୧୬ ≤ △ Eୱ(t) ≤ △ Eୱ୫ୟ୶. (4) 

• The ESS power limitation Pୱ ୫୧୬ ≤ Pୱ (t) ≤ Pୱ ୫ୟ୶ ,  (5) 
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Pୱ(t) ≥ ୉౩ౣ౟౤ .୉ୗୗౙ౗౦౗ౙ౟౪౯ି ୉౩(୲)∆୲ , 
(6)

Pୱ (t) ≤ ୉౩ౣ౗౮ . ୉ୗୗౙ౗౦౗ౙ౟౪౯ି ୉౩(୲)∆୲ . 
(7)

• The ESS operation efficiency 

η෤ =  ቐ η෤ if ∆Eୱ ≥ 0 ; charging period1η෤  if ∆Eୱ ൏ 0 ; discharging period .  (8) 

In this work, the control of the ESS aims to determine an optimal value of Pୱ(t) in kW and the 
stored energy. The stored energy Eୱ is given as Pୱ∆t, during a period of time ∆t. In this work, the 
energy stored in the ESS is increased and decreased, based on the RTG crane demand,  P୐ (t), and the 
real-time electricity price, and is described as ∆Eୱ =  Eୱ(t) − Eୱ(t − 1). The stored energy in every 
time step ∆Eୱ, can be taken as a positive/negative change to present the increase/decrease of energy 
in the ESS. The negative value of ∆Eୱ means that the energy in the ESS has decreased (storage system 
in discharging mode) and when it is positive it means the energy in the ESS has increased (storage 
system in charging mode). Furthermore, the storage system is operated by constraints to maintain an 
upper limit on the stored energy Eୱ୫ୟ୶ and a lower limit on the stored energy Eୱ୫୧୬. Similarly, we 
define a maximum and minimum stored power, Pୱ ୫ୟ୶ and Pୱ ୫୧୬.  These limitation rules are 
described in Equations (3)–(5), respectively. Also, the power limitation of the ESS are defined in 
Equations (6) and (7). The storage system algorithm considers the ESS efficiency [2,18] by combining 
the stored energy in each time step ∆Eୱ into a variable describing the storage efficiency η෤. When the 
stored energy is ∆Eୱ < 0, the efficiency of the ESS is equal to ଵ஗෥  and when ∆Eୱ is ≥0, the storage 

efficiency is η෤. Typically, the Eୱ quantity is defined as a value between Eୱ୫୧୬ = 0 and Eୱ୫ୟ୶ = 1; as 
in [1,2,18], the Eୱ can also be described as the State of Charge (SoC). The SoC at the end of each time 
step is updated based on the previous state of charge SoC(t − 1), and the value of ESS charging or 
discharging energy ∆Eୱ. 

 

Figure 3. A specific example for peak shaving strategy. 

2.2 The Electrified RTG Crane Load Demand 

As described in Section 2, and shown in Figures 1 and 3, electrified RTG crane load profiles show 
a highly volatile and stochastic nature. Equation (1) describes the power flow in an RTG crane system 
equipped with an ESS located on the low voltage network. The objectives in this research is to 
minimise the peak demand P୥ (t) in the power distribution network by using the ESS, which is 
defined in Section 2.1. The volatile crane demand, P୐ (t), is equal to the summation of storage Pୱ(t) 
and substation power P୥ (t), where this summation is used to generate a charge and discharge control 
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decision for the ESS. In this paper, we present two optimisation controllers to control the ESS as 
follow: 

(1) Optimal energy management controller: the real-time RTG crane demand and electricity price 
data are used to feed the optimal management control system. As indicated previously, the RTG 
crane load profile is highly stochastic; therefore, developing an optimal management control is 
difficult and challenging. This control will be described in Section 3. 

(2) Model Predictive Control (MPC) controller: the MPC in this research is designed to use 
forecasted RTG crane load profile and electricity price data to find the optimal ESS output that 
minimise the peak load and cost. The MPC controller model will be described in Section 4. In 
this research, we extend the Artificial Neural Network (ANN) forecast model in [5] to create a 
rolling RTG crane power forecast as follows: 

• Predict the half hourly electrified RTG crane power demand for one day-ahead. 
• Update the forecast load profile in each time step by using the forecast error and real-time 

measurements. 

As mentioned previously, the electrified RTG crane demand is challenging to predict due to the 
highly volatile nature of the load and there is no clear relation with physical exogenous variables 
such as temperature or seasonality [5]. However, the electrified RTG crane demand increases and 
decreases based on variables such as container gross weight, number of crane moves and the 
behaviour of the crane driver (human factor) [5]. These variables caused a wide range of forecast 
errors increasing the challenge of controlling the ESS. Figure 4 presents the daily mean absolute 
percentage error (MAPE) between the actual electrified RTG crane load and the load forecast [5], as 
described in Equation (9). 

MAPE = 10024 ෍ | P୐ (t) − P୤ (t)|| P୐ (t)|ଶସ
௧ୀଵ . (9) 

where P୐ (t) is the actual load value at time t, P୤ (t) is the forecast load value at time t and t is the 
hourly time. In addition, the MAPE calculation is undefined when actual load is zero. 

 

Figure 4. Histogram of daily mean absolute percentage error (MAPE) over 30 days in a histogram. 
The ANN forecasting methodology used to generate these daily MAPE values is presented in [5]. 

Figure 4 presents the daily MAPE error over 30 days of electrified RTG crane demand, the high 
number of occurrences is concentrated between 6% and 9%. Furthermore, the largest MAPE values 
(above 15%) are only repeated twice for MAPE errors equal to 24% and 27%. As seen in Figure 4, 
around 30% of the MAPE errors over one month are equal to 12% and around 80% of the MAPE 
values are under 12%. However, the MAPE results in Figure 4 show a wide range of values up to 30% 
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which increase the challenging to develop a controller based on a load forecast profile. The electrified 
RTG crane demand has a highly volatile and stationary nature, without a clear relation with physical 
exogenous variables such as temperature or seasonality [5]. However, the correlation analysis in [5] 
showed that the container gross weight and number of crane moves are required to generate more 
accurate forecast model. The effect of human unpredictability on the demand shown comparing 
different crane electric demands for the same container gross weight [5]. In general, the crane 
operator decides the path for the crane move during the hoisting operation, where based on the site 
condition and container location they may choose to hoist the container through arc or oscillatory 
paths. The different move path means variations in the energy consumption for the same container 
weight which leads to less predictable demand. 

3. Optimal Energy Management Controller 

The optimal energy management controller can be designed for multiple objectives compared 
to the set-point algorithm [19,20] and find optimal solutions to control the designed model [21]. In 
this section, the objective of the optimal controller is to minimise the total cost C୲୭୲ୟ୪ of using the 
electrified RTG crane (electricity bill), as described by Equation (10): C୲୭୲ୟ୪(t)  =  min {(C(t) (E୐(t) − Eୱ(t)))²} . (10) 

where C(t) represent the real-time electricity cost at the Port of Felixstowe, Eୱ(t) is the store energy 
and E୐ (t) is the original electrified RTG crane demand at the current time step t. Figure 5 presents 
the proposed optimal management control loop for the electrified RTG crane system. The actual load 
profile of the crane, the real-time electricity price and the ESS measurement are fed to the controller 
in order to generate a control signal by minimising a cost function. 

 
Figure 5. The schematic of the optimal energy management controller. 

In order to minimise the energy cost and peak demand of RTG crane load for the daily time step, 
we minimize the cost function, defined by Equation (11), to find the optimal energy storage power: arg min୉౩(୲) ෌ ( C(t) (E୐ (t) − Eୱ(t)))²୒୲ୀଵ , (11) 

where t is the current time step, N is the daily time steps (N = 48, half-hours) and the controller is 
designed to compute the optimal control decision and apply it to the network system. The optimal 
energy management controller in Equation (11) takes into account the Equations (2)–(8) and will be 
subject to the constraint which are given by Equations (12)–(14): 

C(t) = ቊC ୢୟ୷ if t ≥ t ୱୣ୲ C ୬୧୥୦୲ if t ൏ t ୱୣ୲ . (12) 
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Equation (12) describes the electricity energy price at the Port of Felixstowe, where t ∊{1,2, . . . . . ,48}. The electricity price during the day-time (C ୢୟ୷), between t ୱୣ୲ = 14 and midnight, will 
be higher than the price during the rest of the day-time (C ୬୧୥୦୲). This electricity tariff helps to shift 
the peak to a lower price period in order to minimise the cost and demand. In order to avoid 
superfluous charging periods and generation of new peak points, we define new constraints given 
by Equations (13) and (14):  P୐ (t) − η෤ Pୱ(t) ≤ P୰ୣ୤  (13) 

෎ ฬ1η෤ Eୱ(t)ฬ୒
୲ୀଵ ≤ ෍|η෤ Eୱ(t) | .୒

୲ୀଵ  (14) 

Equation (13) is used to maintain the power at the grid side under a set-point value during the 
ESS charging period, where the Pୱ (t) value is negative and ∆Eୱ ≥ 0. The set-point value P୰ୣ୤  is 
found from a priori load data [1,22]. The limitation in Equation (14) is to make sure that the stored 
energy amount is more than or equal to the discharge amount of energy in the energy storage system. 

In the optimal energy control model, the weighted sum of the electricity energy cost is calculated 
by the objective function, as in Equation (11). The optimal controller uses the peak shaving techniques 
to achieve the minimum cost and reduce peak demand by shifting demand from a high electricity 
price half hour to a low price half hour, as described in Equation (12). The peak shifting achieves the 
optimal solution by finding the optimal ESS output values which minimises a Cost function 
(electricity bill), as described in Equation (11). The ESS output calculates under constraint Equations 
(13) and (14) to avoid creating new peak points whilst charging the ESS especially since the optimal 
management control does not include the forecast load element. In Section 5, we will highlight and 
discuss the optimal management controller performance compared to a standard set-point controller. 
The set-point controller has been widely used in RTG cranes and different industrial applications and 
the set value is mainly developed using a priori load data [1,9,11]. Current energy storage control 
research studies have been initiated to inspect the benefits of load forecasting and planning control 
methods such as Model Predictive Control (MPC). As discussed previously, the highly volatile and 
stochastic nature of electrified RTG crane demand, and the difficulty in predicting the crane demand, 
make it more challenging to control the ESS using an MPC controller. The following section will 
present the MPC strategy and RTG crane load forecast problem. 

4. Model Predictive Control (MPC) Controller 

The MPC controller, sometimes known as the generalised predictive control and receding 
horizon control, is a time horizon optimisation model that determines a series of optimal control 
decisions over a specific future time period [23,24]. In the first control action, the MPC controller 
computes the decision for the first-time period based on the demand forecast and updates of other 
variables. In the subsequent time intervals the predictive control updates the forecast data and other 
operation variables in order to adjust the optimal control signal in every time step. This is repeated 
for all time steps [25,26]. Figure 6 presents the exemplified control scheme of the MPC system for an 
electrified RTG crane system with ESS. The crane measurement, updated demand forecast data, real-
time electricity price and storage measurements are fed to the MPC controller in order to generate a 
control signal. The control decision uses the cost function in Equation (11) to minimise the electricity 
energy cost and peak demand. Figure 6 shows how the forecast model uses the real-time data 
(forecast error) to update the demand prediction at each time step. In this paper, the forecast model 
is designed to: 

• Firstly, forecast the half hourly electrified RTG crane demand for 24 h ahead and generate a 
forecast load profile over t + 48. 

• Secondly, calculate the forecast error at time t. 



Energies 2017, 10, 1598  10 of 18 

 

• Thirdly, regenerate the forecast load profile at each time step t for day ahead t + 48 by using the 
forecast error and actual measurements at time t, where the ANN forecast is rerun with the new 
observation. 

 

Figure 6. The scheme of model predictive control for electrified RTG crane system with ESS. 

As with the optimal energy management formulation, Equation (11) finds the optimal ESS 
energy that minimise the electricity bill (cost function). This cost formulation is subject to the 
constraints presented in Equations (2)–(8) and Equations (12)–(14) that aim to reduce peak demand 
and avoid creating a new demand peak. The MPC controller algorithm is described in Algorithm 1, 
where at the current time interval (t), the controller model gets the updated demand prediction data 
between t and t + i, where i is the forecast time step and t + i ≤ N and N is the one-day ahead forecast 
time (N = 48). Then the MPC controller calculates the optimal control decision by calculating the ESS 
energy in Equation (11) to minimize the cost function and implements the control signal to the 
network system. These steps are repeated at every time step t + 1 by updating the forecast data and 
other system variables and using the updated forecast data t + 1 + i to compute the control signal. The 
forecast model is designed to predict the load for one day ahead and then help the MPC to plan the 
control decision. After each time step the forecast model will use the actual data for this step and the 
forecast error to recalculate and update the forecast model. The MPC algorithm shows that the 
controller performance mainly depends on the accuracy of the prediction model [27,28]. As 
previously mentioned, the forecast data has been generated in this research by extending a prediction 
model developed in [5]. In addition, the forecast and the proposed control model in this work have 
been developed and solved using Matlab/Mathworks (R2016b, The MathWorks, Inc., Natick, 
Massachusetts, United States). The highly stochastic behavior of RTG crane demand and forecast 
error makes it more difficult and challenging to use an MPC control in an electrified RTG crane 
system. The literature has presented the MPC controller as vital for ESSs with volatile demands. The 
following section, discusses the performance of an MPC controller compared to set-point control and 
the optimal power management control. 

Algorithm 1: Basic concept for MPC for electrified RTG crane system model with ESS. 

1. Selecting the time horizon step and prediction horizon. 

2. Determine the control objective and constraints. 

3. Initialize: the crane, forecast data and ESS data. 

4. For t = 1 to N (daily demand operation), do 
a. Solve optimal Equation (10),  

subject to:  
1. Equations (2)–(8). 
2. Equations (12)–(14). 
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3. For (t = 1), the model computes the optimal solution based on the 
RTG crane demand prediction and initial data. 

b. Find the optimal signal for (t + 1) and apply it to the system. 
c. Update the forecast model for (t + 1) by regenerating the forecast load profile with the 

new observation and update the other system variables. 
d. Set t = t + 1, 

5. Exit For loop. 
6. An optimal solution is achieved for the electrified RTG crane system model with ESS for the 

specific day. 
7. Repeat all steps for the next day. 

5. Results and Discussion 

The proposed Model Predictive Control (MPC) and optimal management controller in this work 
was applied to an electrified RTG crane system model equipped with an ESS located at the low 
voltage side of the substation (power source). This section presents and discusses the system model 
parameters and results from the proposed optimal controller algorithms. First, the parameters of an 
electrified RTG crane model are presented; then, the optimal energy management controller and MPC 
controller are tested using a specific case study. Throughout this subsection, the proposed controllers 
are compared to a set-point control algorithm. The set-point controller has been discussed in the 
literature and is widely applied to crane systems [1,3,17]. In this work the set-point value has been 
selected using historical RTG crane demand data. The set-point controller compares the real-time 
RTG crane demand to the predetermined set-point value, then the storage controller makes a decision 
to charge the ESS if the demand value is under the set-point and discharge the storage if the RTG 
crane demand is above the set-point. The ESS will continue charging and discharging until it achieves 
the maximum set rate (Eୱ୫୧୬ and Eୱ୫ୟ୶). Furthermore, in a set-point algorithm we take into account 
the real-time electricity price by encouraging the model to charge during the night and discharge 
during the day. The literature shows that the set-point algorithm is effective and simple, but is 
principally limited, as it takes the control decision without any future knowledge. The comparison of 
control algorithms we will present the peak demand and electricity cost reduction over a specific time 
of period for each controller. 

5.1. Numerical Specifications 

To verify the proposed optimal algorithms in this paper, the control algorithms have been tested 
on a simulation model of an electrified RTG crane with ESS. The main numerical parameters of the 
network of electrified RTG crane model are specified in Table 2 and Figure 7. The main network 
components of the electrified RTG crane systems have been modelled in MATALB/Simulink (R2016b, 
The MathWorks, Inc., Natick, Massachusetts, United States). This model has been updated and 
extended from an original model that was developed to study the energy savings in RTG cranes at 
the Port of Felixstowe to test the proposed optimal strategies [3,17]. The electrical network parameters 
and RTG crane demand data were collected from the Port of Felixstowe in the UK. In addition, the 
electrified RTG crane presented is three-phase load in this paper. 

Table 2. Parameters of the electrified RTG crane network. 

Section Task Components Rating 

Power source. 
Generates the necessary energy to 
operate the electrified RTG crane. 

Secondary 
transformer. 

11 KV/415 V 
1.6 MVA 

Distribution 
Provides the path to deliver the energy 
to the crane. 

Cable 1 0.0754 ohm/km 
Cable 2 0.1240 ohm/km 
Cable 3 0.3870 ohm/km 
Cable 4 0.0991 ohm/km 

Conductor rail 0.0520 ohm/km 

Loads 
Drive and control the electrified RTG 
crane. 

Three-phase 
demand 

The actual and forecast demand 
from 21 to 25 May 2017. 
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Figure 7. The schematic of an electrified RTG crane network system. 

The electrified RTG crane energy demand was collected over 30 days and split into 25 historical 
days; the demand prediction was tested on the remaining 5 days. The actual and forecast of the 
electrified RTG crane demand are shown in Figure 8a and the real-time electricity price is displayed 
in Figure 8b, where the real-time electricity price data as provided by the Port of Felixstowe. The 
parameters and predefined data of the ESS, located at the low voltage side of the secondary 
substation, are presented in Sections 5.2 (case study). 

(a) (b) 

Figure 8. Profiles of (a) the actual and forecast electrified RTG crane demand; (b) the real-time 
electricity price. 

Forecast Error 

As previously mentioned, the forecast data is created using a ANN prediction model as 
described in [5]. However, in this paper, we modified the forecast model to predict the half hourly 
demand and the forecast model updated every time step by using the forecast error data. These 
modifications help to reduce the impact of forecast error on the model predictive control (MPC). 
Figure 9 shows that, in this paper, the highest number of forecast error instances are between −3.75 
kWh and −0.27 kWh. The highest forecast error was +20.58 kWh and the maximum number of errors 
was around zero errors. According to the RTG crane demand analysis in [29] and the historical load 
data in this paper, the daily average energy demand is 600 kWh and the hourly demand usage is 
around 25 kWh, this means that the maximum forecast error value (+20.58 kWh) is very high 
compared to the average hourly RTG crane demand. Furthermore, the wide range of forecast errors 
between −12.45 kWh and +20.58 kWh and high forecast error values, as shown in Figure 9, increase 
the challenges and complexity of controlling the ESS through the MPC controller. 

The forecast model in this paper has been used the actual load and forecast error for each time 
step to recalculate and update the forecast demand for the following 24 h, as discussed previously in 
Section 4. This updating helped the MPC controller to minimise the impact of forecast error on the 
control decision. Figure 10 presents the daily MAPE of forecast models with and without time step 
updating techniques over the 5 testing days. The results show, for the given data that updating 
techniques slightly reduced the forecast error and improved the prediction model performance. For 
example, on Day 3 the MAPE reduced by 4.9% from 27.3% to 22.4%. The minimum MAPE reduction 
was on Day 4 with only around 0.5% improvement. 
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Figure 9. Illustration of the forecast error for training, validation and testing data in a histogram, 
where 70% of the historical data has been used as training, 13% as validation data and 17% as testing 
data (5 days testing). 

 

Figure 10. The daily MAPE for the RTG crane demand forecast model with and without time step 
updating method every time step based on the real-time readings and forecast errors. 

5.2. Case Study: (A Spesifc RTG Crane Opeation Model Example) 

In this section, the optimal control strategies (Optimal energy management and MPC controller) 
are implemented in the electrified RTG crane network system shown in Figures 5 and 6. The collected 
data for the electrified RTG crane has been divided into historical data (25 days) and testing data (5 
days) is displayed in Figure 8a. In order to train and validate the forecast model, 80% of the historical 
data has been used as training data and 20% as validation data. To operate the electrified RTG crane 
network equipped with energy storage, Table 3 presents the Energy Storage System (ESS) 
parameters. The ESS parameters were applied in this case study to show the performance of the 
optimal control controllers compared to the set-point controller across the 5 days (testing period). 
The calculations of the stored energy ∆Eୱ for the RTG crane applications have been reported in [1], 
in this work, the discharge and charge rate of 150 kW has been used. In addition, this paper does not 
focus on the energy storage efficiency; therefore, η෤ = 1.  The optimisation horizon of power 
management and the MPC controllers is one day and the prediction horizon for MPC algorithm is 24 
h with ∆t = 0.5 h. The set-point is set at 36.5% of the greatest peak demand from the historical data 
using a typical set-point algorithm presented in the literature [2,22]; that aims to reduce the peak to 
an average ratio of around 4.5. 
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Table 3. Parameters of the Energy Storage System (ESS). 

Parameter ValueEୱ୫୧୬ 10 kWh Eୱ୫ୟ୶ 75 kWh ∆Eୱ୫୧୬, ∆Eୱ୫ୟ୶ ±75 kWh 

The simulation results for this example showing the comparison of three different control 
strategies are presented in Figures 11 and 12. The MPC controller outperforms both the optimal 
management controller and the set-point control: the MPC controller achieves a 28.9% demand 
reduction; optimal energy management 25.3% and set-point control 22.09% peak demand reduction, 
where the peak reduction is calculated based on the power reference value. In addition, as the MPC 
controller uses load forecast data to decide on a charging and discharging schedule, the ESS charges 
to full rate during the valley demand values and during the lower electricity price rate. The optimal 
function and constraint equations in this paper minimise the risk of creating a new peak demand 
during charging mode for the given data set (testing period data). In contrast, the set-point controller 
has presented new peaks point at the 4th and 6th half hours and the set-point load curve is volatile 
and non-smooth. 

 
Figure 11. Specific example results: The actual demand, optimal energy management controller 
results and MPC controller results for one day. 

 

Figure 12. The percentage of demand reduction results for a specific case study. 

The cost function used in this paper for the proposed MPC and optimal management controllers 
create substantial reduction in peak demand of the electrified RTG crane. This peak reduction is 
presented in Table 4 by showing the percentage of time that the power grid  P୥ (t) is feeding the 
network more than 150, 200 and 250 kW. The proposed Model Predictive Control (MPC) has 
favourable results compared to other control strategies in this paper. The proposed MPC controller 
outperforms the set-point and optimal management controller and limits the peak demand over the 
testing period. The peak reduction achieved in this research reduces the stress on the port substation. 
In addition, the peak reduction shows a significant opportunity to decrease electricity bills. 
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Table 4. Parameters of the Energy Storage System (ESS). 

Scenario Percentage of Time over 
150 kW 

Percentage of Time over 
200 kW 

Percentage of Time over 
250 kW 

No ESS 4.467% 2.991% 0.803% 
Set-point control 3.774% 0.827% 0.184% 

Optimal management 2.231% 0.705% 0.130% 
MPC 1.825% 0.665% 0.122% 

In this paper, the cost function aimed to reduce the electricity energy cost using a demand 
shaving strategy. Figure 13 presented the shifted energy demand from the high to low electricity 
price period over the five days. The shifted energy using the MPC controller achieved ranges of 130 
to 146 kWh, while the optimal energy management scheme produced ranges from 118 to 140 kWh 
and set-point control ranges from 85 to 110 kWh. This indicates a daily average shifted energy of 
138.8, 124.4 and 98.6 kWh for MPC, optimal energy management and set-point controllers, 
respectively. Additionally, if this daily average energy could be shifted, cost savings in the port 
electricity bill could be achieved. According to RTG crane demand analysis in [27] and the historical 
load data in this paper, the daily average energy demand is 600 kWh, so shaving 50.52 MWh yearly 
will result in electricity bill savings of £1163.6 every year, when using an MPC controller. According 
to information provided by technical staff at the Port of Felixstowe and with a daily average energy 
consumed by electrified RTG crane of 600 kWh, the annual electricity energy cost is around £16190.17, 
the MPC saving will result in an annual electricity bill saving of 7.18%. Table 5 presents the annual 
cost saving in all the proposed control algorithms. 

 
Figure 13. The daily energy demand shifted from the high to lower price electricity rate. 

Although MPC produces the best peak reduction, it has the most computationally expensive 
and high precision requirements for designing and controlling the energy storage system. On the 
other hand, the set-point controller is the worst at reducing peaks but is inexpensive and very easy 
to implement where it is widely used in industrial applications and energy storage systems. 

Table5. The annual cost saving and percentage of cost savings to the annual electricity bill by using 
peak saving techniques for electrified RTG crane equipped with an energy storage system. 

Scenario Annual Cost Saving Percentage of Cost Saving 
Set-point control £826.59 5.10% 

Optimal management £1042.88 6.44% 
MPC £1163.60 7.18% 

6. Conclusions 

The highly volatile and stochastic nature of electrified RTG crane demand with no clear horizon 
patterns and high uncertainty levels in the crane load forecast increase the challenge of predicting 
and controlling the RTG crane demand. Therefore, an advanced control strategy is required to 
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minimise the impact of forecast error and non-smooth load behaviour. In this paper, optimal energy 
management and MPC strategies have been developed and implemented to improve the economic 
performance of the electrified RTG crane network equipped with an ESS by minimising the electricity 
energy bill and peak demand. The optimal cost function has been used together with the real-time 
electricity price, power grid specifications and energy storage system parameters. The example case 
study results show that the proposed optimal strategies are effective at reducing the peak demand 
and electricity energy cost compared to set-point control. In particular, the MPC controller, for the 
given RTG crane data, has favourable results and outperforms the optimal energy controller and set-
point control. In line with the benefits of peak demand reduction and electricity cost savings it could 
also potentially minimise the stress on the electrical infrastructure at the port and avoid the need to 
upgrade or build a new substation. 
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Abbreviation 

The following abbreviation are used in this paper 

RTG Rubber Tyre Gantry 
MPC Model Predictive Control 
ESS Energy Storage System 
SoC State of Charge  P୐ (t)  Power demand (RTG crane) P୥ (t)  Power grid at time t Pୱ(t) Power energy storage at time t Eୱ (t)  Energy stored in the ESS at time t ∆Eୱ  The stored energy in the ESS between time t and t − 1 Eୱ୫ୟ୶ Greatest stored energy Eୱ୫୧୬ Lowest stored energy Pୱ ୫ୟ୶ The maximum stored power in the ESS Pୱ ୫୧୬ The minimum stored power in the ESS η෤  The energy storage efficiency C୲୭୲ୟ୪ Total energy cost C(t) Represent the real-time electricity cost at Port of Felixstowe E୐ (t) The electrified RTG crane demand at time t C ୢୟ୷  The electricity price during day time (07:00 to 24:00) C ୬୧୥୦୲ The electricity price during night time (24:00 to 7:00)  P୰ୣ୤  Set-point power value   
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