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Abstract: Condition Monitoring (CM) has been considered as an effective method to enhance the 
reliability of wind turbines and implement cost-effective maintenance. Thus, adopting an efficient 
approach for condition monitoring of wind turbines is desirable. This paper presents a data-driven 
model-based CM approach for wind turbines based on the online sequential extreme learning 
machine (OS-ELM) algorithm. A physical kinetic energy correction model is employed to normalize 
the temperature change to the value at the rated power output to eliminate the effect of variable 
speed operation of the turbines. The residual signal, obtained by comparing the predicted values 
and practical measurements, is processed by the physical correction model and then assessed with 
a Bonferroni interval method for fault diagnosis. Models have been validated using supervisory 
control and data acquisition (SCADA) data acquired from an operational wind farm, which contains 
various types of temperature data of the gearbox. The results show that the proposed method can 
detect more efficiently both the long-term aging characteristics and the short-term faults of the 
gearbox. 

Keywords: condition monitoring; online sequential extreme learning machine (OS-ELM); 
Bonferroni interval; health condition; drivetrain; wind turbine 

 

1. Introduction 

Over the past decades, wind energy has been widely regarded as an effective energy solution to 
reducing CO2 emissions and producing sustainable energy because of its technology maturity and 
improved cost competitiveness. One of the key priorities identified by the wind industry is to reduce 
costs in the operation and maintenance of wind turbines, which currently accounts for 18% of the 
cost of offshore energy [1]. A cost-effective operation of the wind farm is therefore crucial due to the 
fierce competition in the global sustainable energy market. Monitoring of the operating conditions of 
the wind turbines has been considered as an effective method to enhance the reliability of wind 
turbines and implement cost-effective maintenance. Clearly, it is essential to develop effective CM 
techniques for wind turbines [1–3] to provide information regarding the past and current conditions 
of the turbines, and to enable the optimal scheduling of maintenance tasks [4]. 

From surveys concerning the reliability of the wind turbines, faults caused by the drivetrain 
system account for over 20% of total faults and contribute to approximately 30% of the downtime of 
doubly-fed induction generator (DFIG)-based wind turbines [5,6]. Thus, studies about fault diagnosis 
of the drivetrain system are necessary. Figure 1 shows a typical drivetrain system in a DFIG wind 
turbine that contains hub, main bearing, main shaft, gearbox, brake, generator shaft and generator. 
The main function of drivetrain system is to transmit kinetic energy from the turbine rotor to the 
electric generator by adjusting rotational speed and torque. 
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Figure 1. A typical drivetrain and its components in the doubly-fed wind turbine. 

For the mechanical transmission system, monitoring and analysis of the vibration signals have 
been proven very effective, as it is easy to obtain the fault signature of a specific component in the 
frequency or time-frequency domains. However, it is difficult to obtain accurate vibration signals in 
the wind turbine under varying speed operation. Furthermore, condition monitoring based on 
vibration signals is a kind of component-specific technique, which lacks providing an inherent 
relationship between different subsystems [7]. For example, variable speed wind turbines have the 
function of maximum power point tracking that optimizes performance in relation to time changing 
wind speed. This means the rotor, gearbox and generator rotational speed may change significantly 
and frequently during operation. Due to the significant rotational speed change, the vibration 
frequency bandwidth varies, which may cause difficulties in locating the exact location of the fault. 

Acoustic emission (AE) is another effective method that can be applied in condition monitoring 
of the wind turbine [8]. When materials bear external strain or stress, they may generate sound waves 
called AE. Even a tiny structural change will make AE signals to be excited, meaning that AE signal 
is very suitable to be applied to detect incipient structure defect and monitor its development. For 
wind turbines, AE signals are generally used for fault detection of the blade, gearbox, bearing, and 
generator. Compared with vibration signals, AE signals have high signal-to-noise ratio, which means 
that AE signals can be applied in high-noise environments. However, AE technique also has its own 
disadvantages. To monitor subsystems of the wind turbine, it is necessary to install a large number 
of AE sensors, and each sensor requires an independent data acquisition system for signal sensing, 
processing and transferring, which increases the cost and complexity of the condition monitoring 
system. 

Monitoring techniques based on temperature signals have been developed for fault diagnosis of 
gearboxes, generators, and power converters. Furthermore, temperature signals can also provide key 
information on the health condition of mechanical transmission system in wind turbines [9–11]. 
However, in previous work, the relationship between the temperature rise and the operating power 
has not been considered yet. Although the same temperature change can be observed whilst under 
different operating power, its effect on the indicative damage of the drivetrain system might be 
different. For example, a temperature anomaly will cause different working efficiency for the 
drivetrain system when working at full power and half power conditions. A working efficiency 
decline as low as to 0.34% for each gear stage would lead to 10 KW power loss in a 1 MW wind 
turbine [12–14]. In [15], the relationship between the gearbox temperature and power generation is 
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illustrated; however, it does not consider correcting temperature changes under different power 
output condition for drivetrain condition monitoring.  

A new data-driven model-based method is proposed in this paper for estimating the health 
condition of the drivetrain in wind turbines. The model to predict output values is built based on the 
OS-ELM algorithm [16]. The residual signal is then obtained by comparing the predicted values with 
those from measurements. Compared with other artificial intelligence (AI) methods, such as artificial 
neural networks (ANNs) [17], support vector machines (SVMs) [18], OS-ELM has a faster training 
speed and a better generalization performance [19]. The residual signal produced is then further 
assessed by the physical kinetic energy correction model of the drivetrain, which evaluates the degree 
of faults by investigating the relationship between the temperature rise and power output. Finally, 
the Bonferroni method, a cost-effective method used to counteract the problem of multiple 
comparisons, is used to adjust and assess the health condition of the drivetrain. Although a physical 
model was proposed and applied to investigate relationships between temperature, efficiency, 
rotational speed and power output in [15], one major contribution of this paper is that the 
temperature rise is normalized at the rated power output, thus providing a more sensitive diagnosis. 
This paper also assesses the health condition using multivariate data analysis by taking into account 
both the independence of variables and the relationship among variables, which is more appropriate 
when modeling a practical process than the univariate analysis. Essentially, a wind turbine is a 
complex multivariate system, resulting in strong coupling among variables.  

The remainder of this paper is organized as follows. Working principle of the online sequential 
extreme learning machine is presented in Section 2. Section 3 describes the physical kinetic energy 
correction model for the wind turbine drivetrain while Section 4 calculates the health condition of 
gearbox based on the Bonferroni interval. A case study using SCADA (Supervisory Control and Data 
Acquisition) data is then performed and the results are shown and discussed in Section 5. Section 6 
contains conclusions and suggestions for further research. 

2. Online Sequential Extreme Learning Machine 

Extreme learning machine (ELM) algorithm was first proposed by Huang [20] for single hidden 
layer feed forward neural networks (SLFNs). Compared with other traditional supervised batch 
learning algorithms in ANNs, ELM algorithm has the advantages of faster learning and better 
generalization capability [21–24]. However, the ELM algorithm assumes that all training data are 
available before the training begins. In real cases, this assumption cannot always be satisfied, as data 
are available for training on a chunk-by-chunk or one-by-one basis. Thus, this paper considers using 
a novel sequential extreme learning machine due to its advantages below. 

(1) OS-ELM learning algorithm can receive the training data sequentially, i.e., arriving chunk-by-
chunk or one-by-one. 

(2) At any time, only newly arriving data are used as training data and transferred to the learning 
algorithm. 

Thus, the application of OS-ELM algorithm is very suitable for condition monitoring of wind 
turbines. Nowadays, the operation of wind turbine follows the power curve designed by the wind 
turbine manufacturer. As an example, a normal power curve of turbines from SCADA data is 
illustrated in Figure 2a; turbine power varies cubically with wind speed, and wind speed varies 
continuously on time-scales. When the wind speed is lower than the cut-in speed (4 m/s in this case), 
the turbine does not produce any power because the rotor torque is too low. When the wind speed is 
above the cut-out speed (25 m/s in this case), the turbine does not produce any power either because 
it has to be shut down to protect it from overloading. If the wind speed is above the rated wind speed 
(15 m/s in this case) but below the cut-out speed, the turbine’s output power is capped at the rated 
power.  
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Figure 2. Examples of power curve of fault-free and faulty wind turbines: (a) power curve of the fault-
free wind turbine; (b) power curve of the wind turbine with a gearbox fault; and (c) wind power time 
series data for the faulty turbine. 

The normal power curve can represent the operation performance of a fault-free wind turbine. 
The change of operation performance, i.e., the change of the power curve, may indicate the onset of 
a turbine fault. The power curve of a wind turbine, as shown in Figure 2b, is an example of abnormal 
operations. In this case, the wind turbine reduces to half of its rated power output, as shown in the 
red circle in Figure 2b and wind power time series data in Figure 2c, to prevent the development of 
more serious problems. Compared to an immediate shut-down once the fault is detected, the 
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operation of the turbine by reducing power output would reduce the dynamic mechanical loads 
experienced by the turbine structure, whilst still maintaining its operation. 

When the operation performance is changed, new training data should be refreshed into the 
prediction model to fit the new operation scenarios. Thus, the advantages of OS-ELM algorithm are 
able to update training data resulting from the new operation scenarios of the wind turbine. A full 
description of the OS-ELM algorithm is given as follows. 

The schematic diagram of a single hidden-layer feed forward neural network is shown in Figure 
3, which consists of an input layer, a hidden layer and an output layer. It assumes that the input layer 
and the hidden layer have n and L neurons, respectively, while the output layer has m neurons; x1, 
x2, …, xn and y1, y2, …, ym are input and output signals, respectively. 

Input Layer Hidden Layer Output Layer

x1

xn

y1

y2

ym-1

ym

g1(w,b,x)

w

g2(w,b,x)

gL-1(w,b,x)

gL(w,b,x)

β

 
Figure 3. Schematic diagram of the single hidden-layer feed forward neural network (SLFN). 

If there exists an ELM with L neurons in the hidden layer and an activation function g(.) can 
approximate the N samples with zero error, the output matrix M of ELM between inputs nodes and 
outputs nodes can be represented by 

=
( + ) ( + )( + ) ( + ) ⋯ +⋯ +⋮ ⋮( + ) ( + ) ⋱ ⋮⋯ + ×

 

= 1, 2,⋯ ,= 1, 2,⋯ ,  

(1) 

where = ⋯  is the weight vector between the ith hidden node and input nodes; = ⋯ 	is output weight vector connecting the ith hidden node and output nodes; = ⋯  is the jth input samples; and = ⋯  represents the bias of 
the hidden layer matrix. 

For simplicity, Equation (1) can be compactly described as, =  (2) 
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where  is the transpose matrix of M and H is the output matrix of the hidden layer of the ELM. 
The matrix H can be expressed as, 

= ( ∙ + ) ( ∙ + )( ∙ + ) ( ∙ + ) ⋯ ( ∙ + )⋯ ( ∙ + )⋮ ⋮( ∙ + ) ( ∙ + ) ⋱ ⋮⋯ ( ∙ + ) ×
 (3) 

When the input weight matrix w and the hidden layer bias matrix b are initialized, the hidden 
layer output matrix H can be uniquely determined. The output weight matrix β can be calculated by 
minimizing the error function as follow, min‖ − ‖ (4) 

During this process, the input weight matrix w and the hidden layer bias matrix b do not need 
to be changed and the solution can be expressed, =  (5) 

The matrix  is the generalized Moore-Penrose inverse of the matrix H, which can be found 
using the singular value decomposition method. 

To make ELM online sequential, 	can be transferred as follows:  

=( )  (6) = ( )  (7) 

Suppose the training data has two sets; one is the chunk of initial training data N0 and another 
is the chunk of new training data N1. Then, the Equation (5) can be updated to Equation (8) by 
minimizing the error function between two moments, where  and  are the output matrix of 
the hidden layer and the output matrix for the initial training data N0, while  and  are the 
output matrix of the hidden layer and the output matrix for first chunk of training data N1. −  (8) 

The output weight matrix β that considers both initial block of training data N0 and block of 
training data received in the next moment N1 becomes 

( ) =  (9) 

where = +  (10) 

Therefore, the output weight matrix ( )  for the 1st chunk of training data N1 is updated. 
Suppose ( ) is the output weight matrix for the chunk of initial training data N0, then ( ) = ( ) + − ( )  (11) 

As mentioned above, when a chunk of data arrives at step K + 1, the parameters are updated as 
follows: = +  (12) = − ( + )  (13) 

Using = , the equation for ( ) can be updated  = − ( + )  (14) 

The output weight matrix ( ) at step K + 1 therefore becomes 
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( ) = ( ) + ( − ( )) (15) 

Hence, this sequential ELM algorithm has the ability of achieving an online training in real time, 
if the sampling speed for updated training data is quick enough. However, it is worth noting that, in 
this paper, the main purpose of using OS-ELM is to achieve updated training data to ensure that the 
model is adapted to accommodate different operational behaviors of the wind turbines encountered 
during their operations. Real time online training capacity of the method is not considered in the 
paper. In this paper, one-year historical data are used as initial data to train initial weights. When 
new scene data are available, the new dataset is then transmitted to OS-ELM model to update the 
weights.  

In our study, the updating duration is one month and the length of the data to be used is around 
between 4320 and 4464 points for each parameters depending on the calendar month; more 
information about data can be seen in the later Section 5.1. It is worth emphasizing that the data 
obtained from the fault-free turbine are selected for model training. Then, the data gained from a 
turbine with system aging only and a faulty turbine are used as the input data of the model to predict 
their monitoring variable output. Consequently, the established model can identify both the aging 
and faulty wind turbines. 

As verified in our previous work [24], the ELM can learn much faster than the traditional back 
propagation (BP) neural network while still achieving similar model fit performance. 

3. Physical Kinetic Energy Correction Model 

As a key component of DFIG turbine drivetrain, the gearbox is used because turbine rotor cannot 
reach synchronous speed that satisfies the operating condition of DFIG generator. The use of gearbox 
is to transmit kinetic energy from the turbine rotor to the DFIG electric generator through the 
drivetrain system. The CM of temperature signal is a proven method to diagnose the faults and 
predict the residual life of the drivetrain system. Traditionally, a same threshold is applied to 
temperature monitoring regardless of the operating power, which means the same weight is assigned 
for the temperature change contributing to the damage of gearbox. However, the operating power 
could have a significant impact on the temperature changes; therefore, its effect on the temperature 
changes should be weighted differently.  

Supposing σ is the drivetrain system efficiency, E is the input kinetic energy from the rotor to 
the drivetrain, P is the output kinetic energy from gearbox to generator, then E = 1/σ × P. 

Based on the first law of thermodynamics, we can have = 1 − 1  (16) 

where Q represents the heat loss of gearbox, which leads to the temperature rise of drivetrain. If ∅ is 
the compound heat transfer coefficient, the relationship between the heat loss of drivetrain Q and the 
gearbox temperature rise ∆  can be described by  = ∅∆  (17) 

Substituting Equation (17) into Equation (16) gives ∆ = 1∅ 1 −
 (18) 

In the ideal conditions, the compound heat-transfer coefficient ∅ is considered as constant. 
Figure 4 illustrates an example of the relationship between temperature rise and efficiency change of 
the drivetrain at different operating power outputs for a 2.5 MW wind turbine. As can be seen from 
the figure, the efficiency change varies at different power outputs. This implies that a fault occurring 
in drivetrain will lead to an increase in ∆  in response to a reduction of efficiency  if the same 
power output is to be maintained. The higher the operating power output is, the smaller the efficiency 
varies under the same temperature change ∆ . This also means, although the faults may cause a same 
value of ∆ , their effects on the level of damage of drivetrain differs if the power output is different.  
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Figure 4. A 3D view of temperature rise, efficiency change and operating power of the drivetrain 
system. 

Consequently, a temperature correction method should be considered. In our study, the 
temperature change ∆  is firstly obtained from the ELM model in response to the power output 
gained from SCADA data, and then the corresponding efficiency  is calculated by using Equation 
(18). The temperature ∆  is further corrected to the value when the turbine is operating at the full 
power at the given efficiency. All the temperature changes at different power outputs are thus finally 
normalized to the value at the rated power output. 

4. Estimating the Health Condition 

The residual signals obtained from prediction model are now processed by the energy correction 
model. For the gearbox, its bearing temperature rise can be caused by either the gearbox aging or a 
potential fault or a failure. Figure 5 shows an example of temperature curve of gearbox bearing due 
to system aging in wind turbine. The temperature curve in red shows the trend of temperature rise 
with active power in the wind turbine due to system aging only during first three months of one year. 
Temperature rises with increasing active power output. The temperature curve after six months of 
operation is also shown in the figure with blue color; apparently, temperature increases after the 
turbine operates for a period. An example of temperature rise due to a fault of the gearbox is shown 
in Figure 6. In this case, the temperature actually deviates from the curve randomly, indicating the 
onset of a fault. The fault is identified after checking the event logs recording user activities, 
exceptions and alarms in the SCADA system, which is related to the gearbox cooling system. 

 
Figure 5. Gearbox bearing temperature rise trend in the first three months and after six months 
operation. 
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Figure 6. Gearbox bearing temperature rise trend resulting from a gearbox fault. 

In the model-based CM systems, faults can be diagnosed by comparing the difference between 
the actually measured signal and the predicted value from the sequential extreme learning machine 
algorithm. Although a method relying on residual signals alone can detect faults effectively, it is not 
able to evaluate accurately the significance about the failure of components. Furthermore, the 
drivetrain in a wind turbine is generally composed of several components, which are, specifically, 
gears, bearings and the cooling system (usually oil cooling). Clearly, it would be desirable to use a 
more appropriate method in order to identify the health condition of the drivetrain by considering 
relationship between different components.  

The estimation of system performance by using Hotelling’s T-square, as described in Equation 
(19), has been proven to be effective in [25], where the method was used to achieve multivariate 
failure mode analysis of electronics. The method can provide the global information of deviation level 
in wind turbines. Confidence intervals for the Hotelling’s T-square method can be computed using 
Equation (20) and utilized to estimate deviation level for each variable.  = ( − ) ( − ) (19) 

( ) = + ( − 1)( − ) , ( )  (20) 

where = ( , ,⋯ , )  indicates a set of variables, for example, the temperatures of gearbox 
bearing u1, gearbox oil u2, and drivetrain main bearing u3 in this study. The = ( , ,⋯ , ) , 
where  represents the mean value of the measurement parameter .The distribution ,  is a 
F distribution used in statistics; N is the number of the samples for each measurement parameter; the 
parameter p is the number of variables;  is the covariance matrix of U;  is diagonal value in the 
covariance matrix. In Equation (20),  represents the critical value for the F distribution; when  
is determined, the value of ,  can be found from the F distribution table [26] and the confidence 
interval is thus determined. It is worth noting that  indicates probability of occurrence of the 
residual signal values. If  < 0.01, the monitoring data are considered to indicate a fault in the 
component [7], while, if 	 is larger than a particular value which can be application dependent, the 
component can be in a debilitating condition. In this case study,  = 0.25 is selected as a threshold 
value for debilitating condition.  

Despite of the global effect the above confidence interval demonstrates, the method lacks the 
ability to provide details concerning the effect of individual components on the overall operational 
conditions. Instead, Bonferroni intervals simply focuses on the means for each of the individual 
variables themselves, thereby enabling to build a more accurate confidence interval range [26]. Thus, 
Bonferroni intervals, as described in Equation (21), are applied in this study.  
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( ) = + 2  (21) 

The distribution  is a t distribution used in statistics and the value of  can be found 
from a t distribution table. In our study, the value of residual signal after processing with the energy 
correction model is considered as a fault if the value is higher than (0.01). Meanwhile, (0.25) 
is defined as the threshold value for debilitating condition.  

5. Case Studies 

5.1. SCADA Data 

SCADA systems are available on most commercial wind farms, which utilize hardware and 
software elements and IT technologies to monitor, gather, and process data. The systems are used for 
a range of functions, including data acquisition, control, adjustment of parameters, and generating 
warning signals. To reduce the amount of data gathered from the operating wind turbines, SCADA 
data are usually stored at 10 min interval although sampled at the second level. SCADA data have 
been employed widely by researchers as the basis for CM systems and more detailed description of 
SCADA data and their applications can be found in Reference [27]. The SCADA data used for our 
study are acquired from an operational wind farm, sampled at 10 min interval, and consist of a 
number of parameters that contain various temperatures, pressures, vibrations, power outputs, wind 
speed and digital control signals. The SCADA data used in this paper cover nine months, and the 
data length for each parameter is approximately 38,880 points. 

We select gearbox temperatures at different locations to monitor the condition of gearbox. The 
dataset contains temperature readings for gearbox bearing, i.e., the main speed shaft bearing 
connected to the rotor, the gearbox oil, i.e., the temperature of gearbox oil which is close to actual 
gear temperature, and the main bearing temperature, as shown in Figure 1. Two wind turbines are 
selected to verify effectiveness of the proposed method, one being a turbine with system aging only 
and another one being a faulty turbine. To achieve an appropriate model identification, wind speed, 
ambient temperature and power output are selected as the inputs while the targeted temperature in 
the gearbox is considered as the output. This multiple-input and single-output (MISO) approach 
allows a more sensitive detection. 

5.2. Model Predictions 

This section now presents and compares the residual temperature signal produced by using OS-
ELM model without and with energy correction method being applied. Figures 7 and 8 show the 
actual SCADA data, predicted values from the model and the residual signal of the gearbox bearing 
temperature for the system aging turbine and the faulty turbine respectively. As can be seen in Figure 
7c, the temperature rises with time, which is caused by the system aging. Figure 9a,b illustrates 
residual signal of the gearbox bearing temperature due to the system aging, where the revised 
temperature is the residual signal processed by the physical kinetic energy correction model. 
Although both methods demonstrate temperature rises with time due to the system aging, the 
corrected gearbox bearing temperature exhibits a more obvious deviation trend than the one 
produced from the normal method because temperatures are converted to the values at the rated 
power output in the correction model. The maximum difference between corrected signal and normal 
signal for the turbine with system aging only can reach up to 4.7 °C. Figure 10a,b demonstrates 
residual signal of gearbox bearing temperature in the condition of a bearing fault. It can be seen that 
the gearbox bearing temperature deviates in April, indicating the onset of a fault, and reaches the 
highest at the beginning of September. It also appears that the corrected bearing temperature shows 
much clearer characteristics when the fault begins. The maximum difference between corrected signal 
and normal signal for the faulty turbine can reach up to 7.2 °C. With the correction model being applied, 
the residual signal is normalized at the rated power output, thus producing more fluctuations of the 
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signal being monitored. This implies that the revised method has a better sensitivity than the normal 
method, thus facilitating a more accurate fault detection. 

 
(a) 

 
(b) 

 
(c) 

Figure 7. Model prediction compared to SCADA data for gearbox bearing temperature for the turbine 
with system aging only: (a) SCADA output; (b) model output; and (c) residual signal. 

− 
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(a) 

 
(b) 

 
(c) 

Figure 8. Model prediction compared to SCADA data for gearbox bearing temperature for the faulty 
turbine: (a) SCADA output; (b) model output; and (c) residual signal.  

− 
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(a) 

(b) 

Figure 9. Residual temperatures from the ELM model with and without the energy correction model 
being applied the turbine due to the system aging only: (a) residual signal of the gearbox bearing 
temperature; and (b) temperature changes from the corrected signal and normal signal. 

(a) 

− 

− 

− 
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(b) 

Figure 10. Residual temperatures from the ELM model with and without the energy correction model 
being applied for the faulty turbine: (a) residual signal of the gearbox bearing temperature; and (b) 
temperature changes from the corrected signal and normal signal. 

5.3. Fault Diagnosis 

To assess further the condition of drivetrain components, the Bonferroni intervals and 
confidence intervals for Hotelling’s T-square are compared, which are used to access each variable 
deviation in a multivariable system. Two sets of  values are selected for both Bonferroni intervals 
and confidence intervals for Hotelling’s T-square. One is  = 0.01 and the other one is  = 0.25, as 
described above. The residual signal is considered as an anomaly if it is over (0.01) [7]. Figure 11 
shows the residual signal between the actual temperatures and predicted ones of the gearbox bearing 
for the faulty turbine during nine months. It can be seen that the gearbox bearing temperature deviate 
from the prediction at April, indicating the onset of a fault. Although the residual signal value starts 
fluctuating between April and September, it is still within the tolerance zone. At the beginning of 
September, the fault leads to a dramatic increase in the residual value. The values of (0.01) and (0.25) for Bonferroni intervals using Equation (21) are 9.84 °C and 6.4 °C, respectively. Meanwhile, 
the values of (0.01) and (0.25) for Hotelling’s T-square confidence intervals are 10.5 °C and  
8 °C, respectively. Therefore, Bonferroni intervals are smaller than Hotelling’s T-square confidence 
intervals.  

 
Figure 11. Comparison of Bonferroni intervals and confidence intervals for Hotelling’s T-square for 
gearbox bearing in the faulty wind turbine.  

The model predictions for gearbox oil and drivetrain main bearing using the OS-ELM model 
and physical kinetic energy correction model are described as follows. Figure 12a shows the residual 

− 
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signal between the actual temperatures and predicted ones of the gearbox oil for the faulty turbine 
during nine months. The values of (0.01) and (0.25) for Bonferroni intervals are 9.78 °C and 
6.6 °C, respectively. It seems that the fault characteristic of the gearbox oil is the same as the gearbox 
bearing. Figure 12b illustrates the residual signal between the actual temperature and predicted 
temperature of the drivetrain main bearing. The values of (0.01) and (0.25) for Bonferroni 
intervals are 13.1 °C and 10.2 °C, respectively. The drivetrain main bearing deviates from the 
prediction between April and at the end of May with the values exceeding (0.01). It also begins to 
recover to normal temperature at the end of July. After checking the alarm log of the SCADA data, it 
was found that a fault in the gearbox cooling system caused the rising of temperatures of both the 
gearbox oil and the gearbox bearing. This result indicates that the root cause of the fault occur at the 
cooling system of the gearbox. 

(a)

(b)

Figure 12. Residual signals of the temperature rise trend for gearbox in the faulty wind turbine: (a) 
residual signal of the gearbox oil temperature rise trend during nine months; and (b) residual signal 
of the drivetrain main bearing temperature rise trend during nine months.   

In comparison, we also assess the above temperatures for the wind turbine with aging problem 
only. Figure 13a shows the residual signal between the actual temperature and predicted temperature 
of the gearbox bearing for the aging turbine during nine months. Figure 13b illustrates the residual 
signal of gearbox oil temperature for the same wind turbine. It can be seen that, although the gearbox 
bearing and oil temperature residual signals have a rising trend, they are still below the (0.25), 
indicating the gearbox is in the healthy operational condition. The variation of power output has less 
effect on oil temperature than bearing temperature, because cooling oil has a higher specific heat 
capacity than metal. Figure 13c illustrates the residual signal between the actual temperature and 
predicted temperature of the drivetrain main bearing, showing it is also within a safe operational 
range.  

− 

− 
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Figure 13. Residual signals of the temperature rise trend in the system aging condition during nine 
months: (a) residual signal of the gearbox bearing temperature rise trend; (b) residual signal of the 
gearbox oil temperature rise trend; and (c) residual signal of the drivetrain main bearing temperature 
rise trend. 

6. Conclusions  

This paper has presented an online sequential extreme learning machine algorithm that has been 
applied in the model-based condition monitoring of the wind turbine drivetrain system. To 
demonstrate effectiveness of the proposed method, two types of representative condition (long-term 
system aging and short-term component fault) from two wind turbines are examined in this paper. 

− 

− 

− 
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The SCADA data, including the temperatures of gearbox oil, gearbox bearing and drivetrain main 
bearing obtained from an operational wind farm have been used. Fault identification is achieved by 
using data-driven models derived from these data. The residual signals are the difference between 
the actual output and the corresponding predicted value, which are caused by the system aging or 
the fault, thus providing an early warning of impending failure. The residual temperature signal is 
further revised by a physical kinetic energy correction model, which normalizes the temperature 
change at different power point to the value at the rated power output. The corrected values can 
provide a more sensitive trend indicative of signal changes. The results show that, using the 
Bonferroni method, a more accurate estimate of the health condition of drivetrain can be achieved, 
thus facilitating a more reliable fault diagnosis. Although the paper focuses on the gearbox fault 
detection due to the failure of the cooling system, the proposed method can be generic and used for 
other fault detection such as in generator bearings and windings. The temperature of these key 
drivetrain components in the wind turbine depend not only on the wind speed but also on the power 
demand from the grid. The normalization of the temperature change with regards to the rated power 
output can eliminate the effect of variable speed operation of the turbines, thus providing a more 
accurate fault detection. Future work will therefore consider online real time function of OS-ELM; 
and an online real time condition-monitoring device based on OS-ELM will be designed. 
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