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Abstract: Reliable energy forecasting helps managers to prepare future budgets for their buildings. 
Therefore, a simple, easier, less time consuming and reliable forecasting model which could be 
used for different types of buildings is desired. In this paper, we have presented a forecasting 
model based on five years of real data sets for one dependent variable (the daily electricity 
consumption) and six explanatory variables (ambient temperature, solar radiation, relative 
humidity, wind speed, weekday index and building type). A single mathematical equation for 
forecasting daily electricity usage of university buildings has been developed using the Multiple 
Regression (MR) technique. Data of two such buildings, located at the Southwark Campus of 
London South Bank University in London, have been used for this study. The predicted test results 
of MR model are examined and judged against real electricity consumption data of both buildings 
for year 2011. The results demonstrate that out of six explanatory variables, three variables; 
surrounding temperature, weekday index and building type have significant influence on 
buildings energy consumption. The results of this model are associated with a Normalized Root 
Mean Square Error (NRMSE) of 12% for the administrative building and 13% for the academic 
building. Finally, some limitations of this study have also been discussed. 

Keywords: energy consumption; electricity forecasting; multiple regression; academic; 
administrative buildings 

 

1. Introduction 

In the U.K., buildings are the major energy consuming sector, with a share of 40% [1]. The 
electricity consumption in Higher Education (HE) buildings is the major factor in the sector’s carbon 
emissions [2]. Energy management systems have gained rapid recognition in the U.K. HE sector 
after the Higher Education Funding Council of England (HEFCE) imposed a 43% reduction in 
carbon emissions by 2020 against the baseline year 2005 for its all member universities [3].  
All member universities in England now have a dedicated energy management team consistently 
working to achieve this goal. Variation in the sector’s CO2 emissions for the period 2008/09 to 
2014/2015 has been shown in Figure 1. It depicts that electricity consumption emerges as the major 
contributor with a share of 63%, next to which is natural gas with a share of 33.3% [1,4,5]. It can also 
be observed that annual reduction in sector’s emission is slow at a rate of 2.17% per year. During 



Energies 2017, 10, 1579 2 of 18 

 

these five years (i.e., 2008/09 to 2014/15), the sector has been able to reduce its total carbon emissions 
only by 8%.  

 
Figure 1. Variation of CO2 emissions of England’s HE sector [4]. 

Table 1 presents variation in number of students, electricity and gas consumption, emissions 
and Gross Internal Area (GIA) for the English HE sector. Variation in the sector’s CO2 emissions with 
respect to GIA (m2) and number of students was reported in [4]. It was observed that sector’s 
emissions based on GIA decreased by 15.83% at an annual rate of 4.2% during 2008/09 to 2014/15; a 
promising result compared to total absolute CO2 emissions. Average CO2 emissions per square 
meter area of a typical university campus in England were reported to be 90 kg/m2 for this period. 
The average CO2 emissions per student during the same period were 1210 kg/student. In this 
context, the CO2 emissions decreased by 7.8% during 2008/09 to 2014/15 with an annual decreasing 
rate of 1.86%.  

Table 1. Five years statistics for England’s Higher Education Sector. 

2008/09 2011/12 2012/13 2013/14 2014/15
Number of Students (Millions) 1.55 1.68 1.57 1.55 1.55 

Grid Electricity Consumption, TWh 2.49 2.56 2.41 2.39 2.34 
CHP Electricity Consumption, TWh - - 0.27 0.30 0.34 

Renewable Electricity Consumption, TWh - - 0.01 0.01 0.01 
Total Electricity Consumption, TWh 2.49 2.56 2.69 2.70 2.68 

Gas Consumption, TWh 2.99 2.78 2.60 2.27 2.41 
CHP Gas Consumption, TWh - - 0.92 0.97 1.01 
Total Gas Consumption, TWh 2.99 2.78 3.53 3.24 3.42 

Total Energy Consumption, TWh 5.98 5.84 6.38 5.86 6.05 
Grid Electricity Emissions, Mtonnes of CO2 1.28 1.24 1.08 1.18 1.08 

Gas Emissions, Mtonnes of CO2 0.67 0.63 0.65 0.60 0.63 
Other fuels Emissions, Mtonnes of CO2 0.05 0.08 0.16 0.11 0.12 

Total Emissions, Mtonnes of CO2 2.00 1.95 1.88 1.89 1.83 
GIA, Million square metres, Mm2 20.37 21.25 21.35 21.63 22.16 

Total Number of Buildings 12,826 12,577 12,628 12,683 12,754 

Figure 2 presents variation in electricity consumption of the English HE sector for the period 
2008/09 to 2014/15. It is evident from Figure 2 that sector’s total electricity consumption has been 
increasing since 2008/09 to 2014/15 at average annual rate of 1.87%. However, it could also be 
observed that due to energy efficiency initiatives of universities and injection of electricity from 
on-site Combined Heat and Power (CHP) plants as well as renewable sources (solar and wind) grid 
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electricity consumption has decreased annually at 1.56%, totaling 6.27% lower in 2014/15 compared 
to 2008/09 levels. As grid electricity has higher carbon factor than the CHP or renewable electricity, 
therefore the decreased grid share corresponds to a higher decrease in carbon emissions. 

 

Figure 2. Variation of annual electricity consumption of England’s HE sector [4].  

Annual variation of sector’s gas consumption is presented in Figure 3. Gas consumption was 
observed 14.5% higher in 2014/15 compared to 2008/09. This increase is associated with installations 
of CHP plants in universities for onsite energy generation. Towards the end of 2011–2012, 59 of the 
161 U.K. universities had installed CHP on their campuses [3]. 

 
Figure 3. Variation of annual gas consumption of England’s HE sector [4]. 
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The overall effect of electricity and gas consumption could be judged by looking at the sector’s 
CO2 emission levels, which clearly shows that emissions are decreasing at a slower annual rate. This 
declining trend in carbon emissions certainly reflects the overall efforts made by the universities 
aiming to achieve their carbon-emissions reduction targets. However, despite such efforts and a 
number of ambitious initiatives, the English universities are far behind achieving their 2020 emissions 
reduction targets [6].  

Energy consumption in university buildings is mainly driven by various factors such as; 
building type, building age, occupancy, operating hours, type of equipment installed and weather 
conditions. Nearly 68% space of a typical university campus in England is occupied by two major 
building categories, i.e., academic (42%) and administrative (26%) buildings [6]. In 2014/15, 
non-residential buildings of English universities consumed about 80% of total energy consumption 
where as 20% electricity consumption occurred in the sector’s residential buildings [4]. 

The aforementioned information clearly shows that electricity and gas consumption are the two 
major carbon emitting sources of the HE sector of England, with shares of 63% and 33%, respectively 
[4]. The sector’s slow declining trend of carbon emissions clearly indicates that the universities need 
to explore additional energy saving opportunities along with improving the energy management 
systems of the universities.  

Monitoring and analyzing buildings energy consumption patterns is one of the major 
components of an effective energy management system which helps in understanding the building’s 
operational behavior under different conditions. It also helps in identifying undesired wastage of 
energy under specific conditions. If the energy consumption data are collected and maintained 
properly, their relation with different variables such as surrounding temperature, humidity, 
occupancy etc. could be investigated and future energy predictions could be made by taking these 
factors into account. Another key benefit is that predicted energy consumption data could be used to 
predict reliable energy budgets for future. Energy management teams of universities are responsible 
for monitoring, analyzing and maintaining energy consumption data of their buildings. They are 
responsible for preparing reliable energy consumption forecasts in order to prepare their energy 
budget forecasts for the coming years as well as identifying opportunities of energy conservation. 

Reliable energy consumption forecasting plays a critical role in successful implementation of 
energy management systems. Many organizations have failed in managing energy consumption and 
budgeting because of lack of forecasting and use of less efficient forecasting techniques for planning 
[7,8]. Forecasting helps in evaluating the current and future economic conditions to steer the 
organization’s policies and decision making. It is a technique that predicts the future information 
based on historical and current information. A reliable forecasting can help universities financial and 
energy management teams to set up their priorities and strategic goals and it can act as an integral 
part of the annual budgeting process [9]. 

Different forecasting techniques such as Multiple Regression (MR), Artificial Neural Networks 
(ANN), and Genetic Algorithms (GA) have been widely used by researchers for energy consumption 
forecasting for different types of buildings in different regions [10]. Among these, MR is a simple, 
reliable and a quick technique [11–14]. A number of researchers [11,12,15–24] have used the MR 
method in their studies, but all such MR models forecast energy consumption of a single building or 
a region and require a lot of input data. Energy managers and their teams have always busy 
schedule and they would prefer a reliable and quick single model for different building categories 
instead of different forecasting models [24].  

This research aims to facilitate the energy management teams of English universities by providing a 
simple, easy to use, quick and robust energy consumption forecasting model using MR technique in 
the form of a simple mathematical equation. Using this single equation, energy managers will be 
able to predict daily, monthly and yearly energy consumption of two different types of buildings, 
i.e., administrative and academic. For this purpose, two campus buildings (one academic and 
second administrative type) located in Southwark campus of London South Bank University (LSBU) 
are selected and their historical electricity consumption data are used in the development of 
forecasting model. Daily electricity consumption data of these two buildings for a long period  
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(i.e., 2007–2010) was available but daily gas consumption data was not available. Therefore, due to 
unavailability of daily gas consumption data, this research only focuses on electricity consumption 
forecasting model. 

London South Bank University (LSBU) is a public university located in Central London. It has 
17,735 students and 1700 staff and is based in the London Borough of Southwark. LSBU is located at 
51.4982° N, 0.1021° W. The University has 31 buildings (GIA: 148,771 m2) in total, of which 19 are 
non-residential buildings occupying a Gross Internal Area (GIA) of 114,065 m2 while remaining 12 
are residential buildings occupying GIA of 37,706 m2. The energy management team is responsible 
for energy and environment related matters such as: 

(a) Monitoring, analyzing and maintaining record of energy consumption; 
(b) Identifying energy reduction opportunities and setting up targets; 
(c) Compliance of national legislation/schemes such as Carbon Reduction Scheme (CRC); 
(d) Preparing forecasts for energy budgets based on historical energy consumption data; 
(e) Display Energy Certificates (DECs). 

LSBU has to meet a target of 43% reduction in its CO2 emissions by 2020 against the base year 
2005/06. In 2005/06, total emissions of LSBU were 12,165 tCO2 which means that it has to reduce its 
emissions to a level of 7907 tCO2 by 2020. Figure 4 shows variation in the CO2 emissions of LSBU for 
years 2008/09 to 2014/15. It is evident that due to University’s imperative energy reduction 
initiatives, the University has been able to reduce its CO2 emissions by 32% in 2014/15 compared to 
2005/06. Major drop in CO2 emissions was observed between 2005/06 and 2008/09 where emissions 
dropped by 24%. However, from 2008/09 to 2014/15, LSBU was able to reduce its CO2 emissions just 
by 8%. Major sources of these CO2 emissions in LSBU are electricity (74%) and natural gas (26%).  

 
Figure 4. Variation of annual CO2 Emissions of LSBU [4]. 

The following researchers have applied MR method in their energy forecasting studies: 
Fumo and Biswas [10] employed the MR method using long term hourly and daily energy 

consumption data of a domestic building. They used two explanatory variables, i.e., global irradiance 
and the outdoor temperature; the inclusion of former improved the coefficient of determination, R2, 
however, resulted in an increased RMSE. 
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Catlina et al. [12] used the MR method to predict heating energy consumption of buildings 
based on three factors namely; the building global heat loss coefficient, the south equivalent surface 
and the difference between the indoor set point temperature and the sol-air temperature (sol-air 
temperature (Tsol-air) is a variable used to calculate heating or cooling load of a building and 
determines the total heat gain through exterior surfaces.), that influence a building heat consumption. 
A detailed error analysis showed that their model presents a very good accuracy with R2 = 0.987. 

Amiri et al. [22] developed two MR models for the prediction of annual cooling and heating 
energy consumptions of the buildings. Among the 17 tested explanatory variables 13 were found 
significant, of which occupancy schedule and exterior wall construction have major influence on 
cooling and heating loads. Both MR models were found good with R2 ranging from 0.95 to 0.98. 
Their study concluded that MR is an accurate, simple and fast way to obtain energy performance of 
administrative buildings. 

Mastrucci et al. [23] employed the MR method to forecast electricity and natural gas 
consumption of domestic buildings in The Netherlands. In this study, the influence of type of 
dwelling, building age, floor area, and occupancy on the buildings natural gas and electricity 
consumption is analyzed. To assess the predictive power of the model, they used R2 and Mean 
Square Error (MSE). R2 values for natural gas and electricity models were found to be 0.718 and 
0.817, respectively. 

Bruan et al. [11] applied an MR method to investigate effect of outdoor temperature and 
humidity on the buildings electricity and gas consumption. It was found that temperature has the 
highest influence on the buildings energy consumption with R2 = 0.92 for electricity consumption 
and R2 = 0.85 for gas consumption. The predictive power of MR model has been tested by analyzing 
the Normalized Mean Biased Error (NMBE) and Coefficient of CVRMSE. It was found that NMBE is 
−2.6% whereas CVRMSE was found to be just below 3.8%. 

Capozzoli et al. [25] analyzed annual heating energy consumptions of eighty school buildings 
in the north of Italy and developed an MR model to estimate energy consumption of these schools. 
They used nine different influencing variables and tested the predictive power of their model based 
on Mean Absolute Percentage Error (MAPE). The results of this study suggested that the MR model 
is a decent model with R2 = 0.85 and MAPE of 15%. 

In the light of the above discussion, it is clearly seen that most of the MR models developed for 
energy forecasting purposes are for the single building category, whereas the energy managers of a 
typical university campus are responsible for different building categories. This highlights the 
significance of a quick and robust forecasting model for different building categories. This study, for 
the first time proposes a unique MR model for multiple building categories based on five years real 
historical data. This will not only provide a quick forecasting tool but also a reliable mean of 
forecasting energy consumption for multiple building categories. Energy managers will be able to 
prepare reliable energy budgets for their procurement of their annual energy usage in order to assist 
the higher management in setting up their financial priorities. Rest of the paper is organized as 
follows: Section 2 describes the methodology of this work whereas in Section 3 results have been 
discussed. Conclusions are drawn in Section 4. 

2. Methods 

This section presents methods and details of different stages such as data collection, model 
development and its testing. Figure 5 shows all different stages which are illustrated in detail in the 
underlying sub-sections. 
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Figure 5. Proposed methodology. 

2.1. Data Collection 

The following data for the explanatory and dependent variables for study period of five years 
January 2007–December 2011 have been used for this study: 

i. Dependent variable:   Y= Daily electricity usage, Wh/m2; 
ii. Explanatory variable 1:  x1 = Daily mean surrounding temperature, K 

iii. Explanatory variable 2:  x2 = Daily mean global irradiance, W/m2 
iv. Explanatory variable 3:  x3 = Daily mean humidity, % 
v. Explanatory variable 4:  x4 = Daily mean wind velocity, m/s 

Further two proxy variables the weekday index and the building type are used in order to get 
more reliable results. These two are important variables as explained later by results; weekday index 
not only relates to building occupancy but also indirectly shows usage of available facilities while 
building type directly affects the energy usage. These two proxy explanatory variables are: 

i. Explanatory variable 5:  x5 = Weekday Index (proxy variable for weekday type) 
ii. Explanatory variable 6:  x6 = Building Type (proxy variable for building type) 

In addition to these variables, some information regarding both buildings such as operating 
hours, installed equipment etc. is also needed to elucidate their respective energy consumption 
patterns. Section 2.2 describes the different datasets, data sources, and methods of data collection. 
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2.2. Data Analysis 

2.2.1. Buildings Description 

All the relevant information of both buildings (academic and administrative) such as building 
area, operating hours, built year etc. is presented in Table 2.  

Table 2. Important information related to office and academic building. 

Description Office Building Academic Building 
Building type Offices Lecture rooms, offices 

GIA, m2 7811 8588 
Building year N/A 2003 

Building Orientation South-West South-West 
Operating hours 8 a.m. to 6 p.m. 7.30 a.m. to 8.00 p.m. 

Closing time 10 p.m. 10 p.m. 

Cooling method 
Naturally ventilated with few 

dedicated split AC units 
Naturally ventilated  

Heating Equipment Two gas fired boilers Six gas fired boilers  
Lighting Type CFL CFL 

No. of Lifts 2 2 
No. of LV supplies 2 1 

No. of floors 3 6 

Building age, its orientation, operating hours and type of installed equipment are very 
important variables having major impact on the buildings energy consumption. However, being 
identical, effect of these variables on energy consumption of both the buildings has not been 
investigated in this study. 

2.2.2. Electricity Consumption Data 

Daily electricity consumption (kWh) data for both buildings have been collected from the 
Energy Manager Office for the study period, and presented as consumption per unit area (Wh/m2) 
for each building. 

Figure 6 presents deviation in daily electricity usage of both academic and administrative 
buildings over the period 1 January 2007 to 31 December 2011 whereas Table 3 shows the stats of 
electricity consumption for non-working days (NWD) and working days (WD) for the two buildings. 

 
Figure 6. Variation in daily electricity consumption of office and academic buildings [26]. 
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Table 3. Statistics of electricity consumption (Wh/m2) on working and non-working days. 

 
Non-Working Day Working Day

Office Academic Office Academic
Min 155 127 229 168 
Max 311 404 479 550 

Mean 222 220 374 357 
Median 221 204 375 349 

N 577 577 1249 1249 

The following observations are drawn from Figure 6 and Table 3: 

(a) The electricity consumption patterns of both buildings are nearly identical in shape and show 
drops during summer which are mainly due to low heating demand during summer and vice 
versa for winter. This indirectly refers to electricity consumption in the heating equipment such 
as pumps, boilers, air handling units, etc. 

(b) The consumption patterns (low in summer and high in winter) further suggest that 
surrounding temperature has a noteworthy effect on daily electricity usage of buildings. As 
both buildings under investigation are naturally ventilated (i.e., there is no cooling demand 
during summer), therefore, only seasonal load is heating during winter. During summer, 
heating plant and its accessories such as supply and return pumps, booster pumps, air handling 
units etc. are switched off, thus, electricity consumption drops to the base load. Other factors 
such as occupancy has limited effect as it remains somewhat constant throughout the year. 

(c) Electricity usage in both buildings during non-working days is also considerably large, i.e., 
nearly 58% of that on a working day. This is probably due to the automatic Building 
Management System (BMS) which switches the equipment ON and OFF regardless of the type 
of day (i.e., WD or NWD). This necessitates the additional automation of building control 
systems in accordance with the number of persons present in the building in order to save  
the energy.  

2.2.3. Weather Data 

Fluctuating weather conditions play a crucial role in building energy consumption. A number 
of studies [7,27–35] have investigated the effect of weather changes on building energy consumption. 
Amber, et al. [6] investigated the effect of four weather variables, i.e., surrounding temperature, 
global irradiance, humidity and wind velocity on the electricity usage of different buildings. Among 
the four variables the surrounding temperature found to be the critical parameter which drives the 
building energy consumption. Bruan et al. [11] also found that among outdoor temperature and 
humidity the former plays dominant role in building energy consumption. On the other hand 
Al-Garni et al. [34], with variable occupant populations, found the relative humidity and global 
irradiance as the critical variables as main driving force for the building energy consumption. 

In this study, daily mean values of surrounding temperature, global irradiance, wind velocity 
and humidity for the Central London region have been used [36]. Figure 7 shows the variation in 
daily mean values of these four weather variables for the study period whereas Table 4 presents the 
stats, i.e., minimum, maximum and median values for all these weather variables. It is evident from 
Figure 7 and Table 4 that daily mean surrounding temperature in the London region remained in the 
range of −1 °C to 28 °C whereas humidity remained in the range of 81% to 100%. Peak value for 
global irradiance was 307 W/m2 and for wind velocity it was 6 m/s. The patterns of weather variables 
as shown in Figure 7 clearly suggest that there is a linear relationship among global irradiance, 
surrounding temperature and humidity whereas relationship between surrounding temperature 
and wind velocity is not strong. This relationship, among above mentioned variables, has been 
further analyzed statistically using regression analysis and discussed in Sections 2.4 and 4. 
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Figure 7. Variation in daily mean values of weather parameters [26]. 

Table 4. Statistics of weather parameters dataset. 

 
Ambient Temperature, 

(K) 
Solar Radiation 

(W/m2) 
Relative Humidity 

(%) 
Wind Speed

(m/s) 
Min 272 0 51 0 
Max 301 307 100 6 

Mean 286 79 81 2 
Median 286 52 81 2 
St. Dev. 5.92 70.45 8.91 0.97 

N 1826 1826 1826 1826 

2.2.4. Building Occupancy Data 

Another important variable that could significantly influence a building’s energy demand is its 
occupancy. Non-availability of the real occupancy data of the buildings under investigation is a 
limitation, so a proxy variable “weekday index” is therefore introduced to represent the building 
occupancy. Weekday index is used to distinguish the occupancy during the working and 
non-working days, a value of 1 for working days and 0 for non-working days (weekends and public 
holidays) is used. For this variable data of working and non-working days for years 2007 to 2011 is 
obtained from the U.K. bank calendar [37], and shown in Figure 8. 
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Figure 8. Variation in annual working and non-working days [36]. 

2.2.5. Building Type 

Building type is another important factor that may influence the building energy consumption 
and therefore, its influence on the building electricity consumption must be investigated. 
Administrative building has been assigned a dummy value of 1 whereas academic building has a 
value of 2. 

2.3. Data Normalization 

Data normalization is a process to make the values of different variables lie within similar 
ranges. Sometimes the variables values lie within different dynamic ranges and the variables with 
higher values may have higher influence on the development of a model, although these variables 
may not necessarily be significant. In such a scenario, it becomes important to normalize the data so 
that the values of variables are within similar range. In this study, the variables have been 
normalized by using their respective mean and variance values [38]: 

̅ = 1 = 1,2,3, … ,  

=	 1− 1 − ̅ 	 
= − ̅  

(1) 

where  is the ith value of kth variable, ̅  is the mean of kth variable,  is the standard 
deviation and  is the normalized value of the variable. This is a linear normalization method and 
all the new values will now have zero mean and unit variance.  

2.4. Regression Analysis 

For forecasting daily electricity usage of both buildings, MR technique has been employed 
using SPSS software. MR is a statistical tool that helps to study how multiple explanatory variables 
are co-related to a dependent variable. Once this relationship among dependent and explanatory 
variables is identified, MR could be used for the prediction of dependent variable [11].  

The multiple linear regression equation is as follows: = + + +⋯+  (2) 
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where: 

 is the predicted or expected value of the dependent variable,  
 through  are distinct explanatory or predictor variables, where n represents a 

particular variable, d represents a particular day and t represents the building type, 
 is the value of Y when all of the explanatory variables are equal to zero, and, 
 through  are the estimated regression coefficients. Each regression coefficient represents 

the change in “Y” relative to a unit change in the respective explanatory variable. 

The predictive power of a MR model could be assessed by looking at its R2 value. R2 is a 
statistical measure of how close the data are to the fitted regression line. It is also known as the 
coefficient of multiple determination for multiple regression and it ranges from 0 to 1.  

It is defined as: 

R2=1- 
∑ yobserved, i-YPredicted, i

2n
i=1∑ Yobserved, i-Yobserved, mean

2n
i=1

 (3) 

where: 

Yobserved Real value of dependent variable, 
Ypredicted Predicted value of dependent variable, 
Yobserved, mean Mean of real values of dependent variable. 

A value of R2 = 1 indicates that the fitted model explains all variations in Y, while R2 = 0 
indicates no “linear” relationship between the dependent and explanatory variables [12]. An interior 
value such as R2 = 0.72 may be interpreted as follows: “Seventy two percent of the variance in the 
dependent variable can be explained by the explanatory variables. The remaining twenty eight 
percent can be attributed to unknown, lurking variables or inherent variability”. 

One of the main checks in the MR model is the collinearity check, also known as 
multi-collinearity check among the explanatory variables as such situation can lead to ambiguous 
results that are associated with unstable estimated regression coefficients and affects the calculations 
associated to individual predictors [11,12]. Where one or more explanatory variables are collinear, 
one should be kept while others are dropped. 

3. Results and Analysis 

In this study, multiple regression method has been applied on the data for the period from 1 
January 2007 to 31 December 2010 for identification of significant and insignificant variables. Table 5 
gives the preliminary MR results and a collinearity analysis among various variables. The MR model 
suggests that all the variables except wind velocity have p-values less than 0.05 demonstrating that 
all the variables except wind velocity are significant and cannot be ignored [39]. Wind velocity 
having p-value higher than 0.05 indicates its weaker relationship with the buildings electricity 
consumption. The overall R2 value for all the variables is 0.73 which shows high relevance between 
the explanatory and the dependent variables. The collinearity analysis in Table 5 gives a picture of 
relevancy of variables among themselves. A high collinearity between any two variables suggests 
that only one of them can be used as they behave in a similar way. Table 5 demonstrates high 
collinearity (R = 0.69) between surrounding temperature and global irradiance. A similar trend is 
seen between global irradiance and relative humidity with a collinearity value −0.61 while 
surrounding temperature and relative humidity have relatively weak (−0.42) collinearity value. 
Since the surrounding temperature has a high collinearity with global irradiance and same is true for 
global irradiance and humidity. Therefore, the latter two variables (global irradiance and humidity) 
can be dropped and former (temperature) should be considered. Rest of the variables have poor 
collinearity with each other so these can also be included. Wind velocity being insignificant could be 
eliminated from further analysis. A final modified MR model is presented in Table 6. The model’s 
equation for predicting daily electricity usage (Wh/m2) of the administrative or academic building is 
given by Equation (4): 
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Ed = 323.62 − 21.87x1 + 67.49x5 − 6.37x6 (4) 

which implies that Ed = f (x1, x5, x6), where x1 = Daily mean normalized surrounding temperature;  
x5 = Normalized Weekday Index; x6 = Normalized Building type  

The MR model equation clearly demonstrates that there is a negative linear relationship among 
daily electricity consumption and surrounding temperature. This is true as high temperature will 
reduce heating demand of the buildings which means heating equipment and its accessories such as 
pumps, air handling units (AHUs) etc. will not run thus resulting in decrease in daily electricity 
consumption. It also suggests that daily electricity consumption on a working day will exceed by 
145.3 Wh/m2 than that on a non-working day.  

Table 5. Preliminary MR Model and Collinearity Analysis.  

Multiple 
Regression 

Model 
 Coefficients Standard 

Error t-Stat p-Value 

Preliminary 
MR Model  

Intercept 323.62 0.80 404.58 323.62 
Surrounding Temperature, x1 −15.29 1.10 −13.80 <0.05 

Global Irradiance, x2 −10.90 1.27 −8.58 <0.05 
Relative Humidity, x3 −2.30 1.01 −2.27 <0.05 

Wind Velocity, x4 −2.17 0.81 −2.69 >0.05 
Weekday Index 1, x5 67.47 0.81 84.31 <0.05 
Building type 2, x6 −6.37 0.80 −7.96 <0.05 

Regression Analysis 
Multiple R: 0.85 

Adjusted R2: 0.73 
Standard Error: 43.24 

Collinearity Analysis
 Y x1 x2 x3 x4 x5 x6 
Y 1.00 −0.25 −0.23 0.13 −0.03 0.81 −0.08 
x1 −0.25 1.00 0.69 −0.42 −0.01 0.02 0.00 
x2 0.81 0.02 0.01 0.00 −0.01 1.00 0.00 
x3 −0.08 0.00 0.00 0.00 0.00 0.00 1.00 
x4 −0.23 0.69 1.00 −0.61 −0.02 0.01 0.00 
x5 0.13 −0.42 −0.61 1.00 −0.09 0.00 0.00 
x6 −0.03 −0.01 −0.02 −0.09 1.00 −0.01 0.00 

1 Weekday Index has a value of “1” for a working day and “0” for a non-working day; 2 Building type 
has a value of “1” for office building and a value of “2” for academic building. 

Table 6. Proposed MR Model for Administration and Academic Buildings. 

Multiple 
Regression Model  Coefficients 

Standard 
Error t-Stat p-Value 

Final Proposed MR 
Model 

Intercept 323.62 0.81 399.4 <0.05 
Surrounding Temperature, x1 −21.87 0.81 −26.98 <0.05 

Weekday Index, x5 67.49 0.81 83.24 <0.05 
Building type, x6 −6.37 0.81 −7.86 <0.05 

Regression Analysis 

Multiple R: 0.85 
R2: 0.72 

Adjusted R2: 0.72 
Standard Error: 43.84 

The proposed model has R2 value of 0.72 (the preliminary model had 0.73), demonstrating that 
the predictive power of model has not changed much after dropping three variables. Therefore, from 
the R2 analysis, it is obvious that the proposed model is an effective predictive model. By putting the 
values of surrounding temperature, building type and weekday index, one could easily forecast 
daily electricity usage of their buildings and could prepare a reliable energy budget forecast. This 
model equation has been tested to predict electricity consumption of the same two buildings for the 
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period 1 January 2011 to 31 December 2011. Later, this forecasted electricity consumption has been 
compared with real daily electricity consumption of the two buildings for the same period and it is 
discussed in next section.  

4. Discussion 

This section presents the model testing and its validation and finally discusses the error 
analysis. By inputting the real values of daily mean surrounding temperature, building type and 
weekday index in Equation (3) for the study period, daily electricity usage for both buildings have 
been forecasted. The predicted values of daily electricity usage were compared with the real daily 
electricity usage of both buildings.  

Table 7 demonstrates the comparison between real and forecasted daily electricity usage by 
using various statistical variables. It is clear from Table 7 that the difference between Max, Mean and 
Median values of real and predicted consumption for both the buildings is less than −5%. This 
authenticates the forecasting accuracy of the proposed model. Only in the case of ”minimum value”, 
the difference between real and forecasted values is somewhat considerable i.e., −12% and −10% for 
administrative and academic buildings respectively which shows that the base energy consumption 
values have dropped slightly. Overall, the difference between maximum, mean and median values 
of real and predicted electricity consumption for both buildings is negative which shows decrease in 
real energy consumption and demonstrates the improvement in energy ratings of both buildings.  

Table 7. Statistics of real and forecasted electricity consumption (Wh/m2) for year 2011. 

 
Office Building Academic Building 

Real Forecast Difference Real Forecast Difference 
Min 155 181 −17% 158 168 −6% 
Max 426 423 1% 390 410 −5% 

Mean 311 330 −6% 299 317 −6% 
Median 347 359 −3% 321 346 −8% 

N 365 365  365 365  

Figure 9 presents a comparison between the real and predicted daily electricity usage (Wh/m2) 
in the form of box plots. This figure endorses the earlier results that the predicted energy consumption 
values are slightly higher than the real values.  

 
Figure 9. Box plot comparison of real and predicted daily electricity consumption of two types of 
buildings. 
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4.1. Error Analysis of the Proposed MR Model 

The proposed MR model has been assessed on the basis of the following two errors: 

(i) NRMSE 

The RMSE is a measure of the difference between values predicted/modelled and real values of 
the dependent variable. It is given by: 

= ∑ , − ,  (5) 

RMSE is further normalized by dividing with the range of observed data as shown in Equation (6): = , − ,  (6) 

(ii) Mean Absolute Percentage Error (MAPE) 

This error is given by Equation (7): 

% = 100 , − ,  (7) 

where Yobs,i is the real value of daily electricity usage and Ypredicted,i is its forecasted value. Index “n” 
represents total number of observations.  

Table 8 shows the error values and error % for both buildings. It is apparent that the model 
demonstrates promising results with a NRMSE of 12% and 13% for the administrative and academic 
building respectively. Similarly, the model offers a MAPE of 8.58% and 9.76% for administrative and 
academic buildings respectively. In both error analyses, the model performs slightly better for the 
administrative building compared to the academic building, however, the difference of error for 
predicting electricity consumption for two building types is minimal, i.e., 1%.  

Table 8. Error comparison of MR model. 

Error Type Office Building Academic Building
RMSE 31 Wh/m2 33.5 Wh/m2 

NRMSE  12.3% 13% 
MAPE 8.58% 9.76% 

4.2. Limitations of the Proposed MR Model 

The followings are the major limitations of this study: 

(i) In order for the model to behave correctly in future, the weights may need to be calculated 
again with new data. Since the MR method is fairly simple and quick, the weights may be 
calculated even every day (by adding yesterday’s data to previous data) and the model with 
new weights can be used to forecast energy consumptions of the following days. 

(ii) No real data was available for buildings occupancy and therefore, a proxy variable, i.e., 
weekday index has been used in order to compensate the effect of occupancy. Additional 
enhancement may be made in this model as long as occupancy data is on hands. 

(iii) Due to unavailability of data for similar types of buildings, this model has not been used to 
forecast daily electricity usage of any other similar buildings in the UK. Testing this model for 
similar buildings may open a window for further improvement. 

(iv) The model will work well provided the operating conditions remain same in the future. Any 
future change in building fabric, its operating schedule, equipment efficiency will require the 
revision of this model under new conditions. 
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5. Conclusions 

In this study, we have developed a simple and reliable mathematical model for daily electricity 
usage forecasting for two major types of HE sector buildings. MR technique has been employed for 
the first time for development of a single electricity consumption forecasting model of two different 
types of buildings. Historical data of daily electricity usage of two buildings of London South Bank 
University have been regressed over normalized data of six variables, i.e., surrounding temperature, 
global irradiance, humidity, wind velocity, building type and, a proxy variable for building’s 
occupancy i.e., weekday index. The results of preliminary regression analysis have showed that 
except wind velocity which was dropped all other variables were found to be significant. It was also 
found that global irradiance and humidity have high co-linearity with surrounding temperature, 
therefore, these two variables were eliminated.  

The model has been tested against real daily electricity consumption data of the same two 
subject buildings for year 2011 and it was found that the difference between real and predicted 
statistical values (max, mean, and median) was less than 8% which demonstrates the effectiveness of 
the proposed model. Moreover, NRMSE are observed to be low for the two buildings (i.e., 12% for 
administrative building and 13% for academic building) which further strengthens the effectiveness 
of the proposed model.  
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