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Abstract: Environmental regulations are the key measure by which governments achieve sustainable
environmental and economic development. This study aimed to determine the direct and indirect
impacts of environmental regulations on total factor energy efficiency of regions in China.
Since regions have different levels of economic development and resource endowment, we used the
slacks-based measure (SBM)-undesirable model to calculate total factor energy efficiency considering
regional technology heterogeneity and examined the regional impacts of environmental regulation
on this efficiency using the Tobit regression model. A positive direct impact was generated in the
eastern region of China by the forced mechanism, which forced enterprises to reduce fossil fuel energy
demand and increase clean energy consumption; whereas a negative direct impact was generated
in the middle and western regions owing to the green paradox, which is the observation that
expected stringent environmental regulation prompts energy owners to accelerate resource extraction.
Moreover, indirect impacts through technological progress and foreign direct investment were taken
into account in the model, and the results show that the indirect impacts vary across regions. A logical
response to these findings would be to develop different policies for different regions.

Keywords: environmental regulation; energy efficiency; regional differences; direct impact;
indirect impact

1. Introduction

Since its reform and opening up to the outside world, China has been in the process of accelerating
industrialization and urbanization, and it has achieved remarkable results. However, it is undeniable
that this kind of high-speed growth is based on high energy consumption. China’s energy consumption
increased from 571,440,000 tons of standard coal in 1978 to 4,300,000,000 tons of standard coal in
2015, which has had huge environmental consequences. This extensive economic growth not only
deteriorates the environment, but also restricts future sustainable development of China’s economy
and society. As the world’s largest consumer of energy, it is imperative for China to implement
an energy efficiency strategy to meet the needs of its own development and the requirements of
the international community. Thus, determining how China’s environmental regulation affects its
energy efficiency and exploring a balanced development model of energy efficiency improvement and
environmental protection have both abstract and practical implications.

Research on energy efficiency can be divided into two categories. Earlier literature focused on
single factor energy efficiency, such as unit GDP energy consumption [1,2] or energy intensity [3,4].
Single factor energy efficiency is easy to understand and convenient to calculate, but it has many
problems. For example, unit GDP energy consumption cannot reflect the energy efficiency differences
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among different industries. In addition, these kinds of indicators ignore the substitution effect of
capital, labor, and other production factors on energy input. In view of these shortcomings, the study
of the concept and index of total factor energy efficiency (TFEE) emerged [5]. The TFEE concept
proposed by Hu & Wang [6] is defined as the ratio of target energy input to actual input when other
factors remain unchanged under the best production practice. It can be measured by different methods,
one of which is the parameter method, represented by stochastic frontier analysis (SFA) [7,8], and the
other is the nonparameter method, represented by data envelope analysis (DEA) [9,10]. Throughout
the empirical literature on the two types of methods, empirical studies using the DEA method account
for the majority of studies [11,12]; and only a few have used SFA method to calculate TFEE.

The key to using the DEA method is the selection of inputs and outputs. Traditional DEA models
are assumed to be a set of outputs, and the inputs and outputs have strong disposability. Producers
expect outputs to be beneficial; however, the actual production process may have undesirable outputs.
These undesirable outputs must be minimized to achieve the highest economic efficiency, but the
traditional DEA method can only increase them, which is contrary to the original intention of efficiency
evaluation. To use the DEA method to measure economic efficiency with undesirable outputs, some
scholars have extended or altered methodology. Pittman et al. [13] dealt with undesirable outputs as
shadow prices. Fare et al. [14] proposed a non-linear programming approach for addressing pollution
variables using the concept of weak disposability, but the non-linear programming is extremely
inconvenient to use. Hailu & Veeman [15] treated undesirable outputs as inputs, which minimized the
undesirable outputs but was not consistent with the actual production process. Seiford & Zhu [16]
multiplied the undesirable outputs by −1 and then searched for the appropriate transition vector to
convert the negative undesirable outputs to positive values. This method added a strong convexity
constraint, so it can only be solved in the case of variable returns to scale. Once the constraint is canceled,
the linear programming may be unsolvable. Fare et al. [17] later proposed a directional distance
function from the output angle, which solved the problems of efficiency evaluation with undesirable
outputs. However, this method still belonged to the radial and output angle measurement in DEA
models, without fully considering the relaxation of inputs and outputs. Consequently, Tone [18,19]
proposed a non-radial and non-oriented slacks-based measure (SBM) approach to solve this problem.
Compared with the traditional DEA model, the SBM model directly puts slack variables into the
objective function, which addresses the problems of undesirable outputs and relaxation at the same
time. In addition, the SBM model can avoid the deviation of different radial and angle selections and
is more effective than other models.

Due to the presence of negative externalities, greenhouse gases and toxic pollutants generated
during energy use can lead to deterioration of environmental quality, a phenomenon caused mainly
by market failure. According to the Coase theorem [20], governments must formulate corresponding
policies and measures to mediate the interests of stakeholders in order to achieve coordinated
development of environment and economy [21]. Theoretical studies have shown that environmental
regulation by governments can influence the performance of enterprises, but the type of impact is
debated. On one hand, environmental regulations force companies to pay a portion of the funds
needed for controlling pollutants, resulting in increased production costs and consequently reduced
production efficiency. On the other hand, reasonable environmental regulation produces a forcing
mechanism that encourages enterprises to innovate, not only to offset the negative impact of rising
costs, but also to promote technological progress, thereby enhancing production efficiency. Most early
scholars supported the former effect [22,23], but recent studies have supported the latter [24,25].

Just how environmental regulation affects TFEE is not yet clear, but researchers do agree that the
effects are both direct and indirect. As energy from fossil fuels is unsustainable and the pollution caused
by industrial activities has external diseconomy, the government regulates the production and business
activities of manufacturers through sewage permits, administrative penalties, and emission taxes to
achieve sustainable development of the environment and economy [26]. These regulatory measures
increase the manufacturers’ production and environmental costs, and then reduce energy demand.
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Therefore, because the purpose of environmental regulation policy is to protect the environment,
the expected direct effect of environmental regulation on TFEE is positive. However, good intentions
do not always lead to good behavior. The green paradox [27], which originates from the dynamic
response of the supply side, may also result from environmental regulation. Energy owners expect
more stringent environmental regulations and so mine more energy in the short term, which leads to a
decrease in current energy prices. The lower energy prices stimulate an increase in energy demand,
which has a negative impact on TFEE.

Environmental regulation not only has a direct impact on TFEE through energy demand and
supply, but also has an indirect impact on TFEE through technological progress and foreign direct
investment. Environmental regulations have positive compensation and negative offset effects
on technological progress. The positive compensation effect, known as the “Porter hypothesis”
effect [28], refers to the fact that appropriate environmental regulation can stimulate the innovation
compensation effect. Thus, regulation can not only make up for an enterprise’s compliance costs,
but can also improve its productivity and competitiveness. Therefore, environmental regulation
encourages the upgrading of production technology and environmental protection technology, thereby
enhancing TFEE. However, environmental regulation may increase pollution control costs, which can
restrict research and development investment, a situation not conducive to environmental technology
innovation. Therefore, regulation also has a negative effect on TFEE: the “compliance cost” effect [29].
In addition, Saunders [30] formally proposed the concept of the “rebound effect”, based on the research
of Khazzoom [31] and Brookes [32]. The meaning of this effect is that technological progress can
improve energy efficiency and reduce energy consumption, but that technological progress can also
contribute to economic growth and create new demand for energy, partially or even completely
offsetting the energy savings. This rebound effect cannot be negligible in empirical analysis.

Environmental regulation affects the technology spillover effect, absorptive capacity, and capital
accumulation effect of foreign direct investment [33]. It increases the cost of foreign-funded enterprises
and restricts research and development investment, neither of which is conducive to the spread of
advanced technology. Secondly, domestic enterprises need strong learning ability and absorptive
capacity to take advantage of foreign technology spillovers. Environmental regulation increases
pollution control costs, thus weakening the absorptive capacity. Finally, because environmental
regulation affects the choice of foreign direct investment location, stringent environmental regulation
hinders the inflow of foreign direct investment, resulting in a decline in the capital stock of host
countries. This is detrimental to reducing energy intensity and enhancing energy efficiency. At the same
time, the impact of foreign direct investment on TFEE also plays the dual role of “angel” and “devil,”
which may manifest as the “pollution aura” or “pollution heaven” [34]. As a result, environmental
regulation indirectly affects TFEE. The “pollution aura” effect suggests that foreign-funded enterprises
with advanced technology can spread greener and cleaner production technologies to host countries,
enhancing their levels of environmental protection and thereby contributing to TFEE. To the contrary,
the “pollution heaven” effect suggests that relatively liberal environmental policies and the absence
of policy enforcement capacities in developing countries give them a comparative advantage in
polluting-intensive industries. Developed countries may shift pollution-intensive industries to
developing countries, thereby producing a negative impact on TFEE.

The region involved and the variables selected are known to influence empirical analysis
on TFEE and environmental regulation, but few studies to date have acknowledged the regional
differences and the indirect impact. This paper makes the following contributions to knowledge.
First, considering environmental factors, undesirable outputs are incorporated into the energy
efficiency calculation. Due to different levels of economic development and resource endowment,
we divide China into three regions-the eastern, middle, and western-and analyze TFEE under different
frontiers. Second, this paper uses the ratio of pollution control investment in GDP to measure the
intensity of environmental regulation, thus taking full account of the total economic output of regions.
Additionally, both the direct and indirect impacts of environmental regulation on TFEE are taken
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into account in the empirical analysis. Third, with respect to the disparities among different regions,
we explore how the regionally different impacts of environmental regulation on TFEE promote policies
targeting different regions.

The rest of this paper is organized as follows. Section 2 includes three calculation models. Section 3
describes the process of calculating TFEE and analyzes it under different frontiers. Section 4 discusses
the different regional impacts of environmental regulation on TFEE, and Section 5 concludes this paper
and discusses policy implications.

2. Methodology

2.1. Meta-Frontier and Group Frontier Production Function

To measure the TFEE of provinces in China while considering regional technology heterogeneity,
we assume that there are n decision making units (DMUs) representing the provinces in the production
system. We suppose that there are inputs x ∈ Rm, desirable outputs yg ∈ Rs1 , and undesirable outputs
yb ∈ Rs2 in every DMU, and m, s1 and s2 stand for the number of factors for inputs, desirable outputs
and undesirable outputs, respectively. We define the matrices X, Yg, and Yb as follows.

X = [x1, · · · , xn] ∈ Rm×n, Yg =
[
yg

1 , · · · , yg
n

]
∈ Rs1×n, and Yb =

[
yb

1, · · · , yb
n

]
∈ Rs2×n.

In addition, X > 0, Yg > 0, and Yb > 0. Notice that xn is the inputs of the n-th DMU; yg
n is the

desirable outputs of the n-th DMU; yb
n is the undesirable outputs of the n-th DMU.

Different DMUs may have different technology sets because they have varying levels of economic
development and resource endowments. With this understanding, O’Donnell [35] devised the common
meta-frontier and group frontier (Figure 1), and respectively defined the meta-technology (Tmeta) and
meta-frontier production (Pmeta) possibility sets as follows.

Tmeta =
{(

x, yg, yb
)

: x can produce
(

yg, yb
) }

, (1)

Pmeta =
{(

x, yg, yb
)∣∣∣x ≥ Xλ, yg ≤ Ygλ, yb ≥ Ybλ, λ ≥ 0

}
(2)

where x, yg, yb are inputs, desirable outputs and undesirable outputs in DMUs, respectively;
Tmeta indicates the specific technologies of the meta-frontier; Pmeta is the production possibility set of
meta-frontier; λ ∈ Rn is the intensity vector.

The meta-frontier production possibility set satisfies Brannlund et al.’s [36] regularity properties.
Consequently, the meta-technology TFEE (MTFEE) equates to the meta-distance function (Dmeta),
which is defined as:

Dmeta
(

x, yg, yb
)
= infθ

{
θ > 0 :

(
yg

θ

)
∈ Pmeta,

(
yb

θ

)
∈ Pmeta

}
, (3)

where θ is the distance between outputs and the meta-frontier. Dmeta can be calculated using Equation (13)
with the data from all groups (ρ∗meta), thus:

MTFEE = Dmeta
(

x, yg, yb
)
= ρ∗meta. (4)

The DMU is efficient under the meta-production frontier when and only when ρ∗meta = 1.
For the group frontier, the group technology (Tl) and group frontier production (Pl) possibility

sets are defined as the following:

Tl =
{(

x, yg, yb
)

: x used by DMUs in group l can produce
(

yg, yb
) }

, (5)

Pl =
{(

xl , ygl,ybl
)
|xl ≥ Xlλ, ygl ≤ Yglλ, ybl ≥ Yblλ, λ ≥ 0

}
(6)
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where l = 1, 2, · · · , L, L is the number of groups classified by special standards (L > 1) and xl , ygl , ybl

are inputs, desirable outputs, and undesirable outputs in group l, respectively. Tl indicates the specific
technologies of group l; Pl is the production possibility set of group l; λ ∈ Rn is the intensity vector.

Group TFEE (GTFEE) can be measured by the group distance function (Dl), which is defined as:

Dl
(

x, yg, yb
)
= infθ

{
θ > 0 :

(
yg

θ

)
∈ Pl ,

(
yb

θ

)
∈ Pl

}
, (7)

where θ is the distance between outputs and the frontier of group l. Dl can be calculated by Equation (11)
with the data from group l (ρ∗l), thus:

GTFEE = Dl
(

x, yg, yb
)
= ρ∗l . (8)

The DMU is efficient under the group production frontier when and only when ρ∗l = 1.
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The technology gap ratio (TGR) describes the gap between the group production frontier and the
meta-production frontier, and is defined as

TGR
(

x, yg, yb
)
=

MTFEE
(

x, yg, yb
)

GTFEE
(

x, yg, yb
) =

ρmeta

ρl (9)

Because Dl(x, y) ≥ Dmeta(x, y), 0 ≤ TGR(x, y) ≤ 1, the group production technology grows
closer to the potential optimal level as the TGR becomes larger, and vice versa.

The average MTFEE of the l-th group (MTFEEl) is defined as

MTFEEl =
∑Ll

i=1 MTFEEl
i

Ll (10)

The average GTFEE of the l-th group (GTFEEl) is defined as

GTFEEl =
∑Ll

i=1 GTFEEl
i

Ll (11)

The average meta-technology ratio of the l-th group (TGRl) is defined as

TGRl =
∑Ll

i=1 TGRl
i

Ll (12)



Energies 2017, 10, 1578 6 of 17

In the equations above, Ll is the number of DMUs in group l, MTFEEl
i is the MTFEE of the i-th

DMU in group l, GTFEEl
i is the GTE of the ith DMU in group l, and TGRl

i is TGR of the ith DMU in
group l.

2.2. SBM-Undesirable Model

A variety of DEA models are available for solving the meta-frontier and group frontier production
function. The traditional DEA model needs to be modified if undesirable outputs are included.
Tone [18] proposed the non-radial and non-oriented SBM approach to calculate the efficiency.
In keeping with the constant returns to scale condition of this definition, the SBM has been adapted
thus [19]:

ρ∗ = min
1− 1

m ∑m
i=1

s−i
xi

1 + 1
s1+s2

(
∑s1

r=1
sg

r
yg

r
+ ∑s2

r=1
sb

r
yb

r

) (13)

Subject to
x = Xλ + s− (14)

yg = Ygλ− sg (15)

yb = Ybλ + sb (16)

s− ≥ 0, sg ≥ 0, sb ≥ 0, λ ≥ 0 (17)

where s− ∈ Rm and sb ∈ Rs2 correspond to excesses of inputs and bad outputs, and sg ∈ Rs1

expresses shortages of good outputs. Let an optimal solution of the above program be
(

λ∗, s−∗, sg∗, sb∗
)

.

Then, we have: the DMU is efficient if and only if ρ∗ = 1, i.e., s−∗ = 0, sg∗ = 0, and sb∗ = 0. The DMU
is inefficient if ρ∗ < 1, and it can reach the production frontier by decreasing inputs, increasing
desirable outputs, and reducing undesirable outputs.

2.3. Tobit Regression Model

Multivariate analysis models can be used to determine to what degree China’s TFEE is affected by
environmental regulation. As mentioned, TFEE is generally left-censored at zero and right-censored
at one. The Tobit regression model, first proposed by James Tobin [37], is a convenient method for
calculating censored data [38]. The principle of maximum likelihood estimation is used to get the
consistent parameter estimation. The Tobit panel regression model for evaluating the impact of China’s
environmental regulation on TFEE is as follows:

TFEE∗it = β0 + ∑ αiZit + εit ∼ N(0, σ2), i = 1, 2, · · · , n, (18)

TFEEit =


TFEE∗it, i f < TFEEit ≤ 1
0, i f TFEEit > 1
0, i f TFEEit < 0

(19)

where i represents for the i-th DMU, t stands for the year, TFEE∗it is a latent (i.e., unobservable)
variable, Zit is the matrix that stands for independent variables, εit is the stochastic error and submits
to N(0, σ2).

3. Total Factor Energy Efficiency

3.1. Sample, Variables, and Data

In this paper, we focus on the TFEE of 30 provinces, municipalities, and autonomous regions
in China during 2006 to 2015. Due to a lack of data, Tibet, Hong Kong, Macao, and Taiwan were
not included. A total of 300 samples are divided into three groups, eastern, middle, and western



Energies 2017, 10, 1578 7 of 17

regions, to evaluate the differences of TFEE under different technical levels. The eastern region has
gentle terrain and superior geographical position, and plays the leading role in the entire economic
development. The middle region is located in the inland with rich energy resources, and has a good
foundation of heavy industry. The western region is vast in territory and complex in topography.
Economic development level of this region is backward; however, it has great potential for development
because of rich mineral resources. The numbers of samples in the eastern, middle, and western regions
are 110, 80, and 110, respectively. The groupings of China’s provinces are shown in Table 1.

Table 1. Groupings of China’s provinces.

Eastern Region (i = 1) Middle Region (i = 2) Western Region (i = 3)

j Provinces j Provinces j Provinces
1 Beijing 1 Shanxi 1 Neimenggu
2 Tianjin 2 Jilin 2 Guangxi
3 Hebei 3 Heilongjiang 3 Chongqing
4 Liaoning 4 Anhui 4 Sichuang
5 Shanghai 5 Jiangxi 5 Guizhou
6 Jiangsu 6 Henan 6 Yunnan
7 Zhejiang 7 Hubei 7 Shanxi
8 Fujian 8 Hunan 8 Gansu
9 Shandong 9 Qinghai

10 Guangdong 10 Ningxia
11 Hainan 11 Xinjiang

The classic Cobb-Douglas production function takes labor and capital as inputs of production [39].
In recent years, many researchers, like Inglesi-Lotz, Papageorgiou and Reynes, regarded energy as a
factor of production [40–42] due to the increase in energy demand. Therefore, labor, capital and energy
are taken as the input factors, and real GDP is selected as the desirable output. The reason why we take
SO2 emission and chemical oxygen demand as the undesirable outputs is that they are the two most
important controlling pollutants in China’s industrial system. Because the SBM-undesirable model we
have chosen is used in evaluation of the DMUs with multi-inputs and multi-outputs, and includes
limited information of the DMUs. The indicators selected are not involved in all the influencing factors
in regional economic activities. Other information of the DMUs like their types of businesses, prices
of steel and import and export of goods can also have impacts on the TFEE. The 30 provinces panel
data come from the China Statistical Yearbook (2005–2016), China Energy Statistical Yearbook (2005–2016),
and China Environment Yearbook (2005–2016). The descriptions of indicators for evaluating TFEE are
shown in Table 2:

(1). Labor input is represented by labor force consumption, i.e., by the average employment figure in
provinces at the beginning and end of the year.

(2). Capital input is represented by capital consumption in provinces. There is no capital stock as
official data in the China Yearbooks, so we converted the capital stock data into the 2005 constant
price by using Zhang et al.’s [43] perpetual inventory method.

(3). Energy input is represented by energy consumption in standard coal units.
(4). Desirable output is represented by the real GDP of each province, calculated as constant prices

for 2005 according to the GDP deflator conversion.
(5). Undesirable outputs contain SO2 emissions and chemical oxygen demand, both in units of

10,000 tons.
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Table 2. Indicators for evaluating total factor energy efficiency (TFEE).

Category Variable Unit

Inputs (x)
Labor force consumption 10,000 persons

Capital consumption 100 million Yuan
Energy consumption 10,000 tons of SCE

Desirable output (yg) Gross domestic product 100 million Yuan

Undesirable outputs (yb)
SO2 emission 10,000 tons

Chemical oxygen demand 10,000 tons

3.2. Total Factor Energy Efficiency (TFEE) under Different Frontiers

According to the Equations (1)–(8), (13) and data proposed above, this section applies STATA,
which is a data analysis and statistical software, to calculate the TFEE under different frontiers from
the 30 provinces in China from 2006 to 2015. The data for the average total factor efficiency of the
provinces under two different frontiers is shown in Table 3 and the TGR is shown in Table 4.

Under the group frontier, from 2006 to 2015, the average total factor energy efficiencies of the three
regions are 0.800, 1.000, and 0.919, respectively. The middle region is the best performer, and the eastern
region is the worst. The average values imply that the three regions can improve TFEE by 20%, 0,
and 8.1%, respectively, if all within-region provinces practice on the group frontier. In the eastern region,
TFEE of the provinces ranges from 0.399 to 1.000. Four of the provinces, Beijing, Tianjin, Guangdong,
and Hainan, reach the frontier. However, Hebei, Liaoning, Fujian, Zhejiang, and Shandong perform
worse, with values below the average level of the eastern region. Particularly, Hebei Province has
the lowest value due to its unreasonable energy usage and severe contamination [44]. One the other
hand, Hebei Province has the greatest potential to improve its energy usage level. In the middle region,
the TFEE of all provinces operates on the boundary of the group frontier, thus indicating that the
middle region has no potential to improve its TFEE. In the western region, TFEE of the provinces ranges
from 0.764 to 0.868. More than half of the provinces in the western region have reached the group
frontier, including Neimenggu, Guangxi, Chongqing, Sichuang, Shanxi, and Qinghai. The remaining
provinces perform better as their TFEE is not much lower than the unit value.

Under the meta-frontier, from 2006 to 2015, the average total factor energy efficiencies of the three
regions are 0.796, 0.422, and 0.490, respectively. The eastern region performs much better than the
middle and western regions. The average values mean that if all provinces in China practice best on
the meta-frontier, the three regions can improve their TFEE by 20.4%, 57.8%, and 51.0%, respectively.
In the eastern region, the TFEE of provinces also ranges, from 0.399 to 1.000. Three provinces, Beijing,
Guangdong, and Hainan, reach the unit value. Compared to the condition of the group frontier,
the TFEE of Tianjin changes, from 1 to 0.952, indicating that Tianjin has the potential to improve its
TFEE by 4.8%. The middle region has the worst performance under the meta-frontier. In the middle
region, the TFEE of each province is below 0.500, significantly lower than the value under the group
frontier. Although these provinces behave best under the group frontier, they still have a big gap
compared with the provinces in other regions. Hunan, Hubei, Anhui, Heilongjiang, and Jiangxi
perform better than the average level. Shanxi has the worst performance, with a value of 0.350. In the
western region, the TFEE is significantly lower than the value under the group frontier. Only one
province, Qinghai, reaches the meta-frontier, and more than half of the provinces perform worse
than the average level. Only the results for Qinghai and Ningxia, are better than the average level;
their TFEE is greater than that of other provinces in the western region.
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Table 3. Average TFEE of provinces under the two different frontiers.

Eastern
Region

Group
Frontier Meta-Frontier Middle

Region
Group

Frontier Meta-Frontier Western
Region

Group
Frontier Meta-Frontier

Beijing 1.000 1.000 Shanxi 1.000 0.350 Neimenggu 1.000 0.388
Tianjin 1.000 0.952 Jilin 1.000 0.390 Guangxi 1.000 0.444
Hebei 0.399 0.399 Heilongjiang 1.000 0.441 Chongqing 1.000 0.443

Liaoning 0.439 0.439 Anhui 1.000 0.450 Sichuang 1.000 0.398
Shanghai 0.978 0.978 Jiangxi 1.000 0.438 Guizhou 0.836 0.364
Jiangsu 0.912 0.912 Henan 1.000 0.400 Yunnan 0.797 0.489

Zhejiang 0.750 0.750 Hubei 1.000 0.452 Shanxi 1.000 0.425
Fujian 0.549 0.549 Hunan 1.000 0.455 Gansu 0.868 0.391

Shandong 0.778 0.778 Qinghai 1.000 1.000
Guangdong 1.000 1.000 Ningxia 0.846 0.664

Hainan 1.000 1.000 Xinjiang 0.764 0.385
Average 0.800 0.796 1.000 0.422 0.919 0.490

We calculate the technology gap ratio (TGR) according to Equations (1)–(13). The average TGR
values of the three regions are 0.996, 0.422, and 0.541, respectively, which are less than 1. The results
indicate that TFEE gaps between the group production frontier and the meta-production frontier
exist. Only the eastern region has a TGR value close to 1, which means that energy use in this region
is relatively reasonable. This value is a result of advanced energy-use technology. The middle and
western regions are significantly behind the eastern region in TGR. A large TFEE gap exists between
the group production frontier and the meta-production frontier in these two regions. In the middle
region, the TGR value of each province is below 0.5, because the provinces in this region do not
have advanced energy-use technology. In the western region, although the average value of TGR is
not high, two provinces, Qinghai and Ningxia, have relatively high TGRs, which are much higher
than those of the other provinces. In summary, levels of energy use technology among the regions
are imbalanced. The eastern region has gradually developed advanced technology in the process of
economic development. As energy output regions and industry receiving regions, the middle and
western regions have been facing the “resource curse” problem [45] and have not improved the level
of energy use technology.

Table 4. Average technology gap ratio (TGR) of provinces.

Eastern Region TGR Middle Region TGR Western Region TGR

Beijing 1.000 Shanxi 0.350 Neimenggu 0.388
Tianjin 0.952 Jilin 0.390 Guangxi 0.444
Hebei 1.000 Heilongjiang 0.441 Chongqing 0.443

Liaoning 1.000 Anhui 0.450 Sichuang 0.398
Shanghai 1.000 Jiangxi 0.438 Guizhou 0.459
Jiangsu 1.000 Henan 0.400 Yunnan 0.599

Zhejiang 1.000 Hubei 0.452 Shanxi 0.425
Fujian 1.000 Hunan 0.455 Gansu 0.464

Shandong 1.000 Qinghai 1.000
Guangdong 1.000 Ningxia 0.804

Hainan 1.000 Xinjiang 0.531
Average 0.996 0.422 0.541

The above 30 provinces are divided into three regions. As shown in Figure 2, the total factor
efficiency of the eastern region under the meta-frontier has the highest level, higher than the national
average. The western region is second, and slightly lower than the national average. The middle region
has the worst performance, which is significantly lower than the performance of both the eastern
region and the national average. The TFEE under the meta-frontier has decreased slowly over the
years, which is not a positive trend as the level of energy use in each region has not improved over
time. Setting a period of five years as a timeframe, the TFEE under the meta-frontier of the eastern
region increased steadily in the first five years, reached a peak in 2010, but then decreased quickly.
The middle region showed a considerable decrease over the first five years, and then continued to
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decrease gradually. The western region showed fluctuating values over the first five years, but values
decreased in the second five years. Overall, the TFEE under the meta-frontier of the regions during the
Eleventh Five-Year Plan is better than that during the Twelfth Five-Year Plan. This downward trend
does not match with China’s rapid macroeconomic growth during these ten years.

As shown in Figure 3, the total factor efficiency of the middle region under the group frontier is
the highest, slightly higher than the national average. The western region has the second highest level
similar to the national average. The eastern region ranks last and stands apart from the middle region,
western region, and the national average. The TFEE under the group frontier generally remained stable
over the years. The results show rapid growth from 2009 to 2010, with a peak and also a turning point
occurring in 2010. Since that year, the TFEE has remained steady. Over the years, the TFEE for almost
all of the regions was between 0.8 and 1. In each region, the performance of the provinces was steady
and close to the group technology boundary. Overall, during the ten years, there was not much change
of the TFEE of the regions under the group frontier. The performance of regions during the Twelfth
Five-Year Plan is no better than that during the Eleventh Five-Year Plan. Economic development over
time did not result in an improvement of TFEE under the group frontier.
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Figure 3. Total factor energy efficiency under the group frontier (GTFEE) of three regions during 2006–2015.

The different regions have different technical gaps due to the unbalanced levels of economic
development. As shown in Figure 4, the eastern region TGR ranks first, with values significantly
higher than the national average and the western and middle regions. It is very steady and close to
1, which means that the eastern region has had stable and advanced energy-use technology over the
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two five-year plans. The western region TGR has the second highest level, slightly lower than the
national average. It decreased obviously during the Eleventh Five-Year Plan and reached its lowest
point in 2010. During these five years, the technology gap between the group production frontier
and the meta-production frontier of the western region expanded gradually. The technology level
gap between the western region and the eastern region also expanded through this time. During the
Twelfth Five-Year Plan, the western region TGR increased slightly, but did not reach the previous
highest point. Although the gap between the group production frontier and the meta-production
frontier of the western region narrowed gradually, the level of advanced technology had not been
improved. Among all the regions, the TGR of the middle region had the lowest level during the past
ten years. This indicates that the middle region had the largest gap between the group production
frontier and the meta-production frontier and therefore that the middle region had the most backward
technical level among these three regions.
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4. Empirical Analysis

4.1. Selection of Influencing Factors

In studies of environmental regulation (ER), scholars have identified three relevant indicators,
which are mainly as follows [46–48]: (1) the number of policies and regulations promulgated by
regulatory agencies; (2) the compliance rate of pollutant discharge under regulation; and (3) the
pollution control expenditure. We are more inclined to use pollution control expenditure to measure
the intensity of environmental regulation because pollution control expenditure is positively related to
the intensity of environmental regulation and the investment in pollution control in the provinces is
available. In the actual calculation, we use the ratio of pollution control investment in GDP to measure
the intensity of environmental regulation. This approach takes full account of the total economic
output of the regions and provinces, and thus is more consistent with theoretical logic. Compared with
other regions and provinces, a relatively smaller pollution control investment cannot directly explain
why the region’s or province’s environmental regulation is looser. However, the difference may be due
to the region’s or province’s smaller total economic scale. Therefore, it is more reasonable to use the
pollution control investment of per unit output to measure the intensity of environmental regulation.

Many factors influence energy efficiency. To improve the breadth of our research, and according
to the existing research and data availability, we added selected factors to the model to act as
control variables. These indices, used in the empirical analysis, are industrial structure (IS),
technological progress (TP), energy structure (ES), and opening degree (OD). Industrial structure
is the proportion of GDP attributable to secondary industry. The demands for energy differ among
industries, and secondary industry, especially heavy industry, has a relatively high demand for energy.
Technological progress is represented by the proportion of the GDP devoted to intramural expenditures
on research and development. On one hand, through the improvement and replacement of technology
and equipment, technological innovation will improve energy efficiency to a certain extent. On the



Energies 2017, 10, 1578 12 of 17

other hand, in the process of technological progress, a rebound effect exists, which increases the
demand for energy. Energy structure is the proportion of coal consumption within the total energy
consumption. In China, the traditional energy consumption structure depends mainly on coal, which
is not helpful to the improvement of TFEE. The opening degree is represented by the proportion of
GDP that is foreign direct investment. The pollution haven hypothesis suggests that countries with
lower environmental standards or weaker enforcement easily attract investment from foreign countries.
However, the introduction and use of foreign capital may be conductive to improving TFEE because
advanced energy-use technology is introduced at the same time.

We made the orders of magnitude consistent and eliminated the exponential growth trend
of several variables by calculating the original variables’ logarithm, lnER, lnIS, lnTP, lnES,
and lnOD. The panel data for the 30 provinces are taken from the China Statistical Yearbook
(2005–2016), China Energy Statistical Yearbook (2005–2016), and China Statistical Yearbook on Science and
Technology (2005–2016).

4.2. Empirical Results and Analysis

As discussed previously, we used the Tobit model for the empirical analysis of the impact of
environmental regulation on TFEE. The empirical analysis created the cross item “environmental
regulation and technological progress”, as the government’s regulation policy produces an incentive
effect on progress in energy-saving and emissions-reduction technology. Enterprises have to consider
additional restrictions due to environmental regulation, which may induce technological innovation.
At the same time, the cross item “environmental regulation and opening degree” was added to
the function. This cross item explains the indirect effect of government regulation policy on TFEE.
The strength of environmental regulation determines the level of environmental threshold. A high
environmental threshold may deter foreign companies with high energy consumption and pollution
from entering and attract high-quality inflows of foreign direct investment, thus preventing the region
from becoming a “pollution heaven”. To investigate the different impacts of the factors on the TFEE in
the different regions, this paper not only analyzes the regression at the national level but also further
tests regional influences. Table 5 reports the result.

Table 5. Regression results of the Tobit model.

Variable National Eastern Region Middle Region Western Region

lnER −0.0511 ** 0.0219 ** −0.0030 ** −0.1066 **
(−2.05) (2.03) (2.16) (−2.30)

lnIS −0.1691 * 0.0136 *** −0.3128 *** −2.459 ***
(−1.78) (3.03) (-9.48) (−3.22)

lnTP −0.1269 *** −0.2435 ** −0.0455 ** −0.2165 ***
(−2.99) (−2.03) (−2.22) (−3.31)

lnES −0.4425 −0.2427 −0.0051 −0.2690
(−0.56) (−0.87) (−0.07) (−0.88)

lnOD −0.0136 −0.1330 *** 0.0082 0.2226
(−0.58) (−3.14) (0.66) (1.40)

lnER ∗ lnTP 0.0664 * −0.0778 * 0.0639 ** 0.6890 *
(1.62) (−1. 83) (2.13) (1.66)

lnER ∗ lnOD 0.0209 * 0.2168 *** −0.0035 −0.3847 **
(1.91) (3.12) (−0.21) (−2.03)

cons 1.4905 *** 2.1293 2.1372 *** 11.6877 ***
(2.82) (1.09) (9.33) (3.63)

sigma_u 0.3709 *** 0.5010 *** 0.0405 *** 0.4293 **
(5.83) (2.67) (3.70) (2.02)

sigma_e 0.0951 *** 0.1302 *** 0.0220 *** 0.2771 ***
(19.50) (8.54) (11.93) (5.77)

rho 0.9384 0.9367 0.7718 0.7059

The number in the parentheses is the z-value. *, **, *** significant at the 10%, 5%,
and 1% level, respectively.
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As shown in Table 5, the coefficient of lnER in the eastern region is significantly positive,
and the coefficients of lnER in the whole nation, middle region, and western region are significantly
negative. Thus, environmental regulations can improve TFEE in the eastern region, but that it
would have an opposite effect in the other regions. In this case, eastern region can improve TFEE
by 0.0219% if its environmental regulation intensity increases by 1%. This relationship between
environmental regulation and TFEE in the eastern region verifies the existence of the “forced
mechanism.” Environmental protection measures, such as the fossil energy tax and clean energy
subsidies, have created a forced mechanism in the eastern region. The costs for enterprises in pollution
abatement for end-of-pipe control have become so high that enterprises are facing declining profits
and great pressure to reduce emissions. In order to maintain a competitive advantage in the market,
enterprises want to reduce production costs and also reduce pollutant emissions. Because fossil
fuels are a major source of pollution, enterprises have increasing momentum to reduce fossil fuel
energy demand and increase clean energy consumption, which then improves energy efficiency.
In addition, this forced mechanism forms market barriers to new enterprises wishing to enter the
region. High pollution and energy consumption industries may increase investment for updating
and gradually phasing out or move to other regions. However, the TFEE will reduce by 0.0511%,
0.0030% and 0.1066%, respectively, in the entire nation and the middle and western regions, if their
environmental regulation intensities increase by 1%. This is because environmental regulation produces
a green paradox on TFEE. The middle and western regions are rich in energy and mineral resources.
As these regions are major suppliers of energy, the proportion of mining and raw materials industries
in these regions is relatively large. Expected stringent environmental regulation prompts energy
owners to exploit energy in advance, which causes high amounts of pollution in the short term and
is unfavorable to the promotion of TFEE. Additionally, the increase in energy supply leads to lower
energy prices and increasing demand for energy, which is not conducive to TFEE.

Environmental regulation not only has a direct impact on TFEE, but also has an indirect impact
through technological progress. The coefficient of the cross item, lnER ∗ lnTP, explains this indirect
impact. Firstly, the coefficients of lnTP are significantly negative in all regions. This result shows
that technological progress without environmental regulation plays a negative role in enhancing
TFEE. Technological progress without environmental regulation is directed mainly toward increasing
production, rather than toward energy savings and emission reductions. This improvement of
production technology can bring about a rebound effect, possibly leading to more pollution. Both higher
energy input and pollution emissions have negative effects on TFEE. Secondly, when considering
environmental regulation, the cross-item coefficient of “environmental regulation and technological
progress” in the eastern region is significantly negative, whereas these cross-item coefficients
in the middle and western regions are significantly positive. In the context of environmental
regulation, enterprises will increase investment in energy-saving and emissions-reduction technology.
The environmental pollution and technical infrastructure in the middle and western regions are worse
than those in the eastern region. As a result, the marginal benefits from investment in energy-saving
and emissions-reduction technology in the middle and western regions are higher than those in the
eastern region. The indirect effect of environmental regulation on TFEE through technological progress
is characterized as a compliance cost effect in the eastern region but as a Porter hypothesis effect in the
middle and western regions. At the same time, the developed eastern region with advanced production
technology is more likely to have a rebound effect, which may lead to higher energy input and lower
energy efficiency. Therefore, in the case of environmental regulation, the cost of technological progress
in the eastern region is greater than the proceeds, and an increase of 1% of technological progress
investment can reduce the TFEE by 0.0778%; whereas the cost of technological progress in the nation
and middle and western regions is lower than the proceeds, and an increase of 1% of technological
progress investment can improve the TFEE by 0.0644%, 0.0639% and 0.6890%, respectively.

The opening degree is another important variable between environmental regulation and TFEE.
Firstly, the coefficient of lnOD in the eastern region is significantly negative, and the “pollution heaven”
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is a driver of trade flows. In contrast, the coefficients of lnOD in the whole nation, middle region,
and western region are positive, but the impact of opening degree on energy efficiency is not significant.
The impact of opening degree on energy efficiency plays a dual role, and may result in either a positive
or negative effect. In China, the eastern region has the highest opening degree among the regions.
In order to maintain or enhance the competitive advantage and attractiveness of foreign investment,
the government of this region has given latent super-national treatment to foreign enterprises over
a long period. In regard to environmental regulation, intergovernmental competition has led to a
“race to the bottom”, which can account for the eastern region’s nickname of “pollution heaven”.
However, the extent to which opening degree impacts the whole nation, middle region, and western
region is not clear.

The results described above are the impacts of opening degree without environmental regulation.
The situation with environmental regulation is discussed below. When environmental regulation in
China is “loose”, developed countries with stringent environmental regulation will move polluting
industries to China. At this time, the inflow of foreign direct investment will bring a “pollution
heaven” effect, which has a negative effect on TFEE. However, stringent environmental regulation has a
screening effect on foreign direct investment. Industries that are conducive to environmental protection
and technology upgrades are welcomed and their requests prioritized. This forms a “crowding out
effect” on foreign direct investment in pollution-intensive industries, which in turn has a positive
effect on TFEE. The eastern region was the first open area in China. Therefore, with continuous
economic and social development, the eastern region has developed the ability to select qualified
foreign direct investment. The introduction of high-quality foreign direct investment, equivalent to
the introduction of advanced energy-use technology, will improve its TFEE. Therefore, the cross-item
coefficient of “environmental regulation and opening degree” in the eastern region is significantly
positive. In the case of environmental regulation, the TFEE will increase by 0.2168% if the foreign
direct investment attracted by the eastern region increases by 1%. However, the cross-item coefficient
of “environmental regulation and opening degree” in the western region is significantly negative.
In the case of environmental regulation, if the foreign direct investment attracted by the western region
increases by 1%, the TFEE will reduce by 0.3847%. Because the natural and social environments in
the western region are not good, environmental regulation weakens its capability to attract foreign
direct investment. In other words, the western region has a reduced opportunity to absorb advanced
energy-use technology from developed countries. In the middle region, the cross-item coefficient of
environmental regulation and opening degree is negative, but not significant. It is not clear to what
extent environmental regulation through opening degree impacts this region.

The effects of industrial and energy structures on the TFEE of the regions are as follows.
The coefficient of lnIS in the eastern region is significantly positive, and the coefficients of lnIS in the
whole nation, middle region, and western region are significantly negative. These different regions
have different industrial layouts and levels of industrialization. The eastern region has an advanced
industrialization level, and its secondary industry, with lower energy consumption, is based mainly on
capital and labor. However, the middle and western regions have relatively backward industrialization
levels, and their secondary industry is based mainly on resource processing. Additionally, higher
energy consumption and polluting industries have transferred from the eastern region to the middle
and western regions in the process of industrialization. Although the coefficient of lnES is negative,
the impact of energy structure on energy efficiency is not significant, which is not consistent with
expectations. There is no evidence that the energy consumption structure is the main bottleneck
constraining TFEE. China’s energy endowment structure, with abundant coal but scarce oil and gas
resources, determines the long-term coal-based energy consumption structure. It is not realistic to
attempt to improve the TFEE by changing the energy consumption structure in the short term.
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5. Conclusions

As a result of measuring the TFEE and the impact of environmental regulation on it, this paper
has reached the following main conclusions.

(1). During 2006 to 2015, the overall levels of TFEE under the group frontier and the meta-frontier in
China were low. Thus, great potential for improving energy efficiency exists. Throughout the
regions in China, TFEE is significantly imbalanced.

(2). Environmental regulations have not only direct but also indirect effects on TFEE through
technological progress and opening degree. Because of the different levels of economic and
social development, how environmental regulations impact TFEE varies from region to region.

In the eastern region, the direct impact of environmental regulation on TFEE verifies the existence of
the forced mechanism of environmental regulation, which can improve TFEE. However, the indirect
impact of environmental regulation on TFEE through technological progress is negative. Additionally,
environmental regulation increases the threshold of foreign direct investment to the eastern region,
which is beneficial to improving its TFEE.

In the middle and western regions, the direct impact of environmental regulation on TFEE is
consistent with the green paradox. Environmental regulation becomes a factor in increasing energy
demand and has a negative impact on TFEE. However, the indirect effect verifies the Porter hypothesis
and has a positive impact on TFEE. Nevertheless, in the western region, environmental regulation
weakens the ability to attract foreign direct investment, thereby reducing access to advanced energy
utilization technologies and producing a negative impact on the area’s TFEE.

6. Future Policy Recommendation

According to the above discussion and conclusions, we recommend the following:

(1). Implementing regional differentiated environmental regulation policies: Due to the regional
differences in development, China should implement differentiated environmental regulation
policies in accordance with the environmental and economic responsibilities of the different
regions. In the eastern region, a relatively stringent environmental regulation policy should be
implemented, whereas in the middle and western regions, the enterprise access mechanism can
be appropriately relaxed on the basis of full consideration of the environmental carrying capacity.

(2). Increasing investment in innovation of energy-saving and emissions-reduction technology:
Investment in technological innovation should focus on promoting the development and
application of energy-saving and emissions-reduction technology. Increased investment will
encourage enterprises to innovate technology, purchase advanced equipment, and introduce
foreign advanced energy-saving management practices. At the same time, the government needs
to rein in the rebound effect through leverage such as an energy tax.

(3). Constructing a regional compensation mechanism for environmental protection: In the process of
implementing environmental regulation, the cost of regional environmental protection should be
allocated rationally. When accepting industrial transfers or foreign direct investment, all regions
should agree on the compensation mechanism for environmental protection according to the
polluter pays principle. For the poverty-stricken and ecologically fragile areas in the middle and
western regions, the government should strengthen its planning and guidance to encourage the
full provision of regional environmental public goods and thus gradually promote TFEE.
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