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Abstract: In conventional position sensorless permanent magnet (PM) machine drives, the rotor
position is obtained from the phase-locked loop (PLL) with the regulation of spatial signal in estimated
back electromotive force (EMF) voltages. Due to the sinusoidal distribution of back-EMF voltages,
a small-signal approximation is assumed in the PLL in order to estimate the position. That is,
the estimated position is almost equal to the actual position per sample instant. However, at high
speed when the ratio of sampling frequency, fsample, over the rotor operating frequency, fe, is low,
this approximation might not be valid during the speed and load transient. To overcome this
limitation, a position estimation is proposed specifically for the high-speed operation of a PM machine
drive. A discrete-time EMF voltage estimator is developed to obtain the machine spatial signal.
In addition, an arctangent calculation is cascaded to the PLL in order to remove this small-signal
approximation for better sensorless drive performance. By using the discrete-time EMF estimation
and modified PLL, the drive is able to maintain the speed closed-loop at 36 krpm with only 4.2
sampling points per electrical cycle on a PM machine, according to experimental results.

Keywords: motor drives; position sensorless drive; back EMF estimation

1. Introduction

Permanent magnet (PM) machines are widely used in motion applications with high power
densities, e.g., pumps, compressors and fans. In particular, PM machine drives at high speed have
demonstrated advantages in applications with a size constraint [1–3]. Among these applications,
machine drives without position sensors are preferred, since the sensor installation reduces the torque
density per unit volume and increases the overall drive size [4–6]. To reduce the cost and volume of
the device, a single current sensor drive is proposed in [7] which can reconstruct three phase currents
based on the measurement of DC-link current. In [8], several sensorless drives for PM machines have
been reviewed. By using the spatial signal in the machine itself, position sensorless drives are able to
perform field-oriented control (FOC) without separate position sensors [8–10].

Position sensorless drives can be categorized as saliency-based drives [11,12] and electromotive
force (EMF) based drives [13–18] dependent on the spatial signal in a machine. For operation at zero
and low speed, position estimation using the spatial signal in rotor saliencies is preferred because all
EMF-based drives eventually fail at very low speed [11,12,19]. Reference [17] proposed an improved
initial rotor position estimation for low-salient machines. By contrast with conventional methods,
polarity detection is more accurate, by filtering the spatial harmonics in inductances. In addition, [20]
addresses the sensorless estimation of interior PM machines using rotor saliency and the adaptive filter.
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The position signal is obtained directly from current ripples instead of saliency signal demodulation.
It can be concluded that the signal is better due to the adjustable controller bandwidth. By contrast,
beyond 10% rated speed position estimation using the spatial signal in EMF voltages results in
a comparable performance to saliency-based drives [14,15,20]. Under this effect, EMF-based position
estimation methods are preferred at high speed for the sensorless drive, because no voltage injection is
required to fully utilize the DC bus voltage.

For EMF-based drives, the EMF voltage is estimated according to the voltage and current
relationship with the knowledge of machine resistance and inductance. The rotor position is then
calculated by obtaining the spatial signal in the estimated EMF voltage. The overall EMF-based
drive system is shown in Figure 1. Considering the EMF estimation algorithm denoted by the blue
block, EMF voltage can be estimated from either the open-loop calculation based on the machine
model [14,21–25] or the closed-loop state estimation using observer technologies [26–32]. Open-loop
methods directly calculate EMF voltage based on the machine model. The estimation accuracy can
be influenced by current noises as well as resistance and inductance variation due to the open-loop
calculation. By contrast, closed-loop methods estimate EMF using the current observer with machine
parameters. Because of the observer filter property, the influence of current noises can be negligible.
Reference [18] improves the conventional observer estimation by compensating the DC offset error
resulting from the A/D converter, op-amp gain and voltage sensor gain deviation. A nonlinear PLL is
also added to improve the observer estimation performance [33]. A speed controller is also proposed
to achieve a better sensorless dynamic performance. Reference [34] proposed an active damping
control for the sensorless drive of an interior PM machine. The proposed method reduces the influence
of parameter errors by increasing the equivalent damping of the drive system. In addition, [35]
developed an adaptive torque estimation for PM machines considering the inductance parameter
variation. However, the accuracy of EMF estimation is still sensitive to the parameter variation. It is
also noteworthy that the observer estimation bandwidth strongly depends on the signal-to-noise ratio
of machine currents. At high speed, due to the limited bandwidth, EMF estimation in the observer
might result in phase lag, which degrades the sensorless drive performance.
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Figure 1. Illustration of electromotive force (EMF) based position sensorless drive system.

EMF voltages can be estimated based on AC signals in the stator-referred stationary frame [26,27]
or DC signals in the rotor synchronous frame [28,29]. For AC EMF voltages, the rotor position is
calculated based on the arctangent function [27] or the PLL [20,26,33]. On the other hand, for DC EMF
voltages, the rotor position can only be obtained from the PLL. Considering the position estimation
using PLL, a small-signal approximation is assumed where the estimated position θ̂e is almost equal to
the actual position θe. Under this effect, the feedback position signal sin(θe − θ̂e) can be simplified by
θe − θ̂e for the closed-loop regulation [9,10,13,36]. Unfortunately, at high speed, the ratio of sampling
frequency, fsample, over the rotor operating frequency, fe, is low due to the limitation on the inverter
switching frequency. Considering the discretized effect at low fsample/ fe, the assumption where
sin(θe − θ̂e) ≈ θe − θ̂e might not be valid, leading to stability issues on EMF-based drives.

This paper improves the PM machine sensorless drive specifically for high-speed operation.
As reported in [37], a discrete-time machine model is implemented to estimate EMF voltages
considering discretized effects at low fsample/ fe. The high-speed drive performance can be improved
by including the zero-order-hold (ZOH) reflected voltage delay in the EMF estimation. This paper
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extends [37] in order to further enhance the sensorless position estimation using discretized EMF
voltages. On that basis, a PLL cascaded with an arctangent function is used to remove the small-signal
approximation at high speed. By using the arctangent calculation, the dynamic operation of a sensorless
drive can be maintained even at high speed with low fsample/ fe. By cascading the PLL after the
arctangent calculation, the position estimation error is reduced due to the filter property in the
PLL [20,33]. In addition, compared to existing estimation methods receiving only the spatial signal
from d-axis EMF [9,10,13,36], the proposed position estimation uses spatial signals from both the d-
and q-axis EMF voltage. At high speed, another advantage is the reduced parameter sensitivity on the
EMF-based position estimation. In this paper, a 126-W 8-pole surface PM machine is experimentally
tested. By applying the discrete-time EMF estimation and modified PLL, the drive can operate
at the speed of 36 krpm under 50% step load with only 4.2 sampling points per electrical cycle,
where fe = 2.4-kHz, fsample = 10-kHz and fsample/ fe = 4.2.

2. Discrete-Time EMF Estimation

This section explains the discrete-time EMF estimation used for the position and speed calculation.
As seen for the overall sensorless drive signal flowchart in Figure 1, this EMF estimation is equivalent
to the blue box. Considering firstly the continuous-time system, the machine model can be shown by
(1) in αβ stator-referred stationary frame.

Vαβ(t) = Rs Iαβ(t) + Ls
d
dt

Iαβ(t) + Eαβ(t) (1)

where the subscript αβ represents the complex vector, Fαβ = fα + j fβ, in the stator frame; Vαβ(t) and
Iαβ(t) are continuous stator αβ voltages and currents; Rs and Ls are the phase resistance and inductance;
and Eαβ(t) are continuous αβ EMF voltages. In this paper, a constant phase inductance is assumed
for simplicity. The influence of inductance variation on the discrete-time EMF estimation has been
analyzed in [36].

For machine drives with embedded controllers, a zero-order-hold should be implemented to
convert discrete-time voltages to pulse width modulation (PWM) voltages. Considering the influence
of ZOH, the relationship between continuous Vαβ(t) and discretized Vαβ(kT) is shown by:

Vαβ(t) = Vαβ(kT) when kT < t < (K + 1)T (2)

where T and k are the sampling time and sequence, respectively. By solving the differential equation
in (1) with the discrete-time voltage inputs, Vαβ(kT) in (2), the discrete-time machine model can be
obtained by (3) [37].

Iαβ(kT) = e−
Rs
Ls T Iαβ[(k − 1)T] +

1 − e−
Rs
Ls T

Rs
Vαβ[(k − 1)T] − ejωeT − e−

Rs
Ls T

Rs + jωeLs
Eαβ[(k − 1)T] (3)

where ωe is the rotor speed. (3) derives the model in the stator frame with inputs of discrete-time
voltage command, Vαβ(kT), and outputs of sampled currents, Iαβ(kT). Considering the sensorless
drive at high speed, EMF estimation in the rotor frame is preferred, since the estimation bandwidth
is greatly increased by regulating dq EMF voltages with DC signals. As a result, the discrete-time
machine model in the rotor frame is developed based on the frame transformation.

Idq(kT) = Iαβ(kT)e−jθe(kT)

= e−
Rs
Ls T Iαβ[(k − 1)T]e−jθe(kT) + 1−e

− Rs
Ls

T

Rs
Vαβ[(k − 1)T]e−jθe(kT) − ejωe T−e

− Rs
Ls

T

Rs + jωe Ls
Eαβ[(k − 1)T]e−jθe(kT)

(4)

where θe is the rotor position. In (4), the current step of positon θe(kT) can be formulated by the last
step of position θe[(k − 1)T] and the speed, ωe, which is given by:

θe(kT) = θe[(k − 1)T] + ωeT (5)
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Based on (5), the last step of αβ currents Iαβ[(k − 1)T], voltages Vαβ[(k − 1)T] and EMF
Eαβ[(k − 1)T], can convert to dq variables, Idq[(k − 1)T], Vdq[(k − 1)T] and Edq[(k − 1)T], by multiplying
e−jθe(kT) to Iαβ[(k − 1)T], Vαβ[(k − 1)T] and Eαβ [(k − 1)T]. They are respectively shown by:

Iαβ[(k − 1)T]e−jθe(kT) = Iαβ[(k − 1)T]
[
e−jθe [(k−1)T] × e−jωeT

]
=
[

Iαβ[(k − 1)T]× e−jθe [(k−1)T]
]
e−jωeT

= Idq[(k − 1)T]e−jωeT
(6)

Vαβ[(k − 1)T]e−jθe(kT) = Vdq[(k − 1)T]e−jωeT (7)

Eαβ[(k − 1)T]e−jθe(kT) = Edq[(k − 1)T]e−jωeT (8)

By substituting (6)–(8) into (4), the discrete-time machine model in the rotor frame is obtained
by (9).

Idq(kT) = e−
Rs
Ls

T−jωeT Idq[(k − 1)T] +
e−jωeT − e−

Rs
Ls

T−jωeT

Rs
Vdq[(k − 1)T]− 1 − e−

Rs
Ls

T−jωeT

Rs + jωeLs
Edq[(k − 1)T] (9)

(9) shows the discrete-time machine model using the complex vector. The actual discrete-time
response of both id(kT) and iq(kT) can be demonstrated easily using the state space equation, which is
given by [

id (kT)
iq (kT)

]
= G

[
cos(ωe T) − sin(ωe T)
sin(ωe T) cos(ωe T)

][
id [(k − 1)T]
iq [(k − 1)T]

]
+[

cos(ωe T) − sin(ωe T)
sin(ωe T) cos(ωe T)

][
F 0
0 F

][
vd [(k − 1)T]
vq [(k − 1)T]

]
− 1

R2
s + ω2

e L2
s

[
EMF1 −EMF2
EMF2 EMF1

][
ed [(k − 1)T]
eq [(k − 1)T]

] (10)

where the variables F, G, EMF1 and EMF2 are defined by (11)–(13) to simplify the equation in (10).

F =
1 − e−

Rs
Ls T

Rs
and G = e−

Rs
Ls T (11)

EMF1 = Rs[1 − G cos(ωeT)] + ωeLsG sin(ωeT) (12)

EMF2 = RsG sin(ωeT)− ωeLs[1 − G cos(ωeT)] (13)

Figure 2 illustrates the corresponding discrete-time machine model with inputs of Vdq(kT), outputs
of Idq(kT) and disturbances of Edq(kT). It is observed that a phase advanced term, e−jweT , appears in dq
currents, voltages and EMF. According to the discrete-time model in (10), EMF voltages in the rotor
frame can be directly calculated based on the relationship between Vdq(kT) and Idq(kT) in Figure 2 with
the knowledge of R̂s and L̂s. It is shown to be:

[
ˆed [(k − 1)T]

êq [(k − 1)T]

]
=
(

R̂2
s + ω̂2

e L̂2
s
)[ ˆEMF1 − ˆEMF2

ˆEMF2 ˆEMF1

]−1{[
cos(ω̂e T) − sin(ω̂e T)
sin(ω̂e T) cos(ω̂e T)

][
F̂ 0
0 F̂

][
vd [(k − 1)T]
vq [(k − 1)T]

]

−
[

id (kT)
iq (kT)

]
+ Ĝ

[
cos(ω̂e T) − sin(ω̂e T)
sin(ω̂e T) cos(ω̂e T)

][
id [(k − 1)T]
iq [(k − 1)T]

]} (14)
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In (14), Êdq(kT) represents the estimated dq EMF voltages, and ω̂e is the estimated speed.
In addition, F̂, Ĝ, EM̂F1 and EM̂F2 are calculated using the knowledge of R̂s, L̂s and ω̂e. In this paper,
R̂s and L̂s are measured from a RLC meter offline. It can be noted that the open-loop EMF estimation
in (14) is applied to obtain Êdq(kT). Because of open-loop estimation, Êdq(kT) might be sensitive to
the noises in Idq(kT). However, for the high-speed operation, the magnitude of Êdq(kT) is sufficiently
higher than the resistance reflected voltage drop. In addition, as reported in [30], the observer-based
estimation might cause the phase lag in Êdq(kT) due to the limited observer bandwidth at high speed.
Considering this delay issue, the direct EMF calculation is implemented for the high-speed sensorless
drive with low fsample/ fe.

It is important that the proposed discrete-time EMF estimation in (14) is substantially different to
conventional continuous-time models in [13–16]. In particular, e−jweT is resultant due to the influence
of ZOH, as seen in Figure 2. As speed increases, the percentage of e−jweT on Êdq(kT) increases, leading
to additional estimation errors. Under this effect, the EMF estimation in (14) including the ZOH effect
is suited for the sensorless drive at high speed.

Considering a perfect parameter estimation, the estimated dq EMF voltages Êdq(kT) should be
equal to actual EMF Edq(kT), which is given by:

Êdq(kT) =

[
êd(kT)
êq(kT)

]
= Edq(kT) =

[
ed(kT)
eq(kT)

]
=

[
0

ωe(kT) λpm

]
(15)

where ωe(kT) and λpm are the actual rotor speed and magnet flux. It is important that in (15), ed(kT)
should be zero, assuming the estimated position θ̂e is equal to the actual position θe. For the sensorless
drive at the initial state, the rotor position might be unknown before signal processing of the position
estimation. Under this effect, there is a position error, θerr, between the estimated dq rotor frame
and actual rotor frame, as seen in Figure 3 where θerr(kT) = θe(kT) − θ̂e(kT). The subscripts, e’ and e,
represent the estimated and actual rotor frame. Since the estimated Êdq(kT) is initially located at the
estimated frame, Êdq(kT) should be modulated by sinusoidal functions dependent on the magnitude
of θerr(kT), which is shown to be:

ˆEdq(kT) =

[
êd(kT)
êq(kT)

]
=

[
−ωe(kT) λpm sin[θerr(kT)]
ωe(kT) λpm cos[θerr(kT)]

]
(16)
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Figure 3. Illustration of estimated dq rotor frame to the actual dq rotor frame.

For the purpose of the sensorless drive, the actual position θe(kT) can be obtained by manipulating
θerr(kT) to be zero. Detailed position estimation processing will be explained in the next section.

3. Position Estimation at High Speed

This section analyzes the position calculation using the spatial signal from estimated Êdq(kT).
For the overall sensorless drive system, the corresponding signal process is implemented in the brown
box of Figure 1. On that basis, a PLL is developed to estimate the rotor speed ω̂e(kT) and position
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θ̂e(kT) with the position error, θerr(kT) in estimated EMF. As seen in (16), θerr(kT) can be extracted using
either the small-signal approximation in (17) or the arctangent function in (18).

êd(kT) = −ωe(kT) λpm sin[θerr(kT)] ≈ −ωe(kT) λpmθerr(kT) (17)

tan−1
(
− êd(kT)

êq(kT)

)
= tan−1

(
ωe(kT) λpm sin[θerr(kT)]
ωe(kT) λpm cos[θerr(kT)]

)
= θerr(kT) (18)

In (17), a small-signal approximation, where θerr(kT) = θe(kT) − θ̂e(kT), is assumed to simplify the
nonlinear sinusoidal function in êd(kT). As illustrated in Figure 4a, a PLL with a proportional gain
Kp and an integral gain Ki is applied to estimate ω̂e(kT) and θ̂e(kT) by manipulating êd(kT) to be zero.
A backward approximation is implemented for the discrete-time integration in Figure 4. In general,
Kp determines the estimation bandwidth of PLL. If considerable harmonics are observed in êd(kT),
Kp should decrease to reduce the error on θ̂e(kT) and ω̂e(kT). On the other hand, the steady state error
might occur on θ̂e(kT). This steady state estimation error can be removed by adding Ki. By properly
assigning Kp and Ki simultaneously, the overall transfer function between θ̂e(kT) and êd(kT) can be
formulated as a second-order low-pass filter to improve estimation performance.

On the other hand, Figure 4b proposes a position estimation by adding an arctangent function in
(18) cascaded to the same PLL. Due to the arctangent calculation, the small-signal approximation in
(17) can be removed. At high speed, it will be demonstrated that the position estimation using the
proposed PLL in Figure 4b achieves better drive performance for the following three reasons.
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 (kT) ≈ 0 due to the low magnitude of êd(kT). Besides, at high speed the magnitude of 
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Figure 4. Position and speed estimation by regulating feedback position error signals
of (a) the speed-dependent voltage error êd(kT) and (b) the actual θerr(kT) based on the
arctangent calculation.

3.1. Unit Length Feedback Signal

For the position estimation in Figure 4a, the magnitude of êd(kT) is proportional to λpm × ωe(kT),
which is a speed-dependent signal. Under this effect, the speed-dependent estimation performance
is resultant on θ̂e(kT). As reported in [38], the PLL might have a stability issue at low speed when
ω̂e(kT) ≈ 0 due to the low magnitude of êd(kT). Besides, at high speed the magnitude of êd(kT) could
be sufficient high. With the same Kp and Ki in Figure 4, high-frequency noises in êd(kT) might increase,
leading to considerable position errors at high speed.

For the proposed estimation in Figure 4b, a position error, θ̂e(kT), with a unit length is extracted
using the arctangent calculation. The speed-dependent term is removed, since both êd(kT) and êq(kT)
contain the same value in any operating conditions. Compared to Figure 4a, better position estimation
performance based on Figure 4b can be achieved.

3.2. Increased Dynamic Response

In addition to speed-dependent estimation bandwidth, the PLL structure in Figure 4 also results
in the discretized effect at high speed. Considering the low ratio of fsample/ fe, the assumption
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of θerr(kT) = θe(kT) − θ̂e(kT) ≈ 0 might not be valid for the positon estimation. For example,
when fsample = 10-kHz, fe = 1.67-kHz and fsample/ fe = 6, the position calculation period in the
microcontroller is every 60◦ per electrical cycle. At this time, the resolution of sin[θerr(kT)] is
sin(60◦) = 0.866, which might not be close to zero.

In order to analyze the accuracy of small-signal approximation in Figure 4a, the nonlinear equation
in (17) is linearized at two different operating points, θe and θ̂e, to obtain an analytical model. On that
basis, the partial derivatives of both θe and θ̂e on sin(θe − θ̂e) are applied, which are respectively shown
to be

∂êd
∂θe

∣∣∣∣ θe = θe0

θ̂e = θ̂e0

=
∂
∣∣eq
∣∣

∂θe
sin
(
θe − θ̂e

)∣∣∣∣∣ θe = θe0

θ̂e = θ̂e0

=
∣∣eq
∣∣ cos

(
θe0 − ˆθe0

)
(19)

∂êd

∂θ̂e

∣∣∣∣ θe = θe0

θ̂e = θ̂e0

=
∂
∣∣eq
∣∣

∂θ̂e
sin
(
θe − θ̂e

)∣∣∣∣∣ θe = θe0

θ̂e = θ̂e0

= −
∣∣eq
∣∣ cos

(
θe0 − ˆθe0

)
(20)

where θe0 and θ̂e0 are the equivalent points with respect to θe and θ̂e. According to (19) and (20), the
nonlinear PLL in Figure 4a can be linearized by Figure 5 at different operating points, θe0 and θ̂e0.
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Figure 5. Position and speed estimation based on the PLL with the operating point model at θe = θe0

and θ̂e = θ̂e0.

Figure 6 further compares the feedback spatial signals between θerr(kT) from the arctangent
calculation in (18) and sin[θerr(kT)] based on the approximation in (17). The horizontal axis of actual
θerr is used to analyze the error under these two different signal processes. Ideally, the value in the
vertical axis should be equal to that in the horizontal axis as the actual θerr changes to the zero position
error. It is shown that θerr(kT) obtained in (18) increases linearly as actual θerr increases. The PLL
estimation stability can be maintained up to actual θerr = 180◦. On the other hand, sin[θerr(kT)], based
on (17), results in the unstable PLL estimation when actual θerr is beyond 90◦ due to the negative
slope. More importantly, even in the stable region the deviation between sin[θerr(kT)] and θerr(kT)
significantly increases when actual θerr reaches 60◦. Considering the dynamic operation at high speed,
θerr(kT) = θe(kT) − θ̂e(kT) cannot be maintained at zero during the speed and load transient. Degraded
drive performance must result, due to the approximation error shown in Figure 6.
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Figure 6. Feedback positon signal sin(θerr) in Figure 4a and θerr in Figure 4b as the actual θerr changes
from 0–180◦ (simulation results and 1π rad = 180◦).
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Figure 7 shows the simulation results of (a) feedback spatial signals, the normalized −êd−pu (kT)
and tan−1[−êd (kT)/êq (kT)], and (b) the estimated rotor frequency f̂e versus time. In this simulation,
the speed-dependent component |eq| in êd(kT) of (17) is removed to obtain the normalized −êd−pu (kT)

in order to easily compare the result using tan
−1
[−êd (kT)/êq (kT)]. The rotor frequency fe is controlled

to increase from 0–2.5 kHz ( fsample/ fe decreases from ∞ to 4). The acceleration rate is 3 kHz/s to analyze

the limitation in (16) under the dynamic operation. In this case, −êd (kT) and tan
−1
[−êd (kT)/êq (kT)]

in (a) all contain a certain amount of error due to the rapid acceleration. However, when f̂e is close
to 1.5 kHz, the feedback signal, −êd−pu(kT) = sin[θerr(kT)], reaches 1, leading to the positive feedback
in PLL, as illustrated in Figure 8. A considerable oscillation on fe is then induced, where −êd−pu(kT)
varies between −1 and 1. Based on this simulation, the PLL estimation in Figure 4a loses the stability
when −êd−pu(kT) ≥ 1. On the contrary, due to the linear relationship between tan

−1
[−êd (kT)/êq (kT)]

and actual θerr, the PLL in Figure 4b performs well under this rapid acceleration.
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where Êdq_p (kT) are estimated EMF voltages with the parameter error, and Edq_Rerr (kT) and  

Edq_Lerr(kT) are additional components due to estimation errors from the resistance and inductance. 

Assuming the resistance and inductance estimation error are Δ s
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R  and Δ s
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Figure 7. (a) Feedback −êd−pu and tan−1(−êd/êq) and (b) corresponding estimated rotor frequency f̂e

versus time as the speed increases from 0 Hz to 2.5 kHz (simulation and fsample/ fe from ∞ to 4).
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Figure 8. The estimated d-axis EMF voltage versus the position error from −360◦ to 360◦.

3.3. Reduced Sensitivity on the Parameter Error

In addition to the improved dynamic operation, the PLL estimation in Figure 4b also achieves
reduced sensitivity on the machine parameter variation compared to the estimation in Figure 4a.
Considering the parameter error, the EMF estimation in (14) should be modified by[

ˆed_p[(k − 1)T]
ˆeq_p[(k − 1)T]

]
=

[
êd[(k − 1)T]
êq[(k − 1)T]

]
+

[
ed_Rerr[(k − 1)T]
eq_Rerr[(k − 1)T]

]
+

[
ed_Lerr[(k − 1)T]
eq_Lerr[(k − 1)T]

]
(21)

where Êdq−p(kT) are estimated EMF voltages with the parameter error, and Edq−Rerr(kT) and
Edq−Lerr(kT) are additional components due to estimation errors from the resistance and inductance.
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Assuming the resistance and inductance estimation error are ∆Rs = Rs − R̂s and ∆Ls = Ls − L̂s,
Edq−Rerr(kT) and Edq−Lerr(kT) can be obtained from (14), which are shown in (22) and (23), respectively.[

ed_Rerr [(k − 1)T]
eq_Rerr [(k − 1)T]

]
=

[
∆Rs 0

0 ∆Rs

]{
1

∆R2
s

[
cos(ω̂eT) − sin(ω̂eT)
sin(ω̂eT) cos(ω̂eT)

]
×
[

vd[(k − 1)T]
vq[(k − 1)T]

]
−
[

id(kT)
iq(kT)

]}
(22)

[
ed_Lerr [(k − 1)T]
eq_Lerr [(k − 1)T]

]
= ∆ω̂2

e L2
s

[
∆EMFLerr1 −∆EMFLerr2
−∆EMFLerr2 ∆EMFLerr1

]−1
×{

T2

∆L2
s

[
cos(ω̂e T) − sin(ω̂e T)
sin(ω̂e T) cos(ω̂e T)

][
vd [(k − 1)T]
vq [(k − 1)T]

]
−
[

id (kT)
iq (kT)

]
+

[
cos(ω̂e T) − sin(ω̂e T)
sin(ω̂e T) cos(ω̂e T)

][
id [(k − 1)T]
iq [(k − 1)T]

]} (23)

where
∆EMFLerr1 = ∆ωeLs sin(ωeT) (24)

∆EMFLerr2 = −∆ωeLs[1 − cos(ωeT)] (25)

It is noteworthy that both (22) and (23) contain the ω̂e dependent term. Thus, ∆Rs and ∆Ls all cause
speed-dependent errors in estimated êd (kT) and êq (kT) under the digital implementation. Figure 9
analyzes feedback signals of −êd (kT) and tan

−1
[−êd (kT)/êq (kT)] versus fsample/ fe, considering the

parameter estimation error. In this simulation, êd−p(kT) and êq−p(kT) in (21) are calculated by adding
Edq−Rerr(kT) and Edq−Lerr(kT). As shown in (a), the error of ∆Rs results in ω̂e dependent error on
êd (kT), where the error increases as ω̂e increases. For the PLL estimation in Figure 4a, an increased
error on θ̂e at high speed should appear, leading to the reduced torque output. By contrast, the
PLL in Figure 4b based on tan

−1
[−êd (kT)/êq (kT)] is immune to ∆Rs once fsample/ fe is higher than

0.025. By obtaining θerr(kT) in (18), the position estimation performance can be insensitive to ∆Rs at
high speed.
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êd(kT) can lead to a stability problem. On the contrary, a constant error on tan−1[−êd(kT)/êq(kT)] is 
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[−êd (kT)/êq(kT)] versus fe/ fsample with the error of

(a) resistance and (b) inductance (simulation result).

For the inductance variation in Figure 9b, ω̂e dependent error also appears in êd(kT).
More importantly, the error on êd(kT) due to ∆Ls is significantly higher than that due to ∆Rs at high
speed. Considering the inductance leakage effect and saturation at high speed, PLL estimation using
only êd(kT) can lead to a stability problem. On the contrary, a constant error on tan

−1
[−êd (kT)/êq (kT)]

is observed. The use of both d- and q-axis EMF voltages for the position estimation is the key for
reducing the inductance variation at high speed with low fe/ fsample. Based on this simulation, it is
concluded that the reduced parameter sensitivity on the sensorless drive can be achieved using the
proposed PLL estimation in Figure 4b. Table 1 lists the performance comparison between the PLL
estimation in Figure 4a,b. Two advantages on the proposed PLL in (b) are summarized:

1. The dynamic response is improved at high speed. As seen for the feedback position error signal
in Figure 7, the nonlinearity of sin(θerr) appears once the position error between the estimated
and actual position is higher than 57.2◦. After adding the arctangent calculation, the signal of
tan−1(êd/êq) still maintains a linear waveform once the position error reaches 180◦. Thus, a better
estimation performance is achieved.
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2. The PLL cascaded the arctangent calculation also shows reduced sensitivity on the parameter
variation at high speed. As seen in Figure 9, tan−1(êd/ êq) receives the position information from
both êd(kT) and êq(kT). Compared to the conventional PLL obtaining the position information
from only êd(kT), it can be concluded that there is reduced sensitivity on the parameter.
In addition, due to the reduced parameter sensitivity, the overall drive stability can also be
improved using the proposed PLL.

Table 1. Comparison of two position estimation algorithms.

Performance Index Small-Signal in Figure 4a Proposed PLL in Figure 4b

Transient response Limited at high speed Speed independent
Tolerance of position error ±2π/3 ±π

Steady state error Degradation at high speed Speed independent
Robustness of parameter variation Degradation at high speed Reduced effect

Controller delay No difference (depends on the PLL bandwidth)
Overall Stability Normal Better

4. Experimental Results

An 8-pole surface PM machine with the rated speed of 12 krpm ( fe = 0.8-kHz) was experimentally
evaluated to verify the high-speed EMF-based sensorless drive using different PLL estimation
structures. The test setup of the PM machine sensorless drive is shown in Figure 10. Table 2 lists
key test machine and inverter characteristics. A hysteresis brake was back-to-back connected to the
test machine for the load operation. Considering the switching loss and microcontroller bandwidth,
the sampling frequency was selected at 10 kHz to synchronize with the PWM frequency. All sensorless
drive algorithms in Figure 1 were implemented in a 32-bit microcontroller, TI-TMS320F28069
(Texas Instruments, Dallas, TX, USA). The estimated position and speed from Figure 4 were used for
the speed control and FOC.
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Figure 10. Test setup of PM machine sensorless drive.

Table 2. Test Machine Characteristics.

Characteristics Values

Rotor poles 8-pole
Rated torque 0.1-Nm
Rated current 1-A
Rated speed 12-krpm
Resistance 0.1-Ω
Inductance 130-µH

Sampling Frequency 10-kHz
DC bus voltage 48-V
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4.1. Rapid Acceleration Operation

First, the sensorless acceleration performance is evaluated in this section. Figures 11–14 compare
two different drive accelerations when the position is estimated based on the PLL in Figure 4a,b.
The acceleration rates are, respectively, 60 krpm/s (4 kHz/s) and 30 krpm/s (2 kHz/s). As explained
in Section 3.3, degraded drive performance during the rapid drive acceleration might occur if the
small-signal approximation in (16) is applied.

Figure 11 shows the acceleration of 60 krpm/s when the PLL in Figure 4a is implemented.
Time-domain waveforms of iq(kT), ω̂e(kT), the normalized −êd−pu(kT) and θ̂e(kT) are demonstrated.
Similar to Figure 8, the normalized êd−pu(kT) with only sin[θerr(kT)] is shown to enable easy comparison
of the waveform with the signal from the arctangent calculation. It is shown that considerable
oscillations on êd−pu(kT) and ω̂e(kT) are observed under rapid acceleration. Due to the approximation
error on sin[θerr(kT)], the oscillation from −1 rad to 1 rad results in êd−pu(kT). The sensorless drive
eventually fails at ω̂e(kT) = 21 krpm and fsample/ fe = 7.14 because of the positive PLL signal feedback
once sin[θerr(kT)] reaches 1 rad. Contrarily, Figure 12 shows the same acceleration when the PLL in
Figure 4b is implemented. Instead of êd−pu(kT), the feedback signal of tan

−1
[−êd (kT)/êq (kT)] in (17)

is shown for comparison. By adding the arctangent calculation, the sensorless drive can successfully
accelerate to 32 krpm at the acceleration rate of 60 krpm/s.

In addition, two sensorless drives under a low acceleration rate of 30 krpm/s are also evaluated
in Figures 13 and 14. In Figure 13, the position and speed are estimated based on the PLL in Figure 4a,
where the small-signal approximation is applied. By contrast, in Figure 14 the same acceleration for
the sensorless drive with the PLL in Figure 4b is tested. It is demonstrated that two acceleration
responses are almost the same at the acceleration rate of 30 krpm/s. Based on these experimental
results, it is concluded that rapid acceleration performance is better for the sensorless drive using the
proposed PLL estimation in Figure 4b, while the conventional PLL in Figure 4a results in a comparable
performance when the acceleration rate is below 30 krpm/s.
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Figure 11. Machine acceleration from 2 krpm to 32 krpm ( fsample/ fe = 5) within 0.5 s based on the
speed control where the PLL estimation with the feedback from êd is applied.
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Figure 12. Machine acceleration from 2 krpm to 32 krpm ( fsample/ fe = 5) within 0.5 s based on the
speed control where the PLL estimation with the arctangent calculation is implemented.
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e

 (kT), respectively, are 

shown. A visible oscillation on êd_pu(kT) and ˆ
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Figure 13. Machine acceleration from 2 krpm to 32 krpm ( fsample/ fe = 5) within 1 s based on the speed
control where the PLL estimation with the feedback from êd is applied.
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Figure 14. Machine acceleration from 2 krpm to 32 krpm ( fsample/ fe = 5) within 1 s based on the speed
control where the PLL estimation with the arctangent calculation is implemented.

4.2. Dynamic Load Operation:

This section evaluates the sensorless speed closed-loop control performance under a 100%
step load at 12 krpm ( fsample/ fe = 12.5). In Figure 15, the position is estimated based on the PLL
with feedback from êd(kT). Time-domain signals of iq(kT), id(kT), êd−pu(kT) and ω̂e(kT), respectively,
are shown. A visible oscillation on êd−pu(kT) and ω̂e(kT) occurs when a 100% step load is suddenly
applied. Similar to the prior acceleration test, the approximation in (16) is the primary issue for
degraded sensorless drive performance. Although this oscillation eventually decreases to zero at
a steady state, the dynamic operation is limited, especially at high speed. It is also noted that it is not
possible to maintain the stability of the sensorless drive using the same PLL estimation when the step
load is beyond 100%.
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Figure 15. Sensorless speed control under a step load at 12 krpm ( fsample/ fe = 12.5) when the PLL
estimation with the feedback from êd is applied.
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Figure 16 shows the same speed control performance under a 100% step load. In this experiment,
tan−1[−êd(kT)/ êq(kT)] instead of êd(kT) is applied for the PLL estimation. Time-domain signals of iq(kT),
id(kT), tan−1[−êd(kT)/ êq(kT)] and ω̂e(kT) are illustrated. By using actual θerr(kT) for the PLL estimation,
the transient oscillation on ω̂e(kT) is resolved, resulting in improved dynamic performance. Similar
to the acceleration experiment at 4.1, the performance of the sensorless drive under the step load is
also better using the proposed PLL estimation with tan−1[−êd(kT)/ êq(kT)]. The D-axis current signal
is a key performance indicator for evaluating the sensorless drive performance. For SPM machines,
id(kT) should be controlled so as to maintain it at zero. As seen for the load transient in Figure 16 when
t = 3~4 s, id(kT) achieves negligible fluctuation. By contrast, in Figure 15 the waveform distortion of
id(kT) is observed, leading to degraded drive performance.
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Figure 16. Sensorless speed control under a step load at 12 krpm ( fsample/ fe = 12.5) when the PLL
estimation with the arctangent calculation is implemented.

4.3. Parameter Sensitivity

This section evaluates the sensorless speed closed-loop control performance considering
parameter estimation errors. The influences of both resistance and inductance estimation error on the
sensorless drive are evaluated.

Figure 17 shows the sensorless speed closed-loop control at 12 krpm ( fsample/ fe = 12.5) when
the resistance error is considered. In order to clearly evaluate the drive performance with respect
to the resistance error, R̂s is continuously changed from 0.5Rs to 2Rs during the speed closed-loop
control. In (a), the PLL estimation with the feedback from −êd(kT) is implemented. On the other
hand, the PLL estimation with the actual θerr(kT) from the arctangent calculation is implemented in (b).
Time-domain waveforms of iq(kT), ω̂e(kT), êd−pu(kT) or tan−1[−êd(kT)/ êq(kT)] and ∆Rs, respectively,
are demonstrated. Due to the relatively low resistive voltage drop at high speed, the resistance error
seems to be insensitive to the sensorless drive for the PLL estimation with the feedback signal either
from −êd(kT) in Figure 17a and tan−1[−êd(kT)/ êq(kT)] in Figure 17b.
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R , respectively, are 

demonstrated. Due to the relatively low resistive voltage drop at high speed, the resistance error 

seems to be insensitive to the sensorless drive for the PLL estimation with the feedback signal either 
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Figure 17. Constant speed closed-loop control at 12 krpm ( fsample/ fe = 12.5) with the resistance
estimation error when the PLL estimation is implemented with the feedback from (a) êd and
(b) arctangent.
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Similar to the experiment on the resistance error, Figure 18 shows the same speed closed-loop
control at 12 krpm ( fsample/ fe = 12.5) while the inductance error is considered. In this experiment, L̂s is
changed from 0.5Ls to 2Ls during the closed-loop control. The PLL estimation with the feedback from
êd(kT) and tan−1[−êd(kT)/ êq(kT)] are applied in (a) and (b), respectively. Because the inductive voltage
drop is proportional to the operating speed, the small inductance variation results in the considerable
position estimation error on the drive at high speed. As seen in Figure 18a, the speed control eventually
fails with L̂s = 1.2Ls at 12 rpm if −êd(kT) is directly used for the position and speed estimation. The use
of only d-axis EMF voltage for the PLL regulation is the primary factor causing this stability issue.
In general, inductance should decrease at high speed due to the skin effect. Thus, the conventional
PLL estimation in Figure 4a might not be suited for the sensorless drive at high speed. On the contrary,
in Figure 18b the speed control maintains at 12 krpm even when the inductance error is L̂s = 2Ls.
By applying both d- and q-axis EMF voltages for the PLL estimation in Figure 4b, it is concluded that
the reduced effect of the inductance error on the high-speed sensorless drive can be achieved.
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Figure 18. Constant speed closed-loop control at 12 krpm ( fsample/ fe = 12.5) with the inductance
estimation error when the PLL estimation is implemented with the feedback from (a) êd and
(b) arctangent.

4.4. 36-krpm Sensorless Drive under Load

Figure 19 shows the sensorless closed-loop control performance under 50% step load, where the
speed is maintained at 36 krpm (fe = 2.4-kHz and fpwm/fe = 4.2). In this test, the position and speed is
estimated based on the PLL in Figure 4b with the feedback from tan−1[−êd(kT)/ êq(kT)]. By applying
the proposed PLL estimation, the sensorless drive can maintain the closed-loop control with only 4.2
sampling points per electric cycle. In addition, (b) and (c) illustrate zoom-in waveforms at no load
and 50% load respectively. It is concluded that A-phase current, ia measured by the current probe,
can be regulated to maintain the sinusoidal waveform, resulting in improved drive performance at
high speed.
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proposed PLL estimation, the sensorless drive can maintain the closed-loop control with only 4.2 

sampling points per electric cycle. In addition, (b) and (c) illustrate zoom-in waveforms at no load 

and 50% load respectively. It is concluded that A-phase current, ia measured by the current probe, 

can be regulated to maintain the sinusoidal waveform, resulting in improved drive performance at 

high speed. 

 

 
(b) 

 
(a) (c) 

Figure 19. (a) Sensorless speed closed-loop control at ωe = 2π × 2.4 kHz and fpwm/fe = 4.2 with 50% step 

load when the PLL estimation in Figure 4b is applied. The no-load and 50%-load waveforms are 

zoomed in on at (b) and (c). 

4.5. Sensorless Drive at Low Speed 

Figures 20 and 21 compare the sensorless speed closed-loop control using two different PLL 

estimations at the speed of 1.5 krpm (12.5% rated speed). In these tests, a 100% step load is applied 

while the speed is controlled to be maintained at 1.5 krpm. In Figure 20, the position and speed are 

all estimated based on the conventional PLL in Figure 4a with the feedback from êd. By contrast, in 
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Figure 19. (a) Sensorless speed closed-loop control at ωe = 2π × 2.4 kHz and fsample/ fe = 4.2 with 50%
step load when the PLL estimation in Figure 4b is applied. The no-load and 50%-load waveforms are
zoomed in on at (b) and (c).
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4.5. Sensorless Drive at Low Speed

Figures 20 and 21 compare the sensorless speed closed-loop control using two different PLL
estimations at the speed of 1.5 krpm (12.5% rated speed). In these tests, a 100% step load is applied
while the speed is controlled to be maintained at 1.5 krpm. In Figure 20, the position and speed are
all estimated based on the conventional PLL in Figure 4a with the feedback from êd. By contrast,
in Figure 21 the proposed PLL in Figure 4b is applied by cascading the arctangent calculation. The speed
controller bandwidths are all designed at 10 Hz. By comparing the results in Figures 20 and 21, it is
concluded that the two estimation methods achieve a similar closed-loop control performance when
the sensorless drive is operated in the low-speed region.
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Figure 21 the proposed PLL in Figure 4b is applied by cascading the arctangent calculation. The speed 

controller bandwidths are all designed at 10 Hz. By comparing the results in Figures 20 and 21, it is 

concluded that the two estimation methods achieve a similar closed-loop control performance when 

the sensorless drive is operated in the low-speed region. 

 

Figure 20. Sensorless speed control under a 100% step load at 1.5 krpm (12.5% rated speed) when the 

PLL estimation with the feedback from êd is applied. 
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Figure 20. Sensorless speed control under a 100% step load at 1.5 krpm (12.5% rated speed) when the
PLL estimation with the feedback from êd is applied.
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5. Conclusions

This paper improves sensorless position estimation at high speed. Compared to conventional
small-signal approximation, the proposed PLL shows better performance in estimating position,
especially at high speed with a low ratio of fsample/ fe. By using the discrete-time EMF estimation and
proposed PLL, the FOC drive can be maintained at the speed of 36 krpm under 50% step torque load,
with only 4.2 sampling points in an electrical cycle.

Acknowledgments: The authors gratefully acknowledge the financial support of the National Science Council
of Taiwan, R.O.C. through its grants 106-2628-E-002-014-MY3.

Author Contributions: Guan-Ren Chen and Shih-Chin Yang wrote the paper. Shih-Chin Yang developed
sensorless drive algorithms. Guan-Ren Chen implemented and verified all the theories and performed all
the experiments. Yu-Liang Hsu and Kang Li contributed analysis tools.



Energies 2017, 10, 1571 16 of 17

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Gerada, D.; Mebarki, A.; Brown, N.L.; Gerada, C.; Cavagnino, A.; Boglietti, A. High-Speed Electrical
Machines: Technologies, Trends, and Developments. IEEE Trans. Ind. Electron. 2014, 61, 2946–2959.
[CrossRef]

2. Van der Geest, M.; Polinder, H.; Ferreira, J.A.; Christmann, M. Power Density Limits and Design Trends of
High-Speed Permanent Magnet Synchronous Machines. IEEE Trans. Transp. Electrification 2015, 1, 266–276.
[CrossRef]

3. Guagnano, A.; Rizzello, G.; Cupertino, F.; Naso, D. Robust Control of High-Speed Synchronous Reluctance
Machines. IEEE Trans. Ind. Appl. 2016, 52, 3990–4000. [CrossRef]

4. Bon-Ho, B.; Seung-Ki, S. A compensation method for time delay of full-digital synchronous frame current
regulator of pwm ac drives. IEEE Trans. Ind. Appl. 2003, 39, 802–810. [CrossRef]

5. Zwyssig, C.; Kolar, J.W.; Round, S.D. Megaspeed Drive Systems: Pushing Beyond 1 Million r/min.
IEEE/ASME Trans. Mechatron. 2009, 14, 564–574. [CrossRef]

6. Bon-Ho, B.; Seung-Ki, S.; Jeong-Hyeck, K.; Ji-Seob, B. Implementation of sensorless vector control for
super-high-speed pmsm of turbo-compressor. IEEE Trans. Ind. Appl. 2003, 39, 811–818. [CrossRef]

7. Yan, H.; Xu, Y.; Zou, J. A Phase Current Reconstruction Approach for Three-Phase Permanent-Magnet
Synchronous Motor Drive. Energies 2016, 9, 853. [CrossRef]

8. Gamazo-Real, J.C.; Vázquez-Sánchez, E.; Gómez-Gil, J. Position and Speed Control of Brushless DC Motors
Using Sensorless Techniques and Application Trends. Sensors 2010, 10, 6901–6947. [CrossRef] [PubMed]

9. Harnefors, L.; Nee, H.P. A general algorithm for speed and position estimation of AC motors. IEEE Trans.
Ind. Electron. 2000, 47, 77–83. [CrossRef]

10. Fengxiang, W.; Zhe, C.; Stolze, P.; Stumper, J.-F.; Rodriguez, J.; Kennel, R. Encoderless Finite-State Predictive
Torque Control for Induction Machine With a Compensated MRAS. IEEE Trans. Ind. Inf. 2014, 10, 1097–1106.
[CrossRef]

11. Jansen, P.L.; Lorenz, R.D. Transducerless position and velocity estimation in induction and salient AC
machines. IEEE Trans. Ind. Appl. 1995, 31, 240–247. [CrossRef]

12. Young-Doo, Y.; Seung-Ki, S.; Morimoto, S.; Ide, K. High-Bandwidth Sensorless Algorithm for AC Machines
Based on Square-Wave-Type Voltage Injection. IEEE Trans. Ind. Appl. 2011, 47, 1361–1370. [CrossRef]

13. Hejny, R.W.; Lorenz, R.D. Evaluating the Practical Low-Speed Limits for Back-EMF Tracking-Based Sensorless
Speed Control Using Drive Stiffness as a Key Metric. IEEE Trans. Ind. Appl. 2011, 47, 1337–1343. [CrossRef]

14. Matsui, N. Sensorless PM brushless DC motor drives. IEEE Trans. Ind. Electron. 1996, 43, 300–308. [CrossRef]
15. Bernardes, T.; Montagner, V.F.; Grundling, H.A.; Pinheiro, H. Discrete-Time Sliding Mode Observer for

Sensorless Vector Control of Permanent Magnet Synchronous Machine. IEEE Trans. Ind. Electron. 2014, 61,
1679–1691. [CrossRef]

16. Nguyen, D.; Dutta, R.; Rahman, M.F.; Fletcher, J.E. Performance of a Sensorless Controlled
Concentrated-Wound Interior Permanent-Magnet Synchronous Machine at Low and Zero Speed. IEEE Trans.
Ind. Electron. 2016, 63, 2016–2026. [CrossRef]

17. Wu, X.; Wang, H.; Huang, S.; Huang, K.; Wang, L. Sensorless Speed Control with Initial Rotor Position
Estimation for Surface Mounted Permanent Magnet Synchronous Motor Drive in Electric Vehicles. Energies
2015, 8, 11030–11046. [CrossRef]

18. Jung, T.-U.; Jang, J.-H.; Park, C.-S. A Back-EMF Estimation Error Compensation Method for Accurate Rotor
Position Estimation of Surface Mounted Permanent Magnet Synchronous Motors. Energies 2017, 10, 1160.
[CrossRef]

19. Corley, M.J.; Lorenz, R.D. Rotor position and velocity estimation for a salient-pole permanent magnet
synchronous machine at standstill and high speeds. IEEE Trans. Ind. Appl. 1998, 34, 784–789. [CrossRef]

20. Tian, L.; Zhao, J.; Sun, J. Sensorless Control of Interior Permanent Magnet Synchronous Motor in Low-Speed
Region Using Novel Adaptive Filter. Energies 2016, 9, 1084. [CrossRef]

21. Shen, J.X.; Zhu, Z.Q.; Howe, D. Improved speed estimation in sensorless PM brushless AC drives. IEEE Trans.
Ind. Appl. 2002, 38, 1072–1080. [CrossRef]

http://dx.doi.org/10.1109/TIE.2013.2286777
http://dx.doi.org/10.1109/TTE.2015.2475751
http://dx.doi.org/10.1109/TIA.2016.2574774
http://dx.doi.org/10.1109/TIA.2003.810660
http://dx.doi.org/10.1109/TMECH.2008.2009310
http://dx.doi.org/10.1109/TIA.2003.810658
http://dx.doi.org/10.3390/en9100853
http://dx.doi.org/10.3390/s100706901
http://www.ncbi.nlm.nih.gov/pubmed/22163582
http://dx.doi.org/10.1109/41.824128
http://dx.doi.org/10.1109/TII.2013.2287395
http://dx.doi.org/10.1109/28.370269
http://dx.doi.org/10.1109/TIA.2011.2126552
http://dx.doi.org/10.1109/TIA.2011.2126013
http://dx.doi.org/10.1109/41.491354
http://dx.doi.org/10.1109/TIE.2013.2267700
http://dx.doi.org/10.1109/TIE.2015.2506138
http://dx.doi.org/10.3390/en81011030
http://dx.doi.org/10.3390/en10081160
http://dx.doi.org/10.1109/28.703973
http://dx.doi.org/10.3390/en9121084
http://dx.doi.org/10.1109/TIA.2002.800778


Energies 2017, 10, 1571 17 of 17

22. Suzuki, T.; Shimizu, Y.; Iwaji, Y.; Takahata, R.; Aoyagi, S. Minimum Current Start-Up Method by Combined
Use of Two Position-Sensorless Controls. IEEE Trans. Ind. Appl. 2015, 51, 3086–3093. [CrossRef]

23. Tatemarsu, K.; Hamada, D.; Uchida, K.; Wakao, S.; Onuki, T. New approaches with sensorless drives.
IEEE Ind. Appl. Mag. 2000, 6, 44–50. [CrossRef]

24. Wallmark, O.; Harnefors, L.; Carlson, O. An Improved Speed and Position Estimator for Salient
Permanent-Magnet Synchronous Motors. IEEE Trans. Ind. Electron. 2005, 52, 255–262. [CrossRef]

25. Wallmark, O.; Harnefors, L. Sensorless Control of Salient PMSM Drives in the Transition Region. IEEE Trans.
Ind. Electron. 2006, 53, 1179–1187. [CrossRef]

26. Kim, H.; Harke, M.C.; Lorenz, R.D. Sensorless control of interior permanent-magnet machine drives with
zero-phase lag position estimation. IEEE Trans. Ind. Appl. 2003, 39, 1726–1733.

27. Chi, S.; Zhang, Z.; Xu, L.Y. Sliding-Mode Sensorless Control of Direct-Drive PM Synchronous Motors for
Washing Machine Applications. IEEE Trans. Ind. Appl. 2009, 45, 582–590. [CrossRef]

28. Morimoto, S.; Kawamoto, K.; Sanada, M.; Takeda, Y. Sensorless control strategy for salient-pole PMSM based
on extended EMF in rotating reference frame. IEEE Trans. Ind. Appl. 2002, 38, 1054–1061. [CrossRef]

29. Yim, J.S.; Sul, S.K.; Bae, B.T.; Patel, N.R.; Hiti, S. Modified Current Control Schemes for High-Performance
Permanent-Magnet AC Drives With Low Sampling to Operating Frequency Ratio. IEEE Trans. Ind. Appl.
2009, 45, 763–771. [CrossRef]

30. Bolognani, S.; Tubiana, L.; Zigliotto, M. Extended kalman filter tuning in sensorless PMSM drives. IEEE Trans.
Ind. Appl. 2003, 39, 1741–1747. [CrossRef]

31. Bolognani, S.; Zigliotto, M.; Zordan, M. Extended-range PMSM sensorless speed drive based on stochastic
filtering. IEEE Trans. Power Electron. 2001, 16, 110–117. [CrossRef]

32. Guchuan, Z.; Kaddouri, A.; Dessaint, L.A.; Akhrif, O. A nonlinear state observer for the sensorless control of
a permanent-magnet AC machine. IEEE Trans. Ind. Electron. 2001, 48, 1098–1108. [CrossRef]

33. Wang, T.C.; Lall, S.; Chiou, T.Y. Polynomial method for PLL controller optimization. Sensors 2011, 11,
6575–6592. [CrossRef] [PubMed]

34. Cho, Y. Improved Sensorless Control of Interior Permanent Magnet Sensorless Motors Using an Active
Damping Control Strategy. Energies 2016, 9, 135. [CrossRef]

35. Yang, D.; Mok, H.; Lee, J.; Han, S. Adaptive Torque Estimation for an IPMSM with Cross-Coupling and
Parameter Variations. Energies 2017, 10, 167. [CrossRef]

36. Awan, H.A.A.; Tuovinen, T.; Saarakkala, S.E.; Hinkkanen, M. Discrete-Time Observer Design for Sensorless
Synchronous Motor Drives. IEEE Trans. Ind. Appl. 2016, 52, 3968–3979. [CrossRef]

37. Yang, S.-C.; Chen, G.-R. High-Speed Position-Sensorless Drive of Permanent-Magnet Machine Using
Discrete-Time EMF Estimation. IEEE Trans. Ind. Electron. 2017, 64, 4444–4453. [CrossRef]

38. Bolognani, S.; Calligaro, S.; Petrella, R. Design Issues and Estimation Errors Analysis of Back-EMF-Based
Position and Speed Observer for SPM Synchronous Motors. IEEE J. Emerg. Select. Top. Power Electron. 2014,
2, 159–170. [CrossRef]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TIA.2014.2385938
http://dx.doi.org/10.1109/2943.847915
http://dx.doi.org/10.1109/TIE.2004.841088
http://dx.doi.org/10.1109/TIE.2006.878315
http://dx.doi.org/10.1109/TIA.2009.2013545
http://dx.doi.org/10.1109/TIA.2002.800777
http://dx.doi.org/10.1109/TIA.2009.2013600
http://dx.doi.org/10.1109/TIA.2003.818991
http://dx.doi.org/10.1109/63.903995
http://dx.doi.org/10.1109/41.969388
http://dx.doi.org/10.3390/s110706575
http://www.ncbi.nlm.nih.gov/pubmed/22163973
http://dx.doi.org/10.3390/en9030135
http://dx.doi.org/10.3390/en10020167
http://dx.doi.org/10.1109/TIA.2016.2572105
http://dx.doi.org/10.1109/TIE.2017.2652364
http://dx.doi.org/10.1109/JESTPE.2013.2296974
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Discrete-Time EMF Estimation 
	Position Estimation at High Speed 
	Unit Length Feedback Signal 
	Increased Dynamic Response 
	Reduced Sensitivity on the Parameter Error 

	Experimental Results 
	Rapid Acceleration Operation 
	Dynamic Load Operation: 
	Parameter Sensitivity 
	36-krpm Sensorless Drive under Load 
	Sensorless Drive at Low Speed 

	Conclusions 

