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Abstract: Forecasting of electricity demand has become one of the most important areas of research
in the electric power industry, as it is a critical component of cost-efficient power system management
and planning. In this context, accurate and robust load forecasting is supposed to play a key role
in reducing generation costs, and deals with the reliability of the power system. However, due to
demand peaks in the power system, forecasts are inaccurate and prone to high numbers of errors.
In this paper, our contributions comprise a proposed data-mining scheme for demand modeling
through peak detection, as well as the use of this information to feed the forecasting system. For this
purpose, we have taken a different approach from that of time series forecasting, representing it as a
two-stage pattern recognition problem. We have developed a peak classification model followed by
a forecasting model to estimate an aggregated demand volume. We have utilized a set of machine
learning algorithms to benefit from both accurate detection of the peaks and precise forecasts, as
applied to the Polish power system. The key finding is that the algorithms can detect 96.3% of
electricity peaks (load value equal to or above the 99th percentile of the load distribution) and deliver
accurate forecasts, with mean absolute percentage error (MAPE) of 3.10% and resistant mean absolute
percentage error (r-MAPE) of 2.70% for the 24 h forecasting horizon.
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1. Introduction

Short-term load demand forecasting up to 24 h in advance is essential for the efficient and
secure management of power systems. Load forecasting is concerned with different horizon scales:
hourly, daily, weekly, monthly, and annual values for both overall demand and peak demand.
Importantly, short-term forecasting has attracted a great deal of attention in the literature due to
its applicability in power system management, including resource planning and taking control actions
towards load balancing [1–3]. Other forecasting horizons, for example in the medium- and long-term,
are necessary for system planning, investment, and budget allocation. Imprecise load forecasting may
cause an increase in terms of the operating cost of the network [4,5]. In particular, overestimation
of the demand results in excess supply, and it may be problematic in balancing the network, while
underestimation of the load may lead to a failure in delivering enough reserve, which entails the high
costs of producing extra load units.

Delivering an accurate and robust load forecasting methodology requires tools with strong nonlinear
mapping capabilities since demand data often present nonlinear patterns. Moreover, socio-behavioral,
economic, and environmental factors may influence electricity consumption. This results in hourly,
daily, weekly, and seasonal fluctuations in electricity consumption patterns and the existence of peak
periods characterized by abnormally high consumption levels [6–8].
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In this paper, we investigate a two-stage approach to forecast the hourly electricity loads in the
overall national power system 24 h ahead by taking into account predictions from demand peak
classification models. The models are trained to identify an extraordinary load level, equal to or above
the 99th, 95th, or 90th percentiles for respective load distribution when considering the loads of weekly
time windows. The scores from classification models then feed the forecasting models. Thus, more
accurate short-term forecasts can be proposed as compared to the basic model without additional,
peak-related features.

Specifically, based on simulation experiments we aim to find the answers to the following
research questions:

(1) Is it possible to deliver accurate demand peak load classification for a forecasting horizon 24 h
in advance?

(2) Is it possible to deliver accurate load demand forecasting 24 h ahead? To what extent?
(3) Do the additional variables related to the predicted peak loads improve demand forecasting

24 h ahead?
(4) What algorithms are appropriate for the two-stage modeling approach in order to deal with this

kind of hourly data?

The reminder of the paper is structured as follows: a literature review on related problems is
provided in Section 2. The data characteristics and their mapping into the binary classification problem
(peak identification) and the load forecasting in the Polish power system [9] are presented in Section 3.
Then, in Section 4, a comprehensive description of the proposed two-stage modeling approach is
presented. The empirical analysis and comparison of the algorithms are used for both classification
and forecasting problems, and the summary of the results are presented in Section 5. Finally, Section 6
concludes the paper and outlines direction for future research.

2. Literature Review on Related Problems

Electricity demand management applies to effective utilization of the available energy resources,
system reliability, energy conservation, and other actions that promote energy efficiency for sustainable
development. Managing limited energy resources in an optimal way has become a primary goal
among energy suppliers, energy planners, policy makers, and governments. In this context, demand
management is supposed to deliver self-sufficiency and cost-effectiveness leading to solid and
sustainable economic development. In particular, the motivation of the research stream in this area is
focused on, inter alia, demand forecasting, electricity price forecasting, identification of conservation
needs, identification of new energy resources, optimized energy utilization, methods for energy
efficiency intensification, and strategies for reduced emission of gases.

A considerable amount of research has been dedicated to electricity price forecasting.
As investigated by Weron [10], there were more than 800 publications related to electricity price
forecasting in the years 1989–2013, as indexed in the Web of Science and Scopus databases. While there
is a high saturation of scientific articles, there are only three books that address electricity price
forecasting, which are those of Shahidehpour et al. [11], Weron [12], and Zareipour [13].

Energy forecasting models can be systematized in several ways, categorized as static or dynamic,
univariate or multivariate, or as involving various techniques ranging from simple naive methods
through a wide range of times series methods to complex hybrid and artificial intelligence models.
A wide variety of forecasting approaches has been proposed in the literature, and these fall into
several research streams. For the purpose of the review, the approaches are categorized under the
following headings: (1) statistical and time series models; (2) computational intelligence models; and
(3) hybrid models.

Under the first category of statistical and time series models are a number of approaches which are
the applications of statistical or econometric methods including regression models, macro-economic
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econometric models, cointegration models, autoregressive integrated moving average (ARIMA)-type
models, decomposition models, and gray prediction models.

Time series models are the most frequently used methods to represent the future values based on
previous observations. The models based on time series have many forms adequate for forecasting
electricity consumption volume and peak demand load in the electrical grid. These models are often
applied to demand forecasting at the regional/national level. For instance, Himanshu and Lester [14]
used six different time series approaches for predicting electricity demand in Sri Lanka and the
forecasts from these techniques look fairly similar considering the horizon of the year 2025. Others, like
Gonzalez-Romera et al. [15] applied an approach to monthly energy forecasting for Spain, in which
two time series are considered separately: the trend, and the fluctuation around it.

Regression models are built to capture a relationship between a dependent variable, which is
the energy usage, and one or more independent variables (the predictors). These models were used
by Jannuzzi and Schipper [16] to analyze the electrical energy consumption of the residential sector
in Brazil. An interesting finding was that the electricity demand increased faster than the income.
In [17], linear and nonlinear effects between energy consumption and economic growth in Taiwan
were explored by Lee and Chang, based on data over the period 1955–2013. In [18], a linear regression
model was used by Yumurtaci and Asmaz to predict electricity consumption in Turkey based on the
population size and energy consumption increase rates per capita.

Econometric models are built to investigate dependencies between the energy demand and
other macro-economic variables such as energy price, gross national product (GNP), technology,
investments, and population size. For instance, Samouilidis and Mitropoulos [19] studied energy
and economic growth over the 1960s and the 1970s in industrialized countries, suggesting decreasing
income and energy price elasticity. Others, such as Sengupta [20], have demonstrated that econometric
models are effective for forecasting energy patterns in developing countries like India. Quite often the
econometric models are proposed to forecast demand for different electricity sources, e.g., coal, oil,
and different sectors including industry, transportation, and residential end users in industrialized [21]
and developing [22] countries.

Among a wide range of econometric methodologies used to capture energy demand relationships,
cointegration models were found to change the perception of researchers and practitioners towards
electricity demand forecasting [23]. According to the cointegration concept, non-stationarity of the
variables indicates that there is no long-run (cointegrating) relationship between them, and the
regression results may be spurious, as concluded by Hasanov et al. [24]. This indicates that only
stationary variables should be considered in the analysis, and, as an alternative, if cointegration is
observed amongst non-stationary variables, then the regression results suggest long-run relationships
as being present in data.

There are two common approaches to build decomposition models for which energy consumption
(EC) and the energy intensity (EI) analysis can be distinguished. The terms EC and EI indicate the
energy-related variable subject to decomposition. As explained in [1], these effects are “associated
with the change in aggregate production level, structural change in production, and changes in
sectoral energy intensities, while in the energy intensity approach only the last two effects are
considered.” For instance, the relevant application issues, including method selection, period-wise
against time-series decomposition, and the importance of sectorial disaggregation were analyzed and
thoroughly reviewed by Ang [25].

The ARIMA models describe the approximate model of data sequences over time, assuming
the lag term and random error term to explain and to predict the future outcome with a certain
mathematical formula [26]. Univariate Box–Jenkins autoregressive integrated moving average
(ARIMA) analysis has been widely applied to forecasting in many fields, including environmental,
medical, business and finance, and engineering problems [1,26,27].

Gray models for prediction gained popularity due to their simplicity and ability to describe
unknown relations, even when using only a few data points. As argued by Chiang et al. [28] energy
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demand forecasting can be considered as a gray system problem, because only a few variables such as
GDP, investment, and population size are known to contribute to the energy demand, but the exact
relations and the method of affecting the energy demand is not necessary clear or even unknown.
The family of gray forecasting models consists of several types and GM(1, 1) is commonly used for
forecasting energy demand, as presented by Hsu and Chen [29].

Within the category of computational intelligence methods, we can distinguish a number of
artificial intelligence-based, neural network, support vector machine, non-parametric, and non-linear
techniques, which combine elements of learning, evolution, and fuzziness to create robust approaches
that are capable of modeling complex and dynamic systems.

Over the last two decades, a great research stream has been dedicated to the application of
artificial neural networks (ANNs) and expert systems for electricity load forecasting. ANNs, with
their high modeling capability and their ability to generalize non-linear relations, gained widespread
popularity for general forecasting in a variety of business, industry, and science applications [30,31].
Neural network models have been extensively studied and successfully applied to short-term electricity
forecasting [32–35]. Some researchers have worked on ANN models applicable to medium- and
long-term forecasting [36,37]. Cincotti et al. [38] proposed two computational intelligence techniques,
ANN and the support vector machine, to model electricity spot prices of the Italian Power Exchange.
The results indicate that support vectors give better forecasting accuracy, closely followed by the
econometric models.

Recently, within the smart metering and smart grid initiatives, there has been increasing interest
in residential power load forecasting. For this purpose, a number of neural networks and expert
systems are applied to load forecasting at the individual household level [39–41]. However, this is a
challenging task due to the extreme system volatility, which is the result of different dynamic processes
composed of the typical, mostly behavioral and socio-demographic, components of many households.
Aggregation of individual components reduces the inherent variability of electricity consumption
resulting in smoother load shapes; as a result, the forecasting errors observed at the higher aggregation
levels (power stations or regions) have been quite low.

Over the last couple years soft computing techniques including genetic algorithms and
neuro-fuzzy and fuzzy logic models have been more frequently applied in energy demand forecasting.
For instance, Tzafestas and Tzafestas [42] analyzed eight case studies to show the merits, and validate
the performance, of the various computational intelligence techniques constructed under a large
repertory of data including geographic and weather features. Ozturk et al. [43] applied genetic
algorithms for forecasting the electricity demand in Turkey. The models were successfully validated
with actual data, while future estimation of electricity demand was projected up to 2025. Ying and
Pan [44] proposed an adaptive network based on the fuzzy inference system to forecast electricity
loads in four regions of Taiwan.

Based on the available literature, there is a clear and increasingly recognizable research interest
that looks at the application of various hybrid models, combining techniques from two or more of the
groups listed above. This stream is aimed at increasing the load forecasting accuracy by benefiting
from the best features associated with different approaches and their synergy. For instance, in [45],
the authors combined the ARIMA forecasting model, the seasonal exponential smoothing model, and
the weighted support vector machines for short-term load forecasting. They demonstrated that the
combined solution can effectively account for the nonlinearity and seasonality to benefit from more
accurate forecasting results. In [46], Pao proposed two hybrid nonlinear models as a combination of a
linear model with an ANN to create an adjusted forecast. The superiority of the hybrid is due to their
flexibility in accounting for complex hidden relationships that are difficult to capture by linear models.

In [47], Amjady and Kenya proposed a hybrid method composed of cascaded forecasters where
each block consists of an ANN and an evolutionary algorithm. Such a structure was able to deliver
high effectiveness and outperformed a combination of similar day and ANN techniques.
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Within the research stream dedicated to load forecasting, there is considerable interest in
electrical peak load forecasting. Peaks may cause serious challenges to the electricity grid because
it needs to support the abnormally high consumption load. Managing these peaks is crucial for the
utility providers since energy deficiency can lead to severe consequences such as power outages.
Electricity consumption peaks appear in the electricity system as a consequence of the joint behavior of
end users, which is influenced by many external factors [6,7,48]. An example of an aggregate behavior
is when a relatively large group of individual consumers turns on air conditioners within a short
time span because of high temperatures. This behavior is easy to notice since temperature increase
affects a large population, which might cause the peak. However, there are other factors that are likely
to influence users’ electrical consumption; therefore, it is not trivial to detect high loads in advance.
Luckily, peak loads usually follow similar patterns [49,50], and these can be identified with, inter alia,
classification and pattern recognition algorithms to be further used to improve the accuracy of the
forecasts, as presented in our paper. For instance, in [6], the authors proposed the approach to predict
electricity consumption peaks as an input to load balancing and price incentive strategies. This was
done by mapping the prediction activities into a two-labeled classification problem. The authors
declared that the solution was able to detect about 80% of consumption peaks considering a forecasting
horizon of up to one week. A different approach was chosen in [7] to find some characteristic patterns
in data that may determine changes in the demand peaks. Then, the classification of the load curves
into groups was proposed to give the analytical space for couple of functional linear models used to
make peak load forecasts. Another interesting proposal was presented by Hyndman and Fan in [48]
as an application to forecast probability distributions, including 10%, 50%, and 90%, of weekly and
annual peak electricity demand up to 10 years ahead for South Australia.

Based on the literature review, research on electricity load forecasting is maturing, with numerous
approaches and attempts proposed throughout the last several decades. However, there is still an
increasing and recognizable need to look at the challenges associated with behavioral factors that
influence the energy usage considered at different aggregations, including individual end users,
micro-grids, and region or country levels. Since peak load forecasting plays an important role in the
effective management of power utilities, it falls under one of the current research streams focused
on predicting the peaks as an input into load balancing and smart management strategies. These are
intended to achieve, in the future, automatic behavior at the customer end, including automatic
management of smart electrical appliances (controlled switch on–off events), supporting local level
load balancing.

With this paper, it is expected that the proposed two-stage modeling approach will help energy
planners to forecast more accurately and to utilize energy resources in a sustainable way by reducing
the cost of operating power systems.

3. Dataset Characteristics

3.1. Load Data

This study was performed based on historical data representing energy consumption in the Polish
power system [9]. The data set included 70,128 observations of hourly data covering the time window
between 1 January 2008 and 31 December 2015. As shown in Figure 1, a time series of the Polish power
system exhibited annual, weekly, and daily seasonal cycles.

The daily load curves have different shapes depending on the day type (workday, Saturday,
Sunday, or holiday) and the season. Figure 2 presents a smooth profile shape with relatively low
electricity usage at night and in the early morning, clearly defined peaks in the evenings, and slightly
smaller defined peaks in the late morning. Electricity usage is significantly lower during the weekend
or holiday days. On Wednesday (11 November), there was a national holiday, which resulted in low
electricity demand.
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Fluctuations in the daily load characteristics and the load volume during the seasons of the
year are influenced by weather conditions including temperature, humidity, wind, cloud coverage,
and precipitation, as well as day length. When it comes to weekly cycles, these are determined by
workdays, weekend days, and holidays. These multiple seasonal cycles in the electricity consumption
along with the trend and non-stationarity in mean and variance have to be reflected in the forecasting
algorithm in order to build a robust and an accurate solution.Energies 2017, 10, 1547 6 of 25 
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3.2. Weather Data

Weather is one of the most important independent variables for electricity forecasting.
Temperature and humidity are features that are often used in the forecasting models to describe
weather conditions. An example of weekly average temperature and humidity data in Warsaw in
2015 is presented in Figure 3. Unexpected weather conditions are often considered as the tipping
point that can cause a severe instability of the system and decrease its efficiency in terms of the
power supply. For instance, unexpected thunderstorms in the middle of sunny day are one of the
environmental factors that can suddenly decrease the temperature and thus lead to an overestimated
load prognosis [51], resulting in production of more power than is actually required.

As argued by Fahad and Arbab [52], there is a high and positive correlation between the
temperature and the load volume during the summer season, while there is a negative correlation
between the temperature and the load volume during the winter. In other words, in the summer, a
certain temperature increase will result in a load increase, and going forward a temperature decrease
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will result in a decrease in the average daily load and a lowering of the peak volume. In the winter, an
opposite trend is observed, as a decrease in the temperature will result in an increasing demand for
electric load. Such regularity is because in the summer an increase in temperature affects consumers
who use electricity for cooling purposes (air conditioners and fans), whereas in the winter electricity is
predominantly used for heating homes.
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Another weather factor influencing overall load curve is humidity. In practice, it is referred to as
relative humidity, and it is expressed using percentage values. There is a common observation that
humidity can affect apparent temperature perceived by individuals, while it has no effect on the real
temperature. However, humidity can make a 33 ◦C temperature seem more severe, say 40 ◦C.

3.3. Determining Peak Values

In order to determine peak load values, the generic function quantile implemented in R was
used [53]. The function produces sample quantiles corresponding to the given probabilities by the
weighted averaging of order statistics Zg:

Qp = (1 − γ)Zg + γZg + 1 (1)

where γ = np + m − g, n is the number of observations, g = floor(np + m), and m = 1 − p.
In this study, peak load was determined as the load value equal to or above the 99th, 95th, or 90th

percentile for a given load distribution when load was grouped for each week, as presented in Figure 4.
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In the figure, the black curve shows the hourly electricity consumption observed in November
2015. The blue line reflects the average load within a particular week, and the red line shows the
threshold values above which the loads are recognized as peak values. Finally, the green dots stand for
the peak load exceeding the 90th percentile of the distribution.

4. Two-Stage Modeling Approach

4.1. General Idea of the Approach

The idea of the approach is to forecast short-term electricity loads by taking into account
predictions from demand peak classification models. The models are trained to identify the
extraordinary load levels, which are equal to or above the 99th, 95th, or 90th percentile for the
respective load distribution when the weekly time windows are considered. The scores from the
classification models are used to enhance the forecasting models; thus, more accurate short-term
forecasting can be proposed as compared to the basic model without additional, peak-related features.

The proposed predictive solution consists of two main phases, namely the peak classification
phase and the forecasting phase (see Figure 5, which presents the graphical illustration of the approach).
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4.1.1. Data Processing

The inputs of the proposed system are the weather data and data, reflecting the load of the Polish
power system. From these time series, a set of 97 independent variables was extracted (see Section 4.2
for variables details). All the missing values were imputed using a moving average over a sliding
window of 5 h.

4.1.2. Peak Classification Phase

The classification phase consists of two stages. Within the first stage, only the independent
variables that had the best discriminatory power were determined (see Section 4.3 for more details).
Next, based on the derived variables, three classification models were built to identify the load levels
that are equal to or above the 99th, 95th, or 90th percentile of the distribution. The models were focused
on electrical power consumption peak detection in the power system based on historical data for both
electricity usage and the weather conditions data, including temperature and humidity. In this way,
we deal with peak detection as a binary classification problem, unlike most previous studies where the
problem is formulated as time series forecasting.
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4.1.3. Additional Features

In this stage, three additional features based on the classification models are constructed.
These additional features are the classification scores, indicating the probability that peak load will
occur. In order to benefit from the optimal score threshold, which determines the peak (score above the
threshold) or normal load (score below the threshold), Youden’s J statistic [54] was applied. The optimal
cut-off is the value that maximizes the distance to the identity (diagonal) line. The optimality criterion
is defined as:

max(Tpr + (1 − Fpr)) (2)

where Tpr is the proportion of positives (peaks) that are identified correctly. As such, Fpr is the ratio
of negative events (non-peaks) wrongly classified as positive (false positives) to the total number of
actual negative events.

4.1.4. Forecasting Phase

In this phase, we will study an approach to forecast the hourly electricity demand of the
Polish power system for the 24 h ahead, taking into account the same feature vector as in the
case of the classification models (see Section 4.3 for details) to produce a basic forecasting model.
Enhanced forecasting models will be built on the extended feature vector, including variables that
come from the peak classification models for the different quantiles, i.e., the 99th, 95th, or 90th quantiles.

4.1.5. Evaluation

To evaluate the models, the data were split into the training, validation, and test datasets. After the
two-stage modeling approach, the predicted values from these datasets were compared with the true
electricity consumption values. A set of commonly used and acknowledged performance measures
was calculated to evaluate the quality of the forecasts.

4.1.6. Improved Forecast

Finally, the two-stage modeling approach is to enhance the short-term forecasting of Polish power
system loads. The outcome of this stage is to present improved forecasts able to detect underlying
dependencies in analyzed data.

4.2. Feature Vector

We focused on the next-day peak power demand classification and electricity load forecasting.
For both exercises, a feature vector with the attributes as listed in Table 1 was constructed. The attributes
were derived from historical time series data recorded at hourly intervals. Additionally, external
features were collected, including weather condition data represented by the sunset information, the
temperature, and the humidity. Calendar variables were considered as well.

The main variables taken into account for the modeling are these extracted directly from the
load curve (Attributes 1–78 as presented in Table 1). The features were prepared by time series
decomposition, and they define, among other characteristics, linear trend, actual hourly demand, and
average demand at certain intervals, taking into account information up to 7 days prior.

Electricity demand fluctuates over time and types of cycles. Fluctuations in daily, weekly, monthly,
and seasonal demand, as well as those related to holidays can be observed in the data. Therefore, the
analysis was enriched with an additional 19 variables, including 5 variables describing the hour,
5 variables representing the day of the month, 3 variables used to decode the day of the week,
4 variables associated with the month, 1 holiday indicator variable, and 1 variable indicating the
hour of the sunset. All the above time and calendar variables were derived in the following manner
(bit encoding instead of standard dummy encoding): firstly, all the categories were presented as
ordinal, these integers were then transformed into binary code, and the digits from the binary strings
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were finally split into separate columns. Such data encoding enables data transformation into fewer
dimensions than in standard dummy encoding.

Table 1. Feature vector used for estimating the models.

Attribute No. Description Formula

1–24 Load of the previous 24 h Lg−i, i = 1, . . . , 24

25–32 Average load observed over previous hourly intervals avg
{

Lg+2−i, Lg+1−i, Lg−i

}
i = 3, 6, 9, 12, 15, 18, 21, 24

33–38 Load in the same hour of the previous week Lg,d−i, i = 2, . . . , 7

39–46 Linear trend of the load observed over previous hourly intervals Trend
{

Lg+2−i, Lg+1−i, Lg−i

}
i = 3, 6, 9, 12, 15, 18, 21, 24

47–54 Average temperature observed over previous hours avg
{

Tg−1, . . . , Tg−i

}
= 3, 6, 9, 12, 15, 18, 21, 24

55–62 Average temperature observed over previous hourly intervals avg
{

Tg+2−i, Tg+1−i, Tg−i

}
i = 3, 6, 9, 12, 15, 18, 21, 24

63–70 Average humidity observed over previous hours avg
{

Hg−1, . . . , Hg−i

}
= 3, 6, 9, 12, 15, 18, 21, 24

71–78 Average humidity observed over previous hourly intervals avg
{

Hg+2−i, Hg+1−i, Hg−i

}
i = 3, 6, 9, 12, 15, 18, 21, 24

79–83 Hour indicator (bit encoding) Gi, i = 1, . . . , 24
84–88 Day of the month indicator (bit encoding) Di, i = 1, . . . , 31
89–91 Day of the week indicator (bit encoding) Ti, i = 1, . . . , 7
92–95 Month indicator (bit encoding) Mi, i = 1, . . . , 12

96 Holiday indicator (dummy variable) S
97 Sunset indicator (dummy variable) N

4.3. Features Selection

4.3.1. Features Selection for Peak Classification Models

In order to identify dependence between the observed peak load and explanatory variables,
the area under the receiver operating characteristics curve (AUC) was applied [55]. In this case, the
discriminatory power of each variable was verified in the following manner:

• Quantitative and ordinal variables were sorted in ascending order; categorical variables were
sorted in ascending order based on the conditional probability of belonging to positive cases.

• The receiver operating characteristics (ROC) curve was determined. The actual values of the
sorted variables served as the score values of the classification model.

• The AUC measure was computed using trapezoidal integration.

Final AUC values for a peak load equal to or greater than the 99th percentile for all the features
are presented in Table 2 (quantitative variables) and Table 3 (categorical variables).

In the case of quantitative variables, the greatest discriminatory power can be assigned to d_6,
d_5, trend_1_18, trend_1_15, d_7, trend_1_3, and t_1 attributes. Of the categorical variables, two of
them—hour and week_day—have the best performance.

Similar variables were indicated by AUC values for extraordinary load classification as defined
for the threshold value which was equal to or above the 95th and 90th percentiles.

Obviously, there is a strictly linear dependence between some features, which means that the
redundancy in the data could be observed. There is no need to include, for instance, variable t_4
and t_5 in the final input vector, due to their collinearity. Therefore, from the best set of attributes,
the variables with a Spearman correlation coefficient greater than 0.6 were removed. The final set of
attributes is presented in Table 4.
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Table 2. Area under the curve (AUC) values for the quantitative variables used to detect 99th
percentile peaks.

Variable Name AUC Variable Name AUC Variable Name AUC Variable Name AUC

t_1 0.744 t_21 0.551 d_2 0.677 temp_avg_19_21 0.530
t_2 0.678 t_22 0.629 d_3 0.673 temp_avg_22_24 0.496
t_3 0.663 t_23 0.689 d_4 0.740 hum_avg_1_3 0.615
t_4 0.665 t_24 0.720 d_5 0.815 hum_avg_4_6 0.650
t_5 0.644 temp_1_3 0.528 d_6 0.840 hum_avg_7_9 0.557
t_6 0.608 temp_1_6 0.540 d_7 0.766 hum_avg_10_12 0.556
t_7 0.560 temp_1_9 0.532 avg_1_3 0.701 hum_avg_13_15 0.610
t_8 0.531 temp_1_12 0.514 avg_4_6 0.641 hum_avg_16_18 0.582
t_9 0.514 temp_1_15 0.504 avg_7_9 0.535 hum_avg_19_21 0.508
t_10 0.514 temp_1_18 0.514 avg_10_12 0.575 hum_avg_22_24 0.552
t_11 0.573 temp_1_21 0.516 avg_13_15 0.709 trend_1_3 0.752
t_12 0.638 temp_1_24 0.514 avg_16_18 0.688 trend_1_6 0.632
t_13 0.687 hum_1_3 0.615 avg_19_21 0.529 trend_1_9 0.657
t_14 0.714 hum_1_6 0.638 avg_22_24 0.684 trend_1_12 0.725
t_15 0.708 hum_1_9 0.619 temp_avg_1_3 0.528 trend_1_15 0.786
t_16 0.696 hum_1_12 0.578 temp_avg_4_6 0.549 trend_1_18 0.788
t_17 0.690 hum_1_15 0.540 temp_avg_7_9 0.509 trend_1_21 0.731
t_18 0.664 hum_1_18 0.517 temp_avg_10_12 0.543 trend_1_24 0.607
t_19 0.608 hum_1_21 0.513 temp_avg_13_15 0.571
t_20 0.530 wilg_1_24 0.519 temp_avg_16_18 0.564

Table 3. AUC values for the categorical variables used to detect 99th percentile peaks.

Variable Name AUC

month 0.504
month_day 0.509

hour 0.748
week_day 0.678

Table 4. Final set of independent variables for classification models.

Variable Name

d_6
trend_1_18
trend_1_3

d_4
trend_1_12

t_24
t_14

avg_1_3
t_18

hum_avg_4_6
hum_avg_13_15

hour
week_day

4.3.2. Feature Selection for Forecasting Models

In order to identify the dependence between observed electricity consumption and quantitative
explanatory variables, Spearman correlation coefficient statistics were applied as presented in Table 5.

The greatest predictive power can be observed in the case of the following variables: d_6, t_1,
d_5, d_7, avg_1_3, t_2, and trend_1_9. As previously, all the quantitative variables with a Spearman
correlation coefficient greater than 0.6 were removed due to their collinearity.
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Next, the chi-square (χ2) test was applied to determine whether there were any significant
differences between the expected frequencies and the observed frequencies for one or more categories
in the raw structure of the categorical variables and observed electricity consumption.

Table 5. The results of the Spearman correlation coefficient for the quantitative variables.

Variable Name Value Variable Name Value Variable Name Value Variable Name Value

t_1 0.7488 t_21 0.4011 d_2 0.5692 temp_avg_19_21 −0.3106
t_2 0.6561 t_22 0.5068 d_3 0.5634 temp_avg_22_24 −0.2411
t_3 0.5362 t_23 0.5861 d_4 0.5944 hum_avg_1_3 −0.1002
t_4 0.4086 t_24 0.6152 d_5 0.7418 hum_avg_4_6 −0.0085
t_5 0.2838 temp_1_3 −0.2290 d_6 0.9082 hum_avg_7_9 0.1404
t_6 0.1697 temp_1_6 −0.2501 d_7 0.7308 hum_avg_10_12 0.2920
t_7 0.0729 temp_1_9 −0.2821 avg_1_3 0.6616 hum_avg_13_15 0.3528
t_8 0.0002 temp_1_12 −0.3190 avg_4_6 0.2929 hum_avg_16_18 0.2601
t_9 −0.0457 temp_1_15 −0.3487 avg_7_9 0.0075 hum_avg_19_21 0.0646

t_10 −0.0685 temp_1_18 −0.3611 avg_10_12 −0.0797 hum_avg_22_24 −0.0801
t_11 −0.0785 temp_1_21 −0.3560 avg_13_15 −0.0989 trend_1_3 −0.4443
t_12 −0.0854 temp_1_24 −0.3428 avg_16_18 −0.0013 trend_1_6 −0.5942
t_13 −0.0940 hum_1_3 −0.1002 avg_19_21 0.2939 trend_1_9 −0.6253
t_14 −0.1003 hum_1_6 −0.0582 avg_22_24 0.5829 trend_1_12 −0.5817
t_15 −0.0951 hum_1_9 0.0117 temp_avg_1_3 −0.2290 trend_1_15 −0.5229
t_16 −0.0667 hum_1_12 0.0996 temp_avg_4_6 −0.2700 trend_1_18 −0.4314
t_17 −0.0100 hum_1_15 0.1735 temp_avg_7_9 −0.3406 trend_1_21 −0.2519
t_18 0.0729 hum_1_18 0.2053 temp_avg_10_12 −0.4146 trend_1_24 −0.0196
t_19 0.1742 hum_1_21 0.1942 temp_avg_13_15 −0.4455
t_20 0.2865 wilg_1_24 0.1643 temp_avg_16_18 −0.4028

The dependent variable was divided into four disjoint groups based on the quantiles values of
the electricity consumption distribution. Then, for each dependent variable and independent variable
the contingency Table 4 × k was created, where k is the number of distinct categories of each variable.
Finally, the chi-square test was applied to the table. The test revealed that the holiday indicator variable
was not statistically significant. Out of categorical variables, five of them—hour, month, day_month,
day_week, and sunset indicator—have a statistically significant (α = 0.05) relation with the target
variable. The final set of independent variables for the forecasting including both the quantitative
variables and the categorical variables is shown in Table 6.

Table 6. Final set of independent variables for forecasting models.

Variable Name

hour_1 day_week_1
hour_2 day_week _2
hour_3 day_week _3
hour_4 sunset
hour_5 d_6

month_1 t_24
month_2 trend_1_6
month_3 trend_1_12
month_4 t_3

day_month_1 temp_avg_13_15
day_month_2 hum_avg_13_15
day_month_3 t_19
day_month_4 t_14
day_month_5 hum_1_3
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4.4. Accuracy Measures

4.4.1. Accuracy Measures for Classification

In order to evaluate the model performance, four measures were used: classification accuracy,
sensitivity (true positive rate—Tpr), specificity (true negative rate Tnr), and area under the receiver
operating characteristics curve (AUC) [55]. As far as binary classification is concerned, the models
yield two classes, positive and negative, so there are possible four outcomes, as shown in Table 7.

Table 7. Confusion matrix for binary classification.

Predicted Value

Positive (P) Negative (N)

Real value
Positive (P) True positive (TP) False negative (FN)

Negative (N) False positive (FP) True negative (TN)

Based on the above table, the accuracy (AC) measure can be computed, which is the proportion of
the total number of predictions that were correct. It is determined using the below formula:

AC =
TP + TN

TP + FP + TN + FN
. (3)

In order to construct the ROC curve and calculate the AUC value, two indicators need to
be defined: true positive rate Tpr = TP

TP+FN , and false positive rate Fpr = FP
FP+TN = 1 − Tnr.

These measures can be calculated for different decision threshold values. An increase of the threshold
from 0 to 1 will yield to a series of points (Fpr, Tpr) constructing the curve with Tpr and Fpr on the
horizontal and vertical axes, respectively. One of the main features associated with the ROC curve
is that the curve is increasing and invariant under any monotonic increasing transformation of the
considered variables. In a general form, the value of AUC is given by

AUC =

1∫
0

ROC(u)du. (4)

Moreover, let Xp and Xn denote the markers for positive and negative cases, respectively. It can
be observed that AUC = P

(
Xp > Xn

)
, which can be interpreted as the probability that in a randomly

drawn pair of positive and negative cases the classifier probability is higher for the positive one.

4.4.2. Accuracy Measures for Forecasting

To evaluate the models’ forecasting ability, four measures were used. These were the
root-mean-squared error (RMSE), mean absolute percentage error (MAPE), resistant mean absolute
percentage error (r-MAPE), and symmetric mean absolute percentage error (SMAPE) [56].

The root-mean-squared error is defined by the following formula:

RMSE =

√
1
n

n

∑
i=1

(Li − Pi)
2 (5)

where Li is the observed load in hour i and Pi is the forecasted load in hour i.
Mean absolute percentage error is the measure that satisfies the criteria of reliability, ease of

interpretation, and clarity of presentation:

MAPE =
1
n

n

∑
i=1

∣∣∣∣ Li − Pi
Li

∣∣∣∣× 100%. (6)
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However, the MAPE error does not meet the validity criterion because its distribution is usually
skewed to the right due to outlier values. Therefore, MAPE can be highly influenced by some very
atypical and unusual instances that can damage forecasts that are quite accurate. For this reason, we
propose an alternative measure, called resistant MAPE or r-MAPE, which benefits from the Huber
M-estimator characteristics, and thus may overcome the limitation [57]. An M-estimator for the
location parameter µ using the maximum likelihood (ML)-estimator is defined as a solution θ to

min
θ

n

∑
i=1

ρ


∣∣∣ Li−Pi

Li

∣∣∣− θ

σ

× 100%, (7)

or
n

∑
i=1

ϕ


∣∣∣ Li−Pi

Li

∣∣∣− θ

σ

× 100% = 0 (8)

where ϕ = ρ′, and σ is the scale parameter. For a given positive constant k, the Huber [58] estimator is
defined by the following function in ϕ:

ϕ(x) =


k x > k

x − k ≤ x ≤ k
−k x < −k

(9)

where k is a tuning constant that determines the robustness degree; in our particular case it was set
to 1.5. The function is referred as metric Winsorizing and gathers the extreme observations to µ∓ k.
In practice, σ is not known, so a median absolute deviation (MAD) robust estimator was used:

MAD = median(|X−median(X)|). (10)

The third measure used was the symmetric mean absolute percentage error, and it is usually
defined as follows:

SMAPE =
|Li − Pi|
|Li |+|Pi |

2

× 100%. (11)

In contrast to MAPE, SMAPE has both a lower and an upper bound. The formula above provides
the output, which is between 0 and 200%.

4.5. Implementation of the Machine Learning Algorithms

All the numerical calculations were performed on a personal computer with the following
parameters: Ubuntu 16.04 LTS operating system and Intel Core i5-2430M 2.4 GHz, 2 CPU × 2 cores,
8 GB RAM. As the computing environment, R-CRAN was used [59]. The dataset was split into three
parts to create training, validation, and testing samples in the following way: the training sample
consisted of the 6 years between 1 January 2008 and 31 December 2013; the validation sample consisted
of the entire year of 2014; and the entire year of 2015 was used as the testing sample.

The primary criterion considered while learning the models was the generalization of the
knowledge with the least error. Since AUC is the measure commonly used to evaluate the quality
of binary classification models, to find the best parameters while training the models, the following
functions were maximized while learning the algorithms:

f (AUCT , AUCV) = −
1
2
|AUCT − AUCV |+

1
2

AUCV (12)
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where AUCT and AUCV stand for the training and validation errors, respectively. Similarly, the MAPE
error is commonly used to assess the forecasts’ accuracy in load prediction tasks. Therefore, in the case
of forecasting models, the following function was minimized:

f (MAPET , MAPEV) =
1
2
|MAPET −MAPEV |+

1
2

MAPEV (13)

where MAPET and MAPEV stand for the training and validation errors, respectively.

4.5.1. Artificial Neural Network Algorithm

An artificial neural network (ANN) is an algorithm that is often used to approximate complex
functions dealing with a large number of inputs. In comparison to other machine learning algorithms
such as decision trees, neural networks require preparation of the input data. Therefore, all the input
variables were normalized by zero unitarization.

To train the networks, Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm was used. It belongs
to the group of quasi-Newton optimization methods, and it is implemented in the R nnet library.
The proposed networks had an input layer with 13 neurons for classification models or 28 neurons
for forecasting models, depending on the best set of identified variables. Additional variables that
come from peak classification were added to train the enhanced forecasting model, so the number of
input neurons was equal to 31. In the hidden layer, a different number of neurons were tested, starting
from 1 to 15. Regularization parameters for weight decay to avoid over-fitting were set to {0.01, 0.05,
0.1, 0.15, 0.2, 0.25, 0.3}. A logistic function was used to activate all neurons in the network. To control
overfitting, after every learning iteration (up to 100 iterations), the models were reviewed in terms of
the measures defined in Equations (12) and (13), for classification and forecasting, respectively.

After all, out of 15 networks that were learned, the one characterized by the highest value (12) for
classification, or the one with the smallest error defined according to Equation (13), was chosen as the
best model structure for classification or forecasting, respectively.

4.5.2. Random Forest Algorithm

The random forest training was prepared using the randomForest library. Prior to the training, the
n-element samples were drawn with replacement constituting of approximately 63% of the original
population. These samples were prepared to build the CART tree. Each tree was allowed to grow to
its maximum size without any pruning, with the only restriction being avoid the leafs with 5 or less
observations inside. The number of variables (mtry parameter) used in the forests varied from 1 to 13
for the classification models and from 1 to 28 for the forecasting models. The total number of trees
in the forest was 500, and the final prediction was assessed based on majority voting (classification
models) or simple averaging (forecasting models). Similarly, as in previous applications, the best forest
structure was selected in accordance with Equations (12) or (13).

4.5.3. Support Vector Machine Algorithm

To construct the support vector machine for classification (C-SVM) and forecasting (ε-SVR), the
kernlab library was used with its sequential minimal optimization (SMO) algorithm dealing with the
quadratic programming problem. In order to build stable solution with the satisfactory performance,
during the learning process, a combination of several parameters was checked (as applicable):

• the linear, polynomial, radial basis and sigmoid functions were used as a kernel function;
• the degree parameter needed for polynomial kernel type was set to {1, 2 or 3};
• the gamma parameter needed for all kernels, except linear, was set to {0.1, 0.3, 0.5, 0.7, 0.9, 1};
• for the classification models, cost values of constraint violation (constant of the regularization

term in the Lagrange formulation) were set to {0.1, 0.3, 0.5, 0.7, 0.9, 1};
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• for the forecasting models, the value of the ε-parameter, which is used to define the margin width
where the value of the error function is zero, was arbitrarily tested by applying the values from
following set {0.1, 0.3, 0.5, 0.7, 0.9, 1}.

In order to improve the algorithm’s efficiency, we used the normalized data. Finally, as for
previous techniques, the model that maximized (12) or minimized (13) was selected as the best one.

5. Results

5.1. Classification Results

The classification results for all machine learning algorithms obtained on training, validation, and
testing datasets are presented in Table 8.

Prior to classification, the benchmarking model was constructed as the reference point to the
proposed classification algorithms. The benchmark was prepared in a way that, for each week, and
using only working days, the peak was identified based on data of the previous week, taking into
account the respective day and hour only when the load data exceeded the 90th, 95th, or 99th quantile
of the distribution. If the day of the previous week was a holiday, it was not considered as the forecast,
and the week before was taken instead.

For the purpose of the clarity, the following abbreviations were used: ANN—artificial neural
network algorithm, RF—random forests, and SVM—support vector machine algorithm. Moreover, in
the brackets, the best parameter settings related to each model are presented.

In the following, the results on the testing dataset are discussed since these are the best proxy of
the models performance on new set of the data points.

Model accuracy, which assesses how many correct forecasts the model makes, ranges between
0.812 and 0.906 depending on the algorithm and whether the model is used to classify the load
exceeding the 99th, 95th, or 90th percentile on the distribution. An important observation is that the
highest accuracy is observed for the SMV model, which is able to detect peaks with accuracy of 0.892,
0.906, and 0.906 for the loads that are equal to or higher than the 90th, 95th, and 99th percentile of the
distribution, respectively.

The AUC values for the models range between 0.938 and 0.971. Again, the highest AUC are
observed for the SVM models, regardless of the classification problem, since SVM superiority is
confirmed in all experiments that include the classification of the peaks greater than or equal to the
90th, 95th, and 99th percentile of the distribution.

In terms of sensitivity, which is the proportion of peaks that are correctly identified as such, the
results range between 0.899 and 0.963. In particular, the best model to classify the load exceeding
the 99th percentile of the distribution is ANN (0.963), while for the other classification variants, the
best model is RF, reaching a sensitivity of 0.933 and 0.945 for the loads exceeding the 95th and 90th
percentile of the distribution, respectively.

Finally, the specificity, which measures the proportion of non-peaks that are correctly captured as
such, ranges from 0.792 to 0.911. Irrespective of the classification problem, the SVM model delivers the
highest specificity values.

Interestingly, the benchmarking models outperformed the machine learning algorithms in terms
of accuracy and specificity. However, the ability to identify peaks correctly is very limited since
sensitivity is significantly lower as compared to the ANN, RF, and SVM models. The same is reflected
by the low AUC values, which means that the benchmark model does not distinguish well between
peaks and non-peaks.

Importantly, all proposed models exhibited stable performance in terms of the classification
quality on all three datasets. Therefore, the scores from these models can be used in further steps to
feed forecasting steps in the proposed approach.
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Table 8. Peak classification results of the machine learning algorithms. AC: accuracy; ANN: artificial neural network; RF: random forest; SVM: support vector machine.

Training/Validation/Test Sample

AC AUC Sens Spec

Model for 99th
percentile

ANN (iteration = 25, neurons = 7) 0.899/0.894/0.884 0.969/0.967/0.968 0.957/0.958/0.963 0.898/0.893/0.885
RF (mtry = 3) 0.848/0.878/0.812 0.936/0.936/0.938 0.909/0.909/0.932 0.847/0.847/0.847

SVM (kernel = polynomial, degree = 2, C = 0.5, gamma = 0.5) 0.916/0.905/0.906 0.981/0.966/0.971 0.966/0.968/0.932 0.915/0.904/0.904
Benchmarking model 0.984/0.981/0.983 0.668/0.617/0.644 0.345/0.245/0.297 0.922/0.990/0.991

Model for 95th
percentile

ANN (iteration = 27, neurons = 7) 0.898/0.893/0.889 0.967/0.967/0.961 0.936/0.938/0.922 0.897/0.891/0.891
RF (mtry = 3) 0.892/0.905/0.884 0.949/0.954/0.962 0.886/0.949/0.933 0.893/0.86/0.860

SVM (kernel = polynomial, degree = 3, C = 1, gamma = 0.5) 0.9259/0.9141/0.906 0.983/0.982/0.969 0.948/0.966/0.914 0.925/0.911/0.911
Benchmarking model 0.957/0.955/0.954 0.792/0.782/0.777 0.607/0.587/0.578 0.977/0.976/0.975

Model for 90th
percentile

ANN (iteration = 26, neurons = 14) 0.902/0.889/0.879 0.966/0.963/0.962 0.902/0.89/0.908 0.903/0.889/0.883
RF (mtry = 3) 0.863/0.883/0.847 0.950/0.947/0.963 0.898/0.972/0.945 0.860/0.792/0.792

SVM (kernel = polynomial, degree = 3, C = 1, gamma = 1) 0.922/0.908/0.892 0.980/0.977/0.967 0.977/0.935/0.899 0.921/0.906/0.906
Benchmarking model 0.939/0.934/0.935 0.834/0.822/0.825 0.702/0.680/0.687 0.966/0.963/0.963
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Additionally, to visualize the performance of the models for peak classification (model for the
90th percentile), the results obtained for the randomly drawn test period (five weeks in October 2015)
for the ANN model are shown in Figure 6.Energies 2017, 10, x  18 of 25 
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Figure 6. ANN peaks identification in the load data exceeding the 90th quantile of the distribution
(October 2015 data).

From the figure, we can observe that the peak loads are correctly predicted in sixty cases—green
dots represent true positive classification. Three peak loads, marked as red triangles, are incorrectly
classified as normal loads (false negative classification). Finally, in some cases (yellow diamonds), the
neural network model claims that there will be a peak load one day ahead, but there was in fact no
peak (false positive classification). For clarity, in Figure 6, the true negative class was not provided, as
it constitutes the overwhelming majority.

The results of the classification experiments can be summarized as follows:

• Peak demands in Poland are mostly affected by such features as the day of the week, temperature,
humidity, load in previous hours, and the load trend observed in the previous hours (please see
Table 4 for details).

• Predictive power of the models is considered to be excellent, which was confirmed by AUC,
accuracy, sensitivity, and specificity measures.

• The best results in terms of accuracy, AUC, and specificity were obtained for the SVM model;
however, the sensitivity of peak detection (for 95th and 90th percentile) was better captured by
the RF model.

• Models reflect stable performance in terms of the classification quality on three datasets (training,
validation, and testing);

• A high true positive rate confirms the models’ ability to classify correctly the real peaks in
the system.

5.2. Forecasting Results

The results of the machine learning algorithms for the 24 h forecasting horizon are summarized
in Table 9. There were three measures used to evaluate the quality of the forecasts. In order to
check whether the improvements are statistically significant, the confidence intervals for each of the
proposed measures were computed. The 95% confidence intervals were estimated using bootstrap
resampling procedure implemented in the boot package. This package estimates equally tailed
two-sided nonparametric confidence intervals using normal approximation. For the purpose of
clarity in Table 9, significant improvements in terms of the errors between the enhanced and base
models, for the respective algorithms, are indicated by asterisks (*).
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Table 9. Forecasting results of the machine learning algorithms.

Training/Validation/Test Sample

MAPE (%) SMAPE (%) r-MAPE (%) RMSE

Artificial neural
network

Base model (iteration = 69,
neurons = 12, decay = 0.1)

Estimate 2.90 */3.09 */3.30 * 2.86 */3.08 */3.27 * 2.34 */2.50 */2.80 * 865.2 */952.6 */895.7 *
Lower confidence 2.87/2.99/3.19 2.83/2.99/3.20 2.32/2.45/2.75 849.5/913.8/857.0
Upper confidence 2.93/3.19/3.40 2.89/3.17/3.34 2.36/2.55/2.85 880.8/992.1/935.5

Improved model (iteration = 86,
neurons = 15, decay = 0.15)

Estimate 2.81 */2.88 */3.10 * 2.73 */2.91 */3.11 * 2.19 */2.31 */2.70 * 786.4 */866.8 */800.9
Lower confidence 2.77/2.78/3.01 2.70/2.84/3.01 2.17/2.25/2.66 770.1/828.4/763.7
Upper confidence 2.85/2.98/3.18 2.76/2.99/3.19 2.21/2.36/2.75 800.3/903.2/836.4

Random Forest

Base model (mtry = 3)
Estimate 2.30 */3.11/3.35 2.25 */3.06/3.33 * 1.66 */2.28 */2.70 698.9/921.5/937.8

Lower confidence 2.27/3.01/3.25 2.21/2.97/3.26 1.64/2.22/2.65 684.1/883.8/901.1
Upper confidence 2.33/3.21/3.45 2.27/3.14/3.41 1.68/2.34/2.75 713.6/955.4/972.6

Improved model (mtry = 10)
Estimate 2.21 */3.01/3.20 2.16 */2.95/3.17 * 1.56 */2.16 */2.53 697.6/914.4/920.9

Lower confidence 2.17/2.92/3.11 2.12/2.88/3.07 1.55/2.11/2.47 680.3/880.1/893.7
Upper confidence 2.25/3.11/3.28 2.19/3.04/3.25 1.58/2.22/2.79 715.7/947.5/951.2

Support vector
machine

Base model (kernel =
polynomial, degree = 3, eps = 1,

gamma = 1)

Estimate 3.24 */3.45 */3.58 3.15 */3.39 */3.54 2.44 */2.58 */2.89 899.7/983.1/956.7
Lower confidence 3.20/3.34/3.49 3.11/3.30/3.44 2.42/2.53/2.84 882.8/944.7/915.8
Upper confidence 3.29/3.56/3.67 3.18/3.47/3.64 2.47/2.63/2.93 916.3/1020.3/995.8

Improved model (kernel =
polynomial, degree = 3, eps = 1,

gamma = 1)

Estimate 2.98 */3.20 */3.45 2.89 */3.14 */3.40 2.20 */2.35 */2.81 882.4/963.2/971.7
Lower confidence 2.94/3.09/3.36 2.86/3.05/3.31 2.18/2.29/2.76 865.8/926.2/931.8
Upper confidence 3.03/3.31/3.54 2.93/3.22/3.50 2.22/2.39/2.85 898.9/999.2/1010.3

Benchmarking model (Similar day method)
Estimate 5.38/5.22/4.97 5.20/5.01/4.75 3.84/3.58/3.49 1494.5/1517.6/1458.5

Lower confidence 5.31/5.05/4.82 5.14/4.86/4.59 3.80/3.46/3.39 1477.7/1463.2/1407.7
Upper confidence 5.45/5.39/5.10 5.26/5.18/4.91 3.89/3.67/3.58 1512.9/1576.6/1510.8

1 Asterisk (*) denotes significant differences (at p < 0.05) of the forecasts estimates between the base and the improved model, for the respective algorithm. MAPE: mean absolute percentage
error; SMAPE: symmetric mean absolute percentage error; r-MAPE: resistant mean absolute percentage error; RMSE: root-mean-squared error.
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Additionally, the benchmarking model was created to give the idea of the improvement space, the
achievement of which is feasible when machine learning algorithms are applied. The benchmarking
model was constructed in line with the similar-day method [12], and the forecast value for the
particular hour was equal to the value for the same hour and the same day but from the previous week.
If the working day of the week before was a holiday, then another, previous week was taken instead.
Further, if the forecasted day was a holiday, then the respective hour of the most recent holiday day
from the past was used.

In the following, the forecasting results on the testing dataset are discussed.
In terms of the MAPE, regardless of the forecasting algorithm used, all models enhanced by

the peak identification features delivered lower errors than their respective base models. The lowest
MAPE error of 3.10% was observed for the Enhanced ANN model, while the highest error of 3.58%
was recorded for an base SVM model. However, for the enhanced RF and SVM models, the difference
in terms of the error reduction observed on the test dataset as compared to the base model was not
statistically significant. For the ANN model, the improvement was considered statistically significant
for the testing dataset (3.30% vs. 3.10%).

When it comes to SMAPE, it was the ANN model that outperformed other algorithms and
delivered forecast characterized by the lowest SMAPE error of 3.11% (vs. 3.27% for the base model),
and the improvement was statistically significant. Once again, the highest error of 3.54% was observed
for the base SVM model, but an improved version of the model resulted in a lower SMAPE of 3.40%.
However, the reduction of the error was not confirmed to be statistically significant.

As far as r-MAPE is concerned, the results revealed that the ANN model enhanced by the peak
identification features achieved statistically significant forecasting improvement when compared to
the base model. The ANN model delivered a forecast with an r-MAPE of 2.70% (vs. 2.80% for the base
model). The lowest errors were observed for the RF model—2.53% (vs. 2.70% for the base model)—but
the error reduction was not statistically significant. For the SVM model, the use of peak identification
features resulted in a slight error decrease from 2.89% (base model) to 2.81% (enhanced model), but
the difference was not found to be statistically significant.

Lastly, the lowest RMSE error was observed for the ANN—800.9 vs. 895.7 for the base model—but
the error reduction was not statistically significant on the testing dataset. The same finding was
observed for RF and SVM—the errors of the enhanced models were slightly lower, but the reduction
was not confirmed to be significant.

Importantly, all of the proposed models can be characterized by low errors, and, in general, an
improvement in terms of the forecasting ability was observed, when the results delivered by the
enhanced models and the base models are compared, not to mention the benchmarking forecasts.
The benchmarking model exhibited error values up to two times as high in comparison to the results
delivered by machine learning algorithms. For the ANN models, the greatest stability in results was
observed on all three datasets while delivering the forecast with the lowest errors. Therefore, it can be
considered as a tool for supporting short-term forecasting exercises.

To give a graphical view on model performance, a one-day-ahead forecast obtained for the
randomly drawn test period (five weeks in October 2015) by the ANN model is shown in Figure 7.
In general, the real load is followed well by the forecasting model. In the figure, we can observe
that the peak loads are better captured by the improved model, which is supported by the peak
identification features. The results of the forecasting experiments can be summarized as follows:

• Electric power load in Poland is mostly affected by such features as the hour of the day, day of the
week, month, temperature, humidity, the load trend observed in previous hours and, interestingly,
by the sunset variable (please see Table 6 for details).

• The use of peak classification features in the models, in general, led to forecast improvement,
which was confirmed by MAPE, SMAPE, r-MAPE, and RMSE.

• The best results in terms of forecasting accuracy were obtained for the ANN model, which
exhibited stable performance on all three datasets used for training, validation, and testing.
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The ANN model was able to benefit from additional peak classification features to the greatest
extent, which significantly improved its ability to follow the real load curve, especially when the
extraordinary load was observed.
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6. Summary and Concluding Remarks

In this paper, we have focused on the short-term forecasting of hourly electricity load in the Polish
Power System based on data between 1 January 2008 and 31 December 2015. For this purpose, we have
proposed an algorithmic scheme to load modeling through peak detection and use this information to
feed the forecasting system. This was done by mapping the time series data into a binary classification
problem. The peaks are defined as the extraordinary load levels equal to or above the 99th, 95th, or 90th
percentile for the respective load distribution when weekly time windows are considered. These three
peak variants were modeled using classification algorithms, and their outcome was used to enhance
the forecasting models. There were several additional factors considered in the modeling besides the
load data, such as weather temperature, humidity, sunrises, and sunsets, in order to enhance both peak
classification and the quality of the forecasts.

The most promising results were produced by applying the SVM algorithm to peak classification
and ANN for forecasting. In fact, this approach is able to predict more than 90% of the electricity peaks
correctly and to deliver accurate forecasts with the errors as low as 2–3%. It is important to underline
that the algorithms were trained to favor false positives over false negatives, since the latter have less
of an impact on power grids, as predicting a peak that is not materialized has fewer consequences than
not predicting peaks that are materialized.

To conclude, all numerical analyses were designed to provide answers to the questions raised at
the very beginning of the research. In particular, the findings are as follows:

• Based on the experiments, we observed that it is possible to attain accurate peak load classification
up to 24 h ahead, and this can be obtained with high precision. The best machine learning
algorithms, on the testing dataset, were able to deliver an accuracy reaching 0.906, AUC of 0.971,
a sensitivity equal to 0.963, and a specificity of 0.911.

• For the 24 h load forecasting, it was observed that the models showed good projection
characterized by low errors. The errors on the testing dataset were as low as 3.10%, 3.11%,
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2.70%, and 800.9 for MAPE, SMAPE, r-MAPE, and RMSE, respectively. The best results in terms
of forecasting accuracy were obtained for the ANN, which exhibited stable performance on all
three datasets used for training, validation and testing.

• We showed through experiments that additional peak classification variables applied on the top
of the load and the weather data can enhance forecasting capability. The richer data set helped to
reduce the MAPE error from 3.30 to 3.10%, the SMAPE from 3.27 to 3.11%, the r-MAPE from 2.80
to 2.70%, and the RMSE from 895.7 to 800.9 as observed on the testing dataset for the ANN model.
In case of other techniques, only the RF model delivered a statistically significant error reduction
in terms of SMAPE (3.33% vs. 3.17%) on the testing dataset.

• The results revealed that there are significant differences in forecasting quality in favor of the
machine learning algorithms, namely, ANN, RF, and SVM, in comparison to the proposed
benchmarking model. When it comes to the comparison between the algorithms the most
promising results are produced by applying SVM algorithm to peak classification and ANN for
forecasting. In particular, artificial neural networks, through their ability to approximate complex
nonlinear functions, as well as their generalization capability, seem to be very effective tools for
capturing hidden trends in the load data and delivering stable short-term forecasting, which was
observed on all three datasets when the richer data was considered.

There are a number of practical applications for use of the next-day peak demand, identification,
and load forecasting. Such peak-based forecasts are useful for both network capacity planning and
investment decisions. In addition, the knowledge on the timing of the peak demand is important for
network maintenance planning. An accurate classification can be used to improve decision-making
since the correct classification can reduce both costs and risks for the entities operating on the
electricity markets.

As for any other approaches, there are some areas for possible improvement. For example,
the data points related to temperature, humidity, sunrises, and sunsets were found important for
peak identification and forecasting. However, these were gathered for Warsaw only and thus
do not necessarily represent the weather conditions for the entire country. Therefore, additional
data representing weather conditions in different regions would be beneficial. Additionally, we
are endeavoring to analyze and incorporate socio-demographic features related to citizens’ wealth
(like disposable incomes, savings, housing conditions) into the models, since these may affect the
electricity consumption patterns not only on the individual user level but globally as well [60,61].
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