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Abstract: Demand-side energy management is used for regulating the consumers’ energy usage
in smart grid. With the guidance of the grid’s price policy, the consumers can change their energy
consumption in response. The objective of this study is jointly optimizing the load status and electric
supply, in order to make a tradeoff between the electric cost and the thermal comfort. The problem
is formulated into a nonconvex optimization model. The multiplier method is used to solve the
constrained optimization, and the objective function is transformed to the augmented Lagrangian
function without constraints. Hence, the Powell direction acceleration method with advance and
retreat is applied to solve the unconstrained optimization. Numerical results show that the proposed
algorithm can achieve the balance between the electric supply and demand, and the optimization
variables converge to the optimum.

Keywords: demand-side energy management; multiplier method; Powell direction acceleration
method; advance and retreat method; thermal comfort

1. Introduction

The power system includes generators, transformers, transmission, and distribution lines that
deliver electricity power to terminal users. Smart grid enables real-time control and monitoring to
provide distributed generation and storage. It can make grid operating reliably, economically and
efficiently [1,2]. In smart grid, the energy providers can monitor the operating states of the loads in
real time and control power supply directly. Demand-side energy management has been a hot topic
in recent years [3,4]. Reasonable energy management can effectively promote the development of
clean energy, save resources and reduce generation costs. In the process of the energy management,
the consumers are encouraged to adjust the electricity purchase, optimize the load curve and improve
the electricity efficiency [5–7]. Demand-side energy management is a mechanism which requires the
consumers’ response to pricing strategy [8–10]. The real-time price is an effective strategy to achieve
demand-side response [11–13].

In [14], an energy management service for the smart building has been proposed to measure and
predict the patterns of both energy generation and power load. Taking into account overall costs,
climatic comfort level and timeliness, a mixed integer linear programming model and a heuristic
algorithm were proposed to make consumers change the consumption profile during certain time
interval [15]. In [16], an automatic rule creation based on the knowledge extraction of a smart
building was proposed to optimize the consumers’ electricity usage. In [17], the Lagrangian dual
algorithm was employed to solve the nonconvex problem, and it came up with efficient demand
response scheduling schemes. In [18], a complex telecommunication infrastructure was designed
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to manage the data exchange among the energy management system, generators, loads, and field
sensors/actuators. In [19–21], the cost minimization of interactive consumers was studied based
on the noncooperative game theory. The interaction between the consumers and energy provider
was modeled with Stackelberg game theory [22–24]. Recently, convex optimization has been used
for decreasing the consumers’ total cost. In [25], distributed primal-dual algorithms were used to
adjust the energy consumption and the price. And the primal-dual algorithm was used to analyze the
volatility of electricity markets when considering the uncertainty in the consumer’s value function [26].
In [27], an optimal and automatic residential energy consumption scheduling framework was proposed
to provide the real-time price schedule to the consumers. In [28], the model of price response was
established for the consumers with stochastic charging behaviors. In [29], a fully distributed control
algorithm was proposed based on the saddle point dynamics and consensus protocols. In [30],
the relationship between the operating states and energy consumption of the loads under forecast
error was considered in an energy management problem. In the above studies, the cost functions of the
consumers are assumed to be known in advance. However, the cost cannot be directly modeled when
considering the comfort of the consumers and the operating state of the loads, such as the thermal
comfort and the temperature settings of the heating, ventilation, and air conditioning (HVAC) systems.

In this study, we model energy management as a constrained optimization problem with
non-convex objective function. And the Fanger thermal comfort cost which is unknown is included.
The objective is to minimize the discomfort costs of the consumers and the generation costs of the
providers. Meanwhile, it should keep balance between the consumers’ total power consumption and
the total generation. Each consumer’s load operating state should be limited in upper and lower limits.
Hence we propose an iterative algorithm to solve the optimization problem and study the influence of
the tradeoff factor and the air conditioning’s energy efficient ratio on the energy management scheme.

The rest of the paper is organized as follows. The energy management problem is formulated
in Section 2. The algorithm is proposed in Section 3. Section 4 applies the algorithm to the
energy management of HVAC systems. The simulation results and analysis are given in Section 5,
and conclusions are summarized in Section 6.

2. Problem Formulation

In the process of the demand-side management, we consider an power system consisting of m
consumers that are served by an utility company, as shown in Figure 1. The utility company announces
the retail price through forecasting the consumers’ power consumption. According to the announced
price, the consumers can schedule the loads’ operations to reduce the costs.

We suppose that an power grid with m loads and n buses. The operating states of consumer i’s load
(i ∈ M = {1, · · · , m}) is xi, and the generation on bus i (i ∈ N = {1, · · · , n}) is qi. The function ci(xi)

denotes the consumer i’s discomfort cost caused by the load changes, and wi(qi) denotes the generating
cost. And the function fi(xi) denotes the relationship between the energy consumption and the
operating state. We suppose the lower limit and upper limit of the operating state of consumer i’s load
is xmin

i and xmax
i . The energy management can be formulated as the following optimization problem:

max − τ
m

∑
i=1

ci(xi)− (1− τ)
n

∑
i=1

wi(qi)

s.t.
m

∑
i=1

fi(xi) =
n

∑
i=1

qi

xmin
i ≤ xi ≤ xmax

i , i = 1, 2, · · · , m

where τ ∈ [0, 1] is the parameter to achieve the tradeoff between the consumers’ discomfort costs and
the generating costs. The energy management problem is to minimize the costs of consumers and
providers subject to the energy balance constraints and the operating state limits.
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Figure 1. Demand-side management system.

3. Iterative Algorithms

In this section, an iterative algorithm is proposed to solve the above optimization problem.
The algorithm, which includes multiplier method, Powell direction acceleration method, advance and
retreat method and golden section method, is described in Figure 2.
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Figure 2. The flowchart of the iterative algorithm.
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This iterative algorithm can solve the unknown and nonconvex optimization problem, and the
specific algorithms are introduced as the following 4 parts.

Part 1: Multiplier Method

As a general constrained optimization problem, the constraints can be transformed to the objective.
For the multiplier method, the constrained augmented Lagrange function can be established as:

M(x, q, µ, ν, λ, σ) =τ
m

∑
i=1

ci(xi) + (1− τ)
n

∑
i=1
{[max(0, µi − σ(xi − xmin

i ))]2 − µ2
i }+

1
2σ

m

∑
i=1
{[max(0,

νi − σ(xmax
i − xi))]

2 − ν2
i } − λ[

m

∑
i=1

fi(xi)−
n

∑
i=1

qi] +
σ

2
[

m

∑
i=1

fi(xi)−
n

∑
i=1

qi]
2

where λ, µi and νi are Lagrange multipliers, especially λ is denoted as the retail price. The multipliers
are updated by

λk+1 = λk − σ(
m

∑
i=1

fi(xk)−
n

∑
i=1

qki) (1)

(µk+1)i = max[0, (λk)i − σ(xk − xmin
k )i], i = 1, · · · , m (2)

(νk+1)i = max[0, (λk)i − σ(xmax
k − xk)i], i = 1, · · · , m (3)

The termination criterions are ϕk1 ≤ ε and ϕk2 ≤ ε, where ε > 0 is the termination error. And ϕk1
and ϕk2 are given by

ϕk1 = {[
m

∑
i=1

fi(xk)−
n

∑
i=1

qki] +
m

∑
i=1

[min((xk − xmin
k )i,

(µk)i
σ

)]2}0.5 (4)

ϕk2 = {[
m

∑
i=1

fi(xk)−
n

∑
i=1

qki] +
m

∑
i=1

[min((xmax
k − xk)i,

(νk)i
σ

)]2}0.5 (5)

The multiplier method includes 4 steps, as shown in Algorithm 1.

Algorithm 1 The multiplier algorithm.

Initialization:

The set of the initial points: x0 and q0;

The set of the initial multiplier vectors: λ0, µ0, and ν0;

The set of the initial penalty factor: σ1;

Amplification coefficient c > 0 and constant θ ∈ (0, 1). k = 1.
Iteration:

The optimal solutions: xk and qk.
1: The initial points are xk−1 and qk−1, then solve the unconstrained optimization problem:

min M(x, q, µ, ν, λ, σ)

we can obtain the optimal points xk and qk.
2: Calculate ϕk1 and ϕk2 according to Equations (4) and (5). If ϕk1 < ε and ϕk2 < ε, the optimal

solutions are xk and qk, and the iteration terminates; else goto 3.
3: When ϕk1

ϕk1−1
≤ θ and ϕk2

ϕk2−1
≤ θ, goto 4; else set σk+1 = cσk and goto 4.

4: Update multiplier vectors according to Equations (1)–(3), set k = k + 1 and goto 1.
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Part 2: Powell Direction Acceleration Method

In this paper, the explicit comfort function is hard to formulate, and it’s impossible to take the
derivative of an unknown objective function. Therefore, we consider a data-driven algorithm to solve
the unconstrained optimization problem directly. The Powell direction acceleration method is one of
the most effective data-driven methods. The basic idea of Powell method is to build the conjugated
search direction in the next iteration by calculations from the previous iterations.

In the original Powell method, the new search direction will take place of the first component in
the old direction vector. However, these new vectors could be linear dependent, and the optimum
cannot be obtained. Hence we use the modified Powell method. The modified Powell method can
judge whether the new search direction could be applied in the next iteration. If it cannot be applied,
judge which direction in the original searching has the lowest objective value. Then let the new search
direction replace the old one. In this way, the conjugated direction can be obtained.

In the ith iteration, set f1 = f (x(i)n ), f2 = f (x(i)n ), f3 = f (2x(i)n − x(i)0 ), and ∆(i)
m = max{ f (i)k−1 − f (i)k ,

k = 1, 2, · · · , n}. Let p(i)m be the search direction: p(i) = x(i)n − x(i)0 . If f3 < f1 and ( f1 − 2 f2 + f3)( f1 −
f2 − ∆(i)

m )2 < 0.5∆(i)
m ( f1 − f3)

2, replace p(i)m with p(i). Else keep the original directions. The specific
algorithm is given in Algorithm 2.

Algorithm 2 The Powell direction acceleration algorithm.

Initialization:

The set of the initial points: X0 = (x0, q0)
T ;

The control error is given as ε > 0;

e1, e2, · · · , en are unit vectors on the coordinate axis, and k = 1.
Iteration:

The optimal points: X∗ = Xn.
1: Calculate M0 = M(X0, µk, νk, λ, σk), let pi = ei, i = 1, 2, · · · , n.
2: One-dimensional search:

M(Xk−1 + αk−1 pk, µk, νk, λk, σk) = min M(Xk−1 + αpk, µk, νk, λk, σk)

Let Xk = Xk−1 + αk−1 pk, Mk = M(Xk, µk, νk, λk, σk).
3: If k = n, goto 4; If k < n, make k = k + 1 and goto 2.
4: If ‖Xn − X0‖ ≤ ε, X∗ = Xn, stop; Else goto 5.
5: Set ∆ = max(Mk −Mk−1) = Mm −Mm+1, M∗ = M(2Xn − X0, µk, νk, λk, σk).
6: If M∗ ≥ M0 or (M0 − 2Mn + M∗)(M0 −Mn − ∆)2 > 0.5(M0 −M∗)2∆, the search directions do

not change. Let M0 = M(Xn, µk, νk, λk, σk), X0 = Xn, k = 1, goto 2; Else goto 7.
7: Set pk = pk, k = 1, 2, · · · , m; pk = pk+1, k = m + 1, · · · , n− 1, and pn = (Xn − X0)/‖Xn − X0‖.
8: One-dimensional search:

M(Xn + αpn) = minM(Xn + αpn, µk, νk, λk, σk)

Set X0 = Xn + αpn, M0 = M(X0, µk, νk, λk, σk), k = 1. goto 2.

Part 3: Advance and Retreat Method

Since the objective function is a multimodal and non-convex function, we should segment an
unimodal interval before one-dimensional searching based on the specific advance and retreat algorithm,
as shown in Algorithm 3.
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Algorithm 3 The advance and retreat algorithm.

Initialization:

The set of the initial points: X0 = (x0, q0)
T ;

The initial step length is ∆x(> 0), and t0 = 0.
Iteration:

The search interval.
1: Calculate M0 = M(X0).
2: X1 = X0 + ∆x · pk. Calculate M1 = M(X1). t1 = t0 + ∆x. If M1 ≤ M0, goto 3. Else goto 6.
3: Let t2 = t1 + ∆x, X2 = X0 + t2 · pk. Calculate M2 = M(X2).
4: If M1 ≤ M2, [t0, t2] is the search interval; Else goto 5.
5: t0 = t1, t1 = t2, M1 = M2, ∆X = 2∆X, t2 = t1 + ∆x, X2 = X0 + t2 · pk. Calculate M2 = M(X2),

then goto 4.
6: ∆x = −∆x, t = t0, t0 = t1, t1 = t, M = M0, M1 = M, t2 = t1 + ∆x, X2 = X0 + t2 · pk.

Calculate M2 = M(X2).
7: If M1 ≤ M2, [t0, t2] is the search interval; Else goto 8.
8: t0 = t1, t1 = t2, M1 = M2, ∆x = 2∆x, X2 = X0 + t2 · pk. Calculate M2 = M(X2), goto 7.

Part 4: Golden Section Method

After segmented the interval, the optimal step length is calculated by Golden Section method, as
shown in Algorithm 4.

Algorithm 4 The golden section algorithm.

Initialization:

The search interval: [a, b]; ε > 0.
Iteration:

The optimal stepsize: a+b
2 .

1: Let a2 = a + 0.618(b− a), X2 = X0 + a2 · pk, M2 = M(X2).
2: Let a1 = a + 0.382(b− a), X1 = X0 + a1 · pk, M1 = M(X1).
3: If | b−a

b | > ε and |M2−M1
M2
| > ε, goto 4. Else the optimal result is a+b

2 .
4: If M1 < M2, then b = a2, a2 = a1, M2 = M1, a1 = a + 0.382(b − a), X1 = X0 + a1 · pk.

Calculate M1 = M(X1), goto 3; Else goto 5.
5: a = a1, a1 = a2, M1 = M2, a2 = a + 0.618(b− a), X2 = X0 + a2 · pk. Calculate M2 = M(X2), goto 3.

Remark 1. The convergence of the algorithm has been proved in [31]. In the optimization problem with
multi-dimensional variable, a global optimal point in each dimension can be obtained during the iterations.
However, we cannot guarantee that the optimal points of all variables can be searched simultaneously in the same
iteration, and the solution should be a sub-optimal solution in the calculation.

4. Application to Energy Management of HVAC Systems

In this section, we apply the iterative algorithms to the energy management of HVAC systems.
The discomfort of consumers are characterized by the Fanger thermal comfort model. In the research of
professor P. O. Fanger from Denmark, the predicted mean vote (PMV) and the predicted percentage of
dissatisfied (PPD) were proposed to describe the human body’s comfort and satisfaction of the thermal
environment, respectively. The Fanger thermal comfort model considers the thermal resistance of
clothing, degree of human activities, the air temperature, the air velocity, the mean radiant temperature,
and the moisture in the atmosphere. The PMV denotes the human body’s hot and cold sensation,
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including seven grades: hot, warm, little warm, moderate, little cool, cool, cold. The corresponding
values are: +3,+2,+1, 0,−1,−2,−3. In practice, different people could have different feelings in the
same thermal environment. To describe this relationship, the PPD target was proposed in [32–34].

The mathematical expression of PMV is denoted as:

PMV =[0.303exp(−0.036M) + 0.028]{M−W − 3.05× 10−3[5.733− 6.99(M−W)]− Pa−
0.42[(M−W)− 58.15]− 1.7× 10−5M(5867− Pa)− 0.0014M(34− ta)− 3.96× 10−8 fcl×
[(tcl + 273)4 − (tr + 273)4]− fclhc(tcl − ta)},

(6)

where

fcl =

{
1.00 + 1.290Icl Icl ≤ 0.078,

1.05 + 0.645Icl Icl > 0.078

and

hc =

{
2.38× (tcl − ta)0.25 2.38(tcl − ta)0.25 > 12.1

√
Var

12.1×
√

Var 2.38(tcl − ta)0.25 < 12.1
√

Var

where tcl = 35.7− 0.028(M−W)− Icl{3.96× 10−8 fcl [(tcl + 273)4 − (tr + 273)4] + fclhc(tcl − ta)}
The PPD target represents a percentage of the human’s dissatisfaction of the environment, and the

mathematical expression is given as:

PPD = 100− 95× exp[−(0.03353× PMV4 + 0.2179× PMV2)] (7)

The explanation of the parameters is shown in Table 1, and the relationship between PPD and
PMV is shown in Figure 3.

Table 1. The specific explanation of the parameters.

Parameters Explanation

M Human body’s energy metabolic rate (W/m2)
W Human body’s mechanical work (W/m2)
Pa Vapour pressure around body (Pa)
ta Air temperature (◦C)
fcl Area coefficient of clothing
tcl Ttemperature of clothes (◦C)
tr Indoor’s mean radiant temperature (◦C)
hc Convective heat transfer coefficient (W/(m2·K))
Icl Heat resistance of clothes (m2·K/W)
Var Air velocity (m/s)

−3 −2 −1 0 1 2 3
0
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20

30

40
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60

70

80

90

100

PMV
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Figure 3. The relationship between PPD and PMV.
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We can build the following function to describe the consumers’ discomfort costs:

c(Ti) = γi × PPD (8)

where γi is a constant coefficient that transforms the PPD to the discomfort cost. The generating cost
of the provider is given as [35]:

w(q) = ρ1q2 + ρ2q + ρ3 (9)

where ρ1, ρ2, and ρ3 are cost coefficients, which are determined by the power generation.
In the HVAC system, the relationship between the energy consumption and temperature is

complicated. It could be influenced by many factors. For example, the cooling load includes the
transmission load, the infiltration load, the solar load, and the internal load. The transmission load
is the temperature transfer from outdoor to indoor through the components. The infiltration load is
caused from the inflow of the air. The solar load is caused from the solar radiation. And the internal
load is from the heat release of light, people and other electrical equipments [36], as shown in Figure 4.

Solar load

Infiltration 

load

Transmission 

load

Internal load

Figure 4. The cooling load system.

The transmission load is denoted as:

Qtl
i (Ti) = αSi(To − Ti) (10)

where Qtl
i (Ti) is the transmission load, T0 is outdoor temperature, α is the transfer constant in W/m2·◦C,

and Si is the transmission area.
The infiltration load is calculated as:

Qil
i (Ti) = βζφi(To − Ti) (11)

where Qil
i (Ti) is the infiltration load, β is specific heat of air, ζ is the air density, and φi is the volumetric

air velocity and satisfies:
φi = Ai(I0 + Hi I1|T0 − Ti|) (12)

where Ai is the effective infiltration area. I0 and I1 are determined by the wind speed and outdoor
temperature. Hi is the hight of the building.

The solar load and internal load are independent of the actual temperature settings and can be
denoted as Qsil .

The total cooling load can be obtained:

Qcl
i (Ti) = Qtl

i (Ti) + Qil
i (Ti) + Qsil (13)
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In the HVAC system, the relationship between the cooling load and energy consumption is:

fi(Ti) = θQcl
i (Ti) (14)

where θ is the coefficient determined by the transformation from the cooling load to the
energy consumption.

The relationship between temperature settings and energy consumption can be formulated as:

fi(Ti) = b1(T0 − Ti)
2 + b2(T0 − Ti) + b3 (15)

where b1 = θβζ Ai Hi I1, b2 = θαSi + ψζAi I0, and b3 = θQsil .
Above all, the energy management model for the HVAC systems can be described as following

optimization problem:

max − τ
m

∑
i=1

ci(Ti)− (1− τ)
n

∑
i=1

wi(qi)

s.t.
m

∑
i=1

fi(Ti) =
n

∑
i=1

qi

Tmin
i ≤ Ti ≤ Tmax

i , i = 1, 2, · · · , m

where Ti is the indoor temperature. Each consumer’s temperature setting is limited by Tmin
i ≤ Ti

≤ Tmax
i , where Tmin

i and Tmax
i are the minimal and maximal temperature settings, respectively.

5. Simulation Results

We consider two types of power systems that are installed with HVAC systems, e.g., the IEEE 9-bus
system and IEEE 14-bus system shown in Figures 5 and 6, respectively. The equality constraints in the

IEEE 9-bus system and IEEE 14-bus system are
3
∑

i=1
fi(Ti) =

9
∑

i=1
qi and

11
∑

i=1
fi(Ti) =

14
∑

i=1
qi, respectively.

The parameter settings are shown in Table 2 [36], and the lower limit and the upper limit of the
temperature setting for each consumer are 23 ◦C and 28 ◦C, respectively.

An important parameter of the HVAC system is energy efficiency ratio (EER). EER is the ratio
of the actual cooling capacity to the actual input power during the cooling operation of the HVAC
system, and the more efficient and power-saving HVAC has the higher EER. The EER is defined as
Qcl

i (Ti)

fi(Ti)
, which is the reciprocal of θ in Equation (14).

G2G1

G3

T1 T2

T3

Load 1

Load 2 Load 3

1 2

3

4 5

6 7

8

9

Figure 5. IEEE 9-bus system: 9 buses, 3 generators, and 3 loads (n = 9, m = 3).



Energies 2017, 10, 1538 10 of 17

G2

G1

G3

G4

G5

2 3

1

5 4

8 7

910116

12

13 14

T1

T3T2

Load 1
Load 2

Load 4 Load 3

Load 5 Load 6 Load 7
Load 8

Load 9

Load 10 Load 11

Figure 6. IEEE 14-bus system: 14 buses, 5 generators, and 11 loads (n = 14, m = 11).

Table 2. Parameter Settings.

Parameters Values

Outdoor temperature (◦C) To = 30
Transmission area (m2) Si ∈ [30, 60]

Heat transfer constant (W/m2) α = 15
Specific heat of air (J/kg·◦C) β = 1.006

Air density (kg/m3) ζ = 1.1839
Wind speed coefficient I0 = 0.343

Outdoor heat coefficient I1 = 1.12
Effective infiltration area (m2) Ai ∈ [15, 45]

Building height (m) Hi ∈ [8, 15]
Solar and internal load (W) Qsil

i ∈ [300, 4500]

Taking the IEEE 9-bus system as an example, we discuss the impact of the tradeoff factor τ on the
discomfort costs and power supply costs as well as the total costs. The results are given in Figure 7,
from which, we can observe that the discomfort costs decrease with τ, and the generation costs increase
with τ. When τ = 0.6, we can obtain the minimum total costs. The parameter τ can achieve the
tradeoff between consumers’ discomfort costs and providers’ generation costs. We can get minimum
total costs through changing τ. The data of costs are shown in Table 3.

Table 3. The cost data.

τ Discomfort Cost ($) Generation Cost ($) Total Costs ($)

0.1 8.1279 11.5264 19.6543
0.2 7.0753 11.6035 18.6788
0.3 6.7075 11.7344 18.4419
0.4 4.7092 12.5458 17.2550
0.5 5.0396 12.4054 17.4450
0.6 4.3398 12.8159 17.1557
0.7 3.3431 14.3050 17.6481
0.8 3.0488 15.4414 18.4902
0.9 3.0605 15.3121 18.3726
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Figure 7. The impact of tradeoff factor.

Next, we assume τ = 0.6 and evaluate the temperature settings, the power supply, and the retail
price. The convergence of the temperature settings, the power supply, and the retail price are shown in
Figures 8–10, respectively.

According to Figures 8–10, we can observe that all the optimization variables tend to be stable
with the iterations and finally converge to the optimum.

It is observed from Tables 4 and 5 that the temperature settings satisfy the requirements for
upper limits and lower limits. And the total Power consumption is equal to the power supply.
Moreover, the retail price λ is 0.2147 $/kWh, and the multipliers µ and ν are both zero. It means that
the penalty terms are inactive at the optimum.
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Figure 8. The convergence of the temperature settings.
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Figure 10. The convergence of the retail price.

Table 4. The temperature settings and energy consumption in IEEE 9-bus system.

Consumer i Temperature (◦C) Power Consumption (kW)

1 25.4534 0.6986
2 25.0573 1.6701
3 24.5559 3.6015

1–3 / 5.9702

Table 5. The power supply on each bus in IEEE 9-bus system.

Buses i Power Supply (W)

1 663.3679
2 663.3646
3 663.3654
4 663.3676
5 663.3669
6 663.3692
7 663.3686
8 663.3693
9 663.3683

1–9 59702

Next, we apply the energy management algorithm to the IEEE 14-bus system. It is observed from
Figures 11–13 that the temperature settings, the power supply and the retail price can converge to
the optimum in the IEEE 14-bus system. Comparing with the convergence results in the IEEE 9-bus
system, more iterations are needed. Furthermore, the power supply on each bus is more than IEEE
9-bus system, as shown in Tables 6 and 7.

Table 6. The temperature settings and energy consumption in IEEE 14-bus system.

Consumer i Temperature (◦C) Power Consumption (kW)

1 25.7925 0.3526
2 25.5883 0.6228
3 25.3969 0.9958
4 25.7143 0.7118
5 25.7578 0.7356
6 25.7708 0.7896
7 25.5143 1.2350
8 25.7187 1.0332
9 25.0050 2.2812

10 25.5317 1.5131
11 25.6491 1.4117

1–11 / 11.6825
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Table 7. The power supply on each bus in IEEE 14-bus system.

Buses i Power Supply (W)

1 834.4625
2 834.4609
3 834.4616
4 834.4629
5 834.4693
6 834.4612
7 834.4625
8 834.4650
9 834.4621
10 834.4595
11 834.4648
12 834.4673
13 834.4591
14 834.4637

1–14 11682
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Figure 11. The convergence of the temperature settings.
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Figure 12. The convergence of the power supply.
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Figure 13. The convergence of the retail price.

Next, we will discuss the effect of EER on the energy management system. We take three different
energy efficiency grades (EEGs) of the HVAC systems: EEG 1, EEG 2, and EEG 3. The corresponding
EERs are 3.5, 3.3, and 3.1, respectively. From Figure 14, we can observe that the higher EEG can cause
lower retail price. Figure 15 shows that the lower EEG is effective in saving power consumption
and the cost. It shows that the energy management algorithm motivates the consumers to use more
energy-efficient HVAC.
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Figure 14. The retail prices under different EEGs.
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6. Conclusions

This work studies a demand-side energy management problem based on the nonconvex
optimization algorithm. The objective is to minimize the discomfort costs and the generation costs by
changing the operating states of the loads and the power supply. Specially, the discomfort costs are
formulated based on the Fanger thermal comfort. The nonconvex algorithm includes the multiplier
method, the Powell method, the advance and retreat method, and the golden section method. One of
the major advantages of this algorithm is that it can be applied in solving the unknown objective
function caused by the thermal comfort model. In the simulation, we analyze the influence of the
tradeoff factor τ and the EER on the energy management. It is observed that the minimum costs
can be achieved by changing the value of τ, and different EERs can cause different retail prices and
power consumption using the proposed energy management algorithm. The simulation results also
demonstrate the convergence of the iterative algorithm and the balance between the power supply
and power consumption.
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