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Abstract: A power factor correction (PFC) converter with interleaved multi-channel topology
is gaining increasing attention due to its ability in reducing input and output current ripples,
but an Electromagnetic Interference (EMI) noise filter is still required for suppressing the large
high-frequency switching noise that could potentially degrade the input power quality of the
supplying grid and cause malfunctions to other grid-connected systems. In this paper, a magnetic
modeling of an interleaved PFC converter with an input differential mode (DM) EMI filter has been
successfully implemented, which considers the nonlinear behavior of the inductive component in
the EMI filter. The Jiles-Atherton (J-A) model is applied to describe the filtering inductor whose core
displays saturation and hysteresis. The simulation results are verified with the experimental test.
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1. Introduction

As more and more grid-connected applications of switching power converters are used in our
daily life, power factor corrections (PFCs) have been commonly employed to alleviate the poor power
factor problem due to conventional AC-DC converters and meet the harmonic requirement IEC
61000-3-2 in the low-frequency range [1]. An interleaved PFC that can meet the above two tasks will be
investigated in this paper for its high power capacity, low switching losses, and reliable operation [2,3].
Although it can efficiently reduce power-frequency harmonic components, its fast switching circuit
produces some high-frequency noises which pose a potential pollution to power grid and influence
other operating devices connected to the grid. The severity of these conducted EMI noises and its
containing measured need be investigated and suppressed to comply with the EMC standard for the
conducted EMI noise in the 150 kHz–30 MHz range [4].

High rates of di/dt and dv/dt are the main concern for the existing conducted EMI noise in the PFC
converter [5]. In the case of high frequency switching pulse current, the large voltage would be produced
by the inductive component in the system. On the other hand, the high rate of dv/dt depends on the
switching frequency and voltage variation magnitude. These harmonics would produce high-frequency
current flowing through parasitic capacitance present in the circuit. There are two types of EMI noises,
i.e., differential mode (DM) and common mode (CM) noises. The DM noise exists between line and
neutral and is caused by the fast turn-on and turn-off of the power switch, reverse recovery of the power
diodes, and high pulse current. The CM noise exists between the line and ground, and neutral and
ground, and is mainly caused by the parasitic capacitance and high dv/dt.

Energies 2017, 10, 1530; doi:10.3390/en10101530 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
https://orcid.org/0000-0002-0604-9601
http://dx.doi.org/10.3390/en10101530
http://www.mdpi.com/journal/energies


Energies 2017, 10, 1530 2 of 14

Therefore, an EMI filter should be connected between power supply mains and the PFC circuit to
suppress the high-frequency noise being transferred from the converter to the mains. In the interleaved
PFC circuit, the DM noise is dominant, and a DM filter will be installed in the circuit [6–8]. The EMI filter
consists of inductive and capacitive components, and this would influence the system performance
such as power factor, total harmonic distortion, and so on [9,10]. In order to analyze the influence
of the EMC filter on the performance of PFC converter and obtain the dynamics of the PFC circuit,
accurate models for the components in the EMC filter are very useful in the overall system simulation.
As usual, the inductor is considered as a constant value in the overall system simulation, but the
actual inductance varies with time, in theory [11], which could be difficult to identify. The traditional
nonlinear inductor model includes the piecewise linearized model and the volterra-series model,
which are not very accurate to model the nonlinearity of inductor [12,13]. In order to predict the
dynamic influence of the inductor in the EMI filter, a hysteresis model of the magnetic core will be
applied in the interleaved PFC converter to investigate the dynamic behavior. Two models, Preisach’s
model [14] and Jiles-Atherton’s (J-A) model, are commonly used to model magnetic cores. In this
paper, the J-A model is used to model the magnetic component in this circuit.

The Jiles-Atherton model is a time-domain history-dependent hysteresis model which consists of
a group of first-order equations to describe the hysteresis mechanism in magnetic materials, and it
is based on the existing ideas of domain wall motion including both bending and translation [14,15].
Applying the J-A model to describe the magnetic core which display the saturation and hysteresis will
be investigated in this paper. The dynamics of the interleaved PFC circuit with the EMI filter will be
modeled with the consideration of non-linearity of the inductor in the filter; an experiment in which
a ferrite-cored inductor of the L-C EMI filter is used has been implemented to verify the simulation
results and examine the effectiveness of the EMI filter.

In Section 2, a review of interleaved PFC converter and the simplified EMI noise model is
presented. The J-A model of the nonlinear EMI filtering inductor in the converter is introduced in
Section 3. In Section 4, a comprehensive PFC converter simulation and its effectiveness are presented.
In Section 5, simulation and experimental results are compared and the effect of the nonlinear inductor
on the system is introduced. Section 6 concludes the result analysis.

2. Configuration of the Interleaved PFC Converter

2.1. System Controller Design

In this paper, the average current control method is used for the PFC controller, and this method is
less sensitive to the switching losses than the peak current and hysteresis control techniques. Figure 1
shows the system control topology. There are two control loops in the average current control method,
one is the outer voltage loop which is used to control the DC output voltage, and the other is the inner
current loop, which is used to control the input current proportional to the utility line voltage.
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For the boost average current control method, the average output voltage V0 should be higher
than the input peak voltage at any time. The input current drawn from the AC line at any instant must
be proportional to the line voltage which is controlled by the inner loop of the controller. The boost
inductors L1 and L2 are interleaved in the circuit, and the control signal of switch S1 is delayed by a
half switching period as compared with switch S2. The currents of L1 and L2 are conducted in CCM,
the input current Iin is the summation of the two boost inductor currents, and ripples are cancelled by
each other due to the interleaving topology [16]. It can be found that this topology has a capability of
reducing current ripple and EMI noise, but it also increases the additional cost of auxiliary circuits and
power devices.

The duty cycle d in every switching period is:

d =
ton

ton + to f f
= 1−

Vg

Vo
= 1−

√
2Vin|sin wt|

Vo
(1)

where ton is the switch turn-on time and to f f is the switch turn-off time, Vg is the rectified input voltage,
and Vo is the PFC converter output voltage.

2.2. Conducted EMI Noise Model

The EMI noise has been a concern for a long time due to the popularization of the switching power
converter. High-frequency driving signals of the power semiconductor can produce high voltage and
current variation in the converter, therefore, creating a high level of EMI noise. This EMI noise would
couple with the input terminal of the converter, then the conducted noise would be injected into the
power grid, and other equipment may be influenced if they are connected in the same network.

The DM noise plays a dominant pole role in the conducted EMI of the interleaved PFC converter.
Figure 2 shows the DM noise transferring path in the circuit topology, and the path overlaps the PFC
converter input current, and its frequency is much higher than the input AC frequency. Thus, the DM
noise is mainly dependent on the input current waveform which contains the power frequency
component and superimposed triangular waveform due to switching. The generated DM EMI noises
have frequencies equal to multiples of the switching frequency.
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For the two-wire interleaved PFC converter in this paper, the simplified DM noise model [17,18]
is shown in Figure 3. L1 and L2 are the boost inductors of the PFC converter. Due to the switching
of MOSFETs in the two channels of PFC converter, VS1 and VS2 across the MOSFET drain to source,
which varies from 0 V to the output voltage (390 V in this paper) are the sources of the EMI noise.
In the conducted EMI frequency range, the impedance of the capacitors in the LISN can be ignored
compared to the two LISN 50 Ω resistors.
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Based on the DM noise model, the differential noise VDM can be solved readily. As the two
channels of the PFC converter have the same design and switching frequency, the impedances of the
two boost inductors are the same. Due to the interleaved topology, the fundamental component of
the two noise sources will cancel each other. Thus, there will be no switching frequency noise in the
two-channel PFC converter. For the second-order harmonic component of the noise sources, they are
in phase and produce DM noises through the LISN resistor. The two DM noises will add together at
2 fs. For the same reason, all the odd harmonics cancelled each other and even-order harmonics remain
the same as those in the non-interleaving topology. Therefore, the DM noise analysis and filter design
should be based on the even-order harmonics in the interleaved topology.

3. Nonlinear Inductor Modeling

An inductor and a capacitor are the two components in the EMI filter, and the capacitor draws a
small current which is not compensated in the control loops. This may degrade the power factor of
the PFC converter slightly, and a more serious problem is that the THD of the input current would be
worsened due to the filtering inductor. In order to predict the dynamics of the PFC converter more
precisely, an accurate model for the inductor has been built to simulate its hysteresis behavior.

3.1. Jiles-Atherton Hysteresis Model

The EMI filtering inductor’s nonlinear behavior will be implemented using the Jiles-Atherton
(J-A) model and applied it to the overall system simulation. The J-A model can be used to model
the hysteresis characteristic of the magnetic core. The J-A model is a group of first-order ordinary
differential equations (ODE) which could be implemented numerically to describe the relationship
between magnetization and the magnetic field [19], and then the numerical details can be applied in
Simulink (MathWorks company, Natick, Massachusetts, 01760, USA) for the overall system simulation.
The J-A model is given as:

dMirr
dH

=
Man(He)−Mirr

k·sig
(

dH
dt

)
− α·[Man(He)−Mirr]

(2)

dMirr
dt

=
Man(He)−Mirr

k·sig
(

dH
dt

)
− α·[Man(He)−Mirr]

·dH
dt

(3)

dMrev

dH
= c·

(
dMan

dH
− dMirr

dH

)
(4)

M = Mirr + Mrev (5)
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He = H + αM (6)

B = µ0·(H + M) (7)

where M is the total magnetization, Man is the anhysteretic magnetization, Mirr is the irreversible
magnetization, the function sig(·) is defined as sig(x) = 1 for x ≥ 0 and sig(x) = −1 for x < 0. He is
the effective magnetic field, B is the flux density, H is the core magnetic field, α is the inter-domain
coupling factor, and µ0 is the permeability of free space.

The anhysteretic magnetization Man can be described using Langevin function as shown below:

Man = Ms

(
coth

He

∂
− ∂

He

)
(8)

According to Equation (8), the differential Man is:

dMan

dH
=

Ms

∂

[
1− coth2

(
He

∂

)
+

(
∂

He

)2
]

(9)

where Ms is saturated magnetization, and ∂ is a shape parameter.
Equation (10) can easily derived using Equations (2)–(7):

dM
dH

= (1− c)· δ·(Man −M)

sig
( .

H
)
·k(1− c)− α(Man −M)

+ c·dMan

dH
(10)

where:

δ =

{
0, i f sig

( .
H
)
·(Man −M) ≤ 0

1, otherwise

H =
ni

πD
(11)

Then

VL = µ0nA
d
dt
(H + M) =

µ0n2 A
πD

· di
dt
·
[

1 +
dM
dh

]
π (12)

Equation (13) can be derived with integration both sides of Equation (12),

M(t) =
∫ t

t0

VL
µ0nA

dt− H(t) + M0 (13)

where M0 is the initial magnetization, t0 is the start moment of the computation, VL denotes the voltage
across filtering inductor respectively. Equation (13) is discretized as below:

M(j + 1) =
j

∑
m=1

VL(m)

µ0nA
·∆t− H(j) + M0 (14)

From Equations (11) and (12) one can obtain:

di
dt

=
πD

µ0n2 A
· VL

1 + dM
dH

=
πD

µ0n2 A
· VL
1 + dM/dH

(15)

Hence:
dH
dt

=
1

µ0nA
· VL

1 + dM
dH

=
1

µ0nA
· VL
1 + dM/dH

(16)

where i is the system input current which flows through filtering inductor.
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Equation (16) can be discretized as:

H(j + 1)− H(j)
∆t

=
1

µ0nA
· VL(j)
(dM/dH)(j)

(17)

Then the nonlinear filtering inductor model can be built in the embedded MATLAB function of
Simulink following the procedures shown in Figure 4.
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3.2. Inverse J-A Model Parameters

The parameters Ms, k, ∂, α, and c of the J-A model can be obtained from the magnetic material
specification and solving some particular equations as shown in procedure below. The wall motion
parameter k can be estimated as Hc, and Hc is the coercive force (A/m).

From Equation (8), it can be derived that:

Man(Mr) = Ms

(
coth

αMr

∂
− ∂

αMr

)
(18)

f (α) = Man(Mr)−Mr +
k

α
1−c + 1/

(
Xr − c dMan(Mr)

dH

) (19)

where Mr = Br/µ0, remanence flux density Br and. Xr is the remanence differential susceptibility.
The secant method [20] introduced in Equation (20) will be used to calculate the parameter α.

αn = αn−1 −
αn−1 − αn−2

f (αn−1)− f (αn−2)
f (αn−1) (20)

If
∣∣∣ αn−αn−1

αn

∣∣∣ < tolerable error, α = αn.
According to Equation (6):

He = Hm + αMm (21)

From Equations (19) and (21) one can obtain:

g(∂) = Man(He)−Mm −
(1− c)kXm

αXm + 1
(22)

where Mm is the maximum value of magnetization at tip of B-H loop, Xm is the maximum differential
susceptibility. Using the secant method as introduced in Equation (20) to solve Equation (22), and then
the shape parameter ∂ can be obtained.

Wall motion parameter c can be calculated:
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c = 3∂Xin/Ms (23)

where Xin is the initial differential susceptibility.
Using the derived J-A model parameters could improve the accuracy of the filtering inductor

simulation. The prediction will be verified in the next section. The hysteresis parameters for the sample
material are: Ms = 2.86× 105(A/m), k = 140 (A/m), ∂ = 175 (A/m), α = 4.35× 10−5, and c = 0.45.

4. Simulation Results

The system configuration which includes the nonlinear inductor model in the interleaved PFC
converter is shown in Figure 4. The simulation will be conducted under the following conditions and
Table 1: the input AC voltage is set to 110 or 220 V, respectively, the load is simplified as a resistor
R = 780 Ω. In addition, other important system component parameters are provided: the two boost
inductors L1 = L2 = 200 µH, input DM EMI noise filter inductor L f = 210 µH if its nonlinearity is
ignored and capacitor C f = 0.47 µF, the output capacitor C = 220 µF.

Table 1. PFC converter specifications and parameters.

Specifications and Parameters

Input AC voltage(rms) 85–265 V
Power frequency 50 Hz

Output DC voltage 390 V
Switching frequency 116.5 kHz

Output power 195 W

Figure 5 shows the simulated waveforms of the magnetic field, magnetization, and their
relationship. It supports that the J-A model can be used in the overall system simulation and predict
the hysteresis phenomenon of the filtering inductor accurately. As expected, Figure 6a has a larger
maximum magnetic field, magnetization, and input current than Figure 6b since the input voltage for
the case of Figure 6a is smaller as a constant output power. The observed results are useful to choose
the appropriate magnetic core and number of turns of the EMI filtering inductor to avoid the core
always running into a saturation state, which produces severe harmonics in the PFC converter.
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Figure 7 shows the boost inductor currents, input currents when Vin = 110 or 220 V with J-A model
consideration, respectively. It can be observed that current flowing into the interleaved PFC converter
has a smaller ripple than the boost inductor currents due to the interleaving topology. The interleaved
PFC converter has a capacity of reducing the total harmonic distortion, switching losses, and inductor
magnetic core, as compared with the traditional single-boost inductor configuration [21]. It also can
be found that there is a smaller current ripple when the PFC converter runs at a lower input voltage.
Figure 8 shows the zoomed-in boost inductor current and input current; the boost inductor current
ripple cancel each other, resulting in smaller current ripple in the input current. Figure 8a shows the
current ripple when the input instant voltage is 24 V and duty cycle is around 0.6, Figure 8b shows the
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input instant voltage is 155 V and duty cycle is around 0.5. Smaller current ripple reduces the size of
the magnetic core and DM EMI noise.

Figure 9 shows the simulated input voltage, current and output voltage when the J-A model is
considered. From Figure 9, it can be found that as a closed loop control system, the interleaved PFC
converter including the complicated nonlinear filtering inductor model can run into steady state and
predict the system phenomenon. It shows that the J-A model would not affect the stability of the PFC
converter system. These simulation results will be verified in the following section.
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5. Experiment Results

An experiment has been conducted to verify the simulation results. The hardware setup for
the experiment consists of a UCC28258/UCC28220 dual interleaved PFC pre-regulator including
two CTX16-17309 produced boost inductors as shown in Figure 10. The EMI filter consists of a
capacitance C f of approximately 0.47 µF, and a differential inductance L f which is produced with
LCR-COMPONENTS-DF5-CHOKE, in which the core is toroidal in shape and is made of ferrite
with its average D being 1.5× 10−2 m2 and cross-sectional area A being 10× 10−5 m2, the number of
turns n being 40. The model of LISN is 3725/2M. The experiment input voltage is the same as the
simulation condition.
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Figure 12 shows the EMI noise spectrum analysis with and without the EMI filter installation. It 
can be found that the first EMI peak noise happened at ௦݂ and the maximum magnitude happened 
at 2 ௦݂ which has been derived in the previous section. The EMI noise spectrum analysis shown in 
Figure 12b shows that the noise across the spectrum is reduced apparently after the EMI filter 
installation, and the EMI filter has a better attenuation at a higher frequency. 
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An EMI filter has been installed in the PFC converter to suppress the EMI noise generated by
the fast-switching devices. The time-domain EMI measurement system [22], which is simple and
efficient will be used to do the spectrum analysis in the experiment. The EMI noise emitted from the
PFC converter is captured from the line (L) and neutral (N) output of the LISN. The signals from the
LISN will be fed into the digital storage oscilloscope to do a sampling process. The spectrum of the
time-domain measurement can be obtained via Fourier transform, as shown in Figure 11.
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Figure 12 shows the EMI noise spectrum analysis with and without the EMI filter installation.
It can be found that the first EMI peak noise happened at fs and the maximum magnitude happened
at 2 fs which has been derived in the previous section. The EMI noise spectrum analysis shown
in Figure 12b shows that the noise across the spectrum is reduced apparently after the EMI filter
installation, and the EMI filter has a better attenuation at a higher frequency.

Table 2 shows the THD analysis results, from which one can see that the THD of power frequency
harmonics increased slightly due to the EMI filter installation, which has been expected. However,
this minor deterioration is overwhelmed by the benefit of significant suppression of the conducted
EMI in the kilohertz to megahertz range.
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Table 2. THD analysis results.

Input Voltage THD (without EMI Filter) THD (with EMI Filter)

110 V 6.51% 7.46%
220 V 5.45% 7.57%

Figure 13 shows the input current THD analysis results with, and without, J-A model
consideration. It can be found that the PFC circuit, if considering the inductor nonlinearity described
by the J-A model, can predict the input currents accurately under different conditions. Comparing
with the experimental results, it can be found that the predicted THD are accurate if considering the
J-A model in the EMI filter. In real design, people will avoid saturation of the inductor. Using a larger
magnetic core can avoid inductor saturation, but it also increases the weight and cost of the product.
Using a smaller core is acceptable if it runs into the saturation area for a short time, so long as the
reduced EMI noise passes the standard, as shown in Figure 12. The nonlinearity of the inductor not
only happens in the saturation area, thus, the THD is impacted by the nonlinearity and saturation in
this manuscript and using the J-A model could improve the accuracy of dynamic modeling.
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6. Conclusions

An interleaved PFC converter can effectively reduce the ripple current due to its effective
ripple current cancellation, but its production of conducted EMI noise due to the fast switching
devices still could pose a threat to polluting the power mains and influence other electronic systems
connected to the same power mains. Hence, an EMI filter is necessary to work together with the
PFC converter to suppress the EMI noise and guarantees the harmonics compliance with the EMC
standard. In this paper a comprehensive modeling of an interleaved PFC with an input EMI filter
has been successfully implemented. In the modeling, the non-linearity of the EMI inductor was
considered by adopting the J-A model, which has been shown to describe the hysteresis of the filtering
inductor well. Overall, the system simulation results have been verified by the experimental ones.
This comprehensive modeling is meaningful since it can predict THD performance of the designed
circuit and reduce the product design cycle and cost.
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