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Abstract: Achieving relatively high-accuracy short-term wind speed forecasting estimates is
a precondition for the construction and grid-connected operation of wind power forecasting systems
for wind farms. Currently, most research is focused on the structure of forecasting models and
does not consider the selection of input variables, which can have significant impacts on forecasting
performance. This paper presents an input variable selection method for wind speed forecasting
models. The candidate input variables for various leading periods are selected and random forests
(RF) is employed to evaluate the importance of all variable as features. The feature subset with
the best evaluation performance is selected as the optimal feature set. Then, kernel-based extreme
learning machine is constructed to evaluate the performance of input variables selection based on RF.
The results of the case study show that by removing the uncorrelated and redundant features, RF
effectively extracts the most strongly correlated set of features from the candidate input variables.
By finding the optimal feature combination to represent the original information, RF simplifies the
structure of the wind speed forecasting model, shortens the training time required, and substantially
improves the model’s accuracy and generalization ability, demonstrating that the input variables
selected by RF are effective.

Keywords: random forests (RF); feature selection; input variables selection; kernel-based extreme
learning machine; short-term wind speed forecasting

1. Introduction

Wind power is a clean, renewable form of energy that can be developed and utilized relatively
easily; consequently, it has garnered increased attention. Increasing the accuracy of short-term wind
speed forecasts can facilitate wind power integration and help ensure safe power grid operation. Wind
speeds are random and fluctuate significantly; therefore, accurate short-term wind speed forecasting is
difficult. Methods based on time series [1-4] and machine learning (ML) [5-10] have been widely used
to construct wind speed forecasting models. Because of their high forecasting accuracy and ability to
generalize, Traditional ML methods such as neural networks (NN) and support vector machines (SVM)
have become a research focus in recent years. The extreme learning machine (ELM) [11] is a recent
ML method and introduced for wind speed forecasting because of its simple structure, fast learning
rate, and strong generalization ability, and it effectively eliminates the risk of falling into a local
optimum [12-14]. The kernel-based extreme learning machine (KELM) method [15] is an improved
ELM method based on a kernel function that provides better approximations and generalizes more
steadily than the original ELM method [16-21].
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The accuracy of wind speed forecasting is effectively improved by ML methods, but the
performance of ML in forecasting is highly sensitive to the input selection; an effective modeling
would benefit greatly from a successful selection of input, as a good feature selection method is
essential for ML modeling. However, it is usually not an easy task in wind speed forecasting for
researchers to select a proper input. Multiple variables with various lagging periods, such as historical
wind speed, temperature, humidity and atmospheric pressure all have connections with the wind
speed that need to be forecasted, and there is a complex mutual impact between them. It is not wise
to choose all of these candidates as an input or select the features for model input according to their
experiences in a ML model. Fortunately, efforts have been made on this issue. Currently, many feature
selection methods have been introduced in wind speed forecasting research. Principal component
analysis, as a traditional dimensionality reduction method, is utilized to determine the major factors
affecting the wind speed [9]. At the same time, partial autocorrelation function [4,8], phase space
reconstruction [10], granger causality test [8], coral reefs optimization [12] and other methods were
validated successfully in the input selection. Most of these methods place emphasis on the analysis
between the candidate variables, instead of on the variables and the model performance. An alternative
method of selecting input is directly analyzing the nexus between the model performance and the
variables, and this may work better. RF is such a method succeeding in feature selection recent years.
The RF algorithm [22] is an ensemble ML approach based on the classification and regression tree
(CART) that is suitable for selecting features from large high-dimensional, discrete data sets [23-26].
However, its validation in wind speed forecasting has not been tested.

In this study, an input variable selection method based on RF that improves wind speed forecasting
accuracy is proposed. The candidate input variables (temperature, humidity, atmospheric pressure, and
historical wind speed) of variable-length periods preceding the current period are selected. Then, the
RF method is employed to select and evaluate feature combinations composed of the aforementioned
candidate input variables. The feature subset with the best performance is selected as the optimal
feature set. Then, a short-term wind speed forecasting model is constructed using the selected optimal
feature set as the set of input variables for the KELM. The results of a case study and a comparison of
several different models show that by removing uncorrelated and redundant features, the RF feature
selection method effectively extracts the most strongly correlated feature set from the candidate input
variables for periods preceding the current period by various amounts of time. The RF feature selection
method identifies the fewest features to represent the original information, simplifies the structure of
the wind speed forecasting model, reduces the training time, and improves the model’s accuracy and
generalization ability, all of which demonstrate that the input variables selected using the RF method
are effective.

The rest of the paper is organized as follows. In Section 2, input variable selection based on RF is
briefly introduced. Section 3 gives the approaches of the proposed model based on KELM. In Section 4,
a case study is carried out to evaluate the performance of the proposed method. Finally, the conclusions
are drawn out in Section 5.

2. RF-Based Input Variables Selection

2.1. Basic Principle of the RF Method

With a CART as the base predictor, the RF method extracts new bootstrap sample sets from
the training set with replacement using bootstrap random resampling and random node splitting to
construct a decision tree as follows:

(h(X, L)), i =1,2, ..., M} 1)

where X represents independent variables, {L;} represents independent and identically distributed
random vectors used to control the tree’s growth, and M represents the number of decision trees.



Energies 2017, 10, 1522 30f13

Given the independent variables X, each decision tree predicts a result. For classification problems,
the final prediction of the RF method is determined by a simple majority vote on the results predicted
by the individual decision trees. For regression problems, the prediction result obtained using the RF
method is the average of all the regression results from the individual decision trees.

2.2. Measuring Feature Importance Based on Out-of-Bag Prediction Accuracy

When using the bootstrap technique to extract samples, the RF method generates “out-of-bag”
(OOB) observations that account for approximately 36.8% of the original data each time. Using OOB
data as the test set to evaluate the prediction performance of the RF method is called OOB estimation.
When the number of trees is sufficient, OOB estimation is unbiased.

For a previously generated RF, the total number of OOB samples is denoted by N,,5. When OOB
data are used as the test set to evaluate the prediction performance of the RF method, the number of
correctly labelled samples is denoted by koop. Therefore, the OOB prediction accuracy, Accynp can be
calculated using the following equation:

koos o)

ACCOOB = NOOB

The ability to measure feature importance is a key merit of RF; therefore, it can be used as
a feature selection tool for high-dimensional data. The mean decrease in accuracy (MDA) measures the
importance of a feature based on Acc. For bootstrap samples By, By, ... B;, ... By (where n is the
number of training samples) with features X;, Xy, ... X, ... Xm (where m is the feature dimension),
the Accyyp-based feature importance is measured by the following steps:

Step 1: Set i = 1, create a decision tree T; using the training samples, and denote the OOB data
as OOB;.

Step 2: Using OOB; as the test set and the decision tree T; to predict, denote the number of correct
predictions by calculating Accqp..

Step 3: Add noise to each feature X; in OOB;, and denote the dataset with added noise as
OOB;. Then, use T; to perform prediction on OOB;, and denote the number of correct predictions by
calculating Acc 0B!"
Step 4: Fori =2, 3, ..., n, repeat step 1 through 3.

Step 5: Calculate the importance MDA of feature X; using the following equation:

1
MDA = — ) (Accoop, — Accpop) ®3)
i=1

=

MDA is to measure how much the model accuracy decreases when permute the values of each
feature. If the feature is important for the model, the model accuracy will be highly affected and
decreases significantly when permute it. Then the features can be ranked according to the mean
accuracy decrease.

2.3. MDA-Based Input Variable Selection

Input variables are selected based on the calculated MDA for all the candidate input variables.
The main steps involved in MDA-based candidate input variable selection are as follows: First, an RF
model is constructed and used for prediction based on the original dataset (i.e., using all the candidate
input variables). Second, the MDA of each feature is calculated using Equation (3), and the features
are ranked in descending order based on the MDA results. Third, the sequential backward selection
method is employed to remove the feature dimension corresponding to the smallest MDA from the
feature set each time, creating a new, reduced feature set. In addition, a new RF model is constructed
and used to make predictions. Finally, through this iterative process, the feature subset with the
fewest feature variables and the optimal prediction results is obtained. In this study, the prediction
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performances of the RF models are evaluated using the mean absolute percent error (MAPE) EpapE
metric, which is calculated using the following equation:
90 —y()]

Emarg = li [;y x 100%] 4)
kizl y(i)

where k represents the predicted data length, y(i) and §(i) represent the original and predicted
data, respectively.
Figure 1 shows the flowchart of the input variable selection process based on RE.
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Figure 1. Flowchart for random forests (RF)-based input variable selection. MAPE: mean absolute
percent error; MDA: mean decrease in accuracy; kMAPE: MAPE in the current k-fold process.

In Figure 1, to ensure the stability of the prediction, Epapg is calculated using the k-fold
cross-validation method. In each iteration, kMAPE is the MAPE in current k-fold process, Mean_kMAPE
is the mean of all the kMAPEs in the k-fold process, and features are removed based on the following
rule: In the k-fold process of each iteration, if rfSet is the ranking result corresponding to the smallest
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Mean_kMAPE, then the feature dimension corresponding to the smallest MDA is removed from rfSet.
Thus, an increasingly optimal feature subset is obtained after each iteration. After all iterations are
complete, the feature subset obtained in the iteration corresponding to the best prediction error rate
(Best_MAPE) is the global optimum feature set.

3. Construction of a Wind Speed Forecasting Model Based on Input Variable Selection

To examine the effectiveness of the RF method in selecting input variables, a short-term wind
speed forecasting model is constructed using the optimal feature set selected by the RF method as
the input variables to the KELM. A radial basis function (RBF) is selected as the kernel function of
the KELM, as regularization coefficient (C) and gamma of RBF kernel (¢) highly affect generalization
ability of KELM model, genetic algorithm (GA) is applied to optimize the parameters of KELM [8,10].
Also as ML methods are relatively sensitive to the input variables, wavelet transform (WT) is used to
remove noise from the wind speed data [8,21], which are typically random and highly noisy.

To select candidate input variables using the RF method for a KELM-based short-term wind speed
forecasting model (hereinafter referred to as the WI-RF-KELM-GA model), the following steps are
performed. First, a WT is performed on the original wind speed data to generate an approximate
series and some detail series. Then, the RF method is employed to select the optimal features from
the candidate input variables for the model. The KELM is trained with the selected input feature set.
In addition, GA is employed to optimize the kernel function to train an optimal KELM-based model.
Finally, the optimal KELM-based model is used to forecast the wind speed. The final forecast is the
sum of the forecasts obtained from each decomposed series.

Figure 2 shows the forecasting process of the WI-RF-KELM-GA model.
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Figure 2. Flowchart of the WI-RF-KELM-GA model.
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3.1. Candidate Input Variable Selection

Wind speed is significantly affected by weather factors. Therefore, temperature, humidity, and
atmospheric pressure are selected as the candidate input variables. In addition, because there is
a strong autocorrelation between historical and forecasted wind speeds, historical wind speed is also
selected as a candidate input variable. Therefore, temperature, humidity, atmospheric pressure and
historical wind speed are selected as the model input variables. The functional relationship between
the original input and the output when forecasting the wind speed at any time is:

y = f(speed™, Tem, Hum, Pre) ()

where speed ™, Tem, Hum, and Pre represent the wind speed, temperature, humidity, and atmospheric
pressure at each current or previous time, respectively, and y represents the forecast wind speed.

A KELM-based short-term wind speed forecasting model can be constructed by using the wind
speed, temperature, humidity, and atmospheric pressure of the current and previous period as the
input variables of the KELM and the wind speed of the next period as the output variable of the KELM.

3.2. KELM Modelling and GA Optimization

After the input variables have been selected from candidate input variables such as the historical
wind speed, temperature, humidity, and atmospheric pressure using the RF method, the functional
relationship between the input and the output of the model becomes

y=f(x') (6)

where x’ represents the optimal feature set obtained through input variable selection using the
RF method.

After the model input variables have been determined, an input variable matrix containing x’ and
an output variable matrix containing y can be generated. The input and output matrices are uniformly
divided into training and validation sets. Then, a KELM-based model is constructed and trained.
In addition, a GA is employed to optimize the regularization coefficient C and the kernel function .
The optimal KELM-based model obtained is used for forecasting. Finally, the wind speed forecast
using each decomposed series is obtained.

3.3. Forecasting Results Evaluation

The final forecast value of the original wind speed is obtained by adding all the forecasts based
on the decomposed series. Eyjapg, the mean absolute error (MAE) Epag, and the root mean squared
error (RMSE) Ermsg are used to evaluate the forecast obtained from the model. Eyjag and Egmsg are
calculated as follows:

18 .
EmaAE = %Zlﬁ(l) —y(i)| 7)
i=1

Erwise = \/ £ (60) - y()? ®

4. Case Study

4.1. Data Source and Parameter Initialization

In this paper, a wind farm located in Hebei Province, China was used to validate the proposed
method. The wind speed datasets with 15-min intervals from September to October in 2015 were
collected. Figure 3 shows the wind speed with sample size of 5760, Figure 4 shows the original data of
wind speed, temperature, humidity and atmospheric pressure.
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Figure 3. Actual wind speed data in September and October of 2015.
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Figure 4. Original data of wind speed, temperature, humidity and atmospheric pressure.
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In Figure 3, the maximum, minimum and average wind speeds are 16.43 m/s, 0.12 m/s and
5.76 m/s, clearly showing the large variations in wind speed. From Figure 4, it can be seen that
temperature, humidity and atmospheric pressure have similar fluctuations with wind speed data
sometimes and it can be inferred that they may have some relationship with wind speed. Here, 75% of
the original data are used to construct the KELM-based model, and the remaining 25% are used as the

test set to validate the model.

A WT is performed to decompose the original wind speed series, and the 9th-order Daubechies
wavelet with three decomposition layers is adopted for WT. The original wind speed series are
decomposed into one approximate series A3, and three detail series, D1, D2 and D3. Figure 5 shows

the results of WT.
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Figure 5. Original wind speed series and its decomposed series.
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As shown in Figure 5, the approximation series A3 is a low-frequency signal, and very close to
the original wind speed series; the detail series D1, D2 and D3 has a relatively high frequency and
a relatively small amplitude, resulting in a relatively large forecasting error. So, the approximate series
A3 is used to construct the forecasting model, the detail series D1, D2 and D3 are regarded as noise
and neglected, and the forecast based on the approximate series A3 is used as the final result.

4.2. Candidate Input Variable Selection

In this study, the model is used to make forecasts for the next hour at time intervals of 15 min.
Therefore, when selecting candidate input variables, data from the 2-h period preceding (and including)
the current time are selected as the candidate input variables (i.e., the temperature, humidity,
atmospheric pressure, and historical wind speed with leading periods of 1-8 x 15 min) are selected as
the candidate input variables. Table 1 lists the dimensions of the original input and output variables
according to Equation (5).

Table 1. Dimensions of the original input and output variables.

Variable Matrix Meaning Dimension Total Dimension
speed ™ speed;_7,speed;_g, ..., speed;_1,speed; 8
Tem Tem;_y, Tem;_g, ..., Tem;_ 1, Tem; 8
Input
npu Hum Hum;_;, Hum;_q, . .., Hum; 1, Hum; 8 32
Pre Pre;_7,Pre;_g, ..., Pre;_q, Pre; 8
Output y speed; 1, speed; 5, speed; . 3, speed; . 4 4 4

InTable1,t,t+1,t+2,t—1,and t — 2 represent the current time, one lagging period (the time
15 min after the current time), two lagging periods (the time 30 min after the current time), one leading
period (the time 15 min before the current time), and two leading periods (the time 30 min before the
current time), respectively. As shown in Table 1, the total dimension of the candidate input variable
matrices is 32, and the dimension of the original output variable matrix is 4. Because of the high
dimension of the candidate input variable matrices, using all these candidate input variables directly
as model inputs inevitably leads to a long training time and a poor learning result.

4.3. Feature Selection Based on the RF Method

The RF method is used to select a subset of features (i.e., input variables) for the model, i.e.,
the correlation between each feature (the wind speed speed™, the temperature Tem, the humidity
Hum, and the atmospheric pressure Pre), and the forecast wind speed y is determined by calculating
MDA based primarily on Equation (3). Because the forecast target is the wind speed for the next 1 h
period (speed;. 1, speed; , speed;. 3, speed;_ 1), speed; 4 is used as a modelling example. The correlation
between each independent variable (the historical wind speed speed, the temperature Tem, the
humidity Hum, and the atmospheric pressure Pre) and speed; , 4 is calculated. Figures 6 and 7 show the
results for MDA.

As shown in Figure 6, the historical wind speeds for the periods 4-11 x 15 min before the
current period are highly positively correlated with speed; 4, while the correlations between them
gradually decrease as the interval between the period corresponding to the historical wind speed
and the current period increases. The historical wind speeds speed;, speed;_; with periods of 4 and
5 x 15 min, respectively, are the most strongly correlated with speed; 4. As shown in Figure 7, the
correlations between the temperature, humidity, and atmospheric pressure of the leading periods
4-11 x 15 min and speed; 4 are more complex. The humidity and speed; 4 correlation decreases as
the leading period increases. In contrast, there is a “U”-shaped correlation between the historical
temperature, the atmospheric pressure and speed; 4. The correlation between each of Hum;, Hum;_,
(the historical humidity data with leading periods of 4 and 5 x 15 min, respectively), Pre;, Pre;_1, Pre;_7
(the historical atmospheric pressure data with leading periods of 4, 5, and 11 x 15 min, respectively)
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and speed; 4 is relatively significant, whereas the correlations between temperature and speed; 4
are insignificant.

1 2 3 4 5 6 7 8
Feature

Figure 6. Calculated MDA values with respect to the historical wind speed. Note: Features
1-8 represent the historical wind speeds of the periods from 4-11 x 15 min before the current
period, respectively.

4.0

1 89 1617 24
Feature

Figure 7. Calculated MDAs with respect to the temperature, humidity, and atmospheric pressure.
Notes: Features 1-8 represent the temperatures of the periods 4-11 x 15 min before the current period,
respectively; features 9-16 represent the humidities of the periods 4-11 x 15 min before the current
period, respectively; and features 17-24 represent the atmospheric pressures of the periods 4-11 x 15
min before the current period, respectively.

Prior to the removal of feature dimensions, the optimal Eyjapg corresponding to all the candidate
input variables was 17.62%. The calculation was performed in accordance with the flowchart shown
in Figure 1. Each candidate input vector underwent 31 iterations. In each iteration, the feature
corresponding to the smallest MDA was removed. Figure 8 shows the optimal Eypjapg corresponding
to each iteration.

In Figure 8, the feature dimension corresponding to the smallest MDA is removed in each iteration.
As shown in Figure 8, in each iteration, overall, EpapE first increases, then decreases and then increases
again as features are continually removed. The initial increase in Epapg is a result of the decrease in
the dimensionality of the data. Following the initial increase, Eyiapp continues to decrease over a long
period. This decrease mainly occurs because the removal of uncorrelated and redundant features
improves the model’s forecasting performance. After reaching its minimum value of 13.61%, Epapg
begins increasing again, which occurs because the removal of useful features reduces the model’s
forecasting performance.
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Figure 8. Relationship between prediction accuracy and number of features.

Best_rfSet = [speed;_1,speed;, Hum;_ 1, Hum;, Pre;_7, Pre;_1, Pre;] is the optimal feature subset
corresponding to the smallest value of Eypjapg throughout the iteration process. This feature subset
includes speed;, speed;_; (historical wind speed data for the leading periods of 4 and 5 x 15 min,
respectively), Hum;, Hum;_; (humidity data for the leading periods of 4 and 5 x 15 min, respectively)

and Pre;, Pre;_1, Pre;_7 (atmospheric pressure data for the leading periods of 4, 5 and 11 X 15 min,
respectively).

4.4. KELM-Based Modelling and Parameter Optimization

According to Equation (6), X' = Best_rfSet = [speed; 1, speed;, Hum; 1, Hum;, Pre;_7, Pre; 1, Pre;]
is the optimal input variable set. Table 2 lists the numbers of input and output variables of KELM.

As shown in Table 2, after processing the candidate input variables using the RF method, the
dimension decreases from 32 to 7; most of the data (historical wind speed, humidity, and atmospheric
pressure) have been removed. In addition, because the temperature dimension feature is insufficiently
representative and redundant, it is completely removed.

Based on the selected input shown in Table 2, the KELM is trained and validated. Moreover, a GA

is employed to optimize the kernel function of the KELM. After optimization, the values of C and ¢
are 382.5611 and 33.2767, respectively.

Table 2. Dimensions of the input and output variables after the selection of the input variables.

Variable Matrix Meaning Dimension Total Dimension
speed™ speed;_1, speed; 2
Tem - 0
Input
npu Hum Hum;_1, Hum; 2 7
Pre Pre;_7, Pre;_q, Pre; 3
Output y speed, 1, speed; ), speed;_ 3, speed; 4 4 4

4.5. Forecasting Results and Model Comparisons

An optimal KELM-based model is obtained after GA optimization. The optimal KELM-based

model is used to forecast based on the test set. Thus, forecasted wind speeds are obtained. Figure 9
shows the results.
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Figure 9. Wind speed forecast from the WI-RF-KELM-GA model.

As shown in Figure 9, the forecast values closely match the original values, which demonstrates
that the model has relatively high forecasting accuracy. To examine the effectiveness of the RF method
for selecting input variables, the WT-RF-KELM-GA model is compared with persistence model, RBF,
NN (a feed-forward back propagation network), SVM and ELM. Table 3 lists the main configuration
details of each model, Table 4 lists the relevant evaluation indices for each model.

Table 3. Main configuration details of each model. RBF: radial basis function; NN: neural networks;
SVM: support vector machines; ELM: extreme learning machine.

Model Configuration Details
RBF Transfer function: Gaussian, spread of RBF: 1.
NN Sizes of hidden layers: 5, transfer function: tansig.
Parameters by GA: initial weights and thresholds.
SVM Transfer function: Gaussian RBE.
Parameters by GA: width of kernel, penalty coefficient.
ELM Number of hidden neurons: 20, transfer function: sigmoidal.

Parameters by GA: weights of input layer, bias of hidden layer.

Table 4. Comparison of the evaluation indices of the models. MAE: mean absolute error; RMSE: root

mean squared error; WT: wavelet transform.

Model MAE (m/s) MAPE (%) RMSE (m/s)
Persistence 1.1782 21.83 1.1693
WT-RBF 1.3169 22.05 1.7152
WT-RF-RBF 1.0568 19.76 1.3803
WT-NN-GA 1.4018 23.36 1.6628
WT-RF-NN-GA 0.7373 13.80 0.9776
WT-SVM-GA 1.1319 21.09 1.5676
WT-RF-SVM-GA 0.7598 13.55 1.0289
WT-ELM-GA 1.2156 21.98 1.5857
WT-RF-ELM-GA 0.7688 13.83 1.0350
WT-KELM-GA 1.1694 21.54 1.5303
WT-RF-KELM-GA 0.7047 12.54 0.9518

As shown in Table 4, after selecting the input variables using the RF method, the forecasting
performance of each model increases significantly, which indicates the effectiveness of the input
variables selected by the RF method. A comparison of the WT-RF-KELM-GA and WT-KELM-GA
models shows that after selecting the input variables using the RF method, each evaluation index
decreases by approximately 40% (Epmag: 39.7%; Emapp: 41.8%; Ermsg: 37.8%). A comparison of
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the ELM, SVM, NN and RBF-based models shows that after input variable selection using the RF
method, the forecasting accuracy of each model increases substantially. Therefore, the RF method
effectively improves the forecasting ability of ML-based models such as the KELM, ELM, SVM, NN
and RBF-based models tested here by selecting the optimal input variables. The results show the
effectiveness of the input variables selected using the RF method.

5. Conclusions

This study proposed an RF-based input variable selection method that selects the optimal set
of input variables to improve the forecasting accuracy of short-term wind speed forecasting models.
By removing the uncorrelated and redundant features, the RF method extracts the most strongly
correlated feature set from different candidate input variables for varying-length periods preceding
the current period, decreases the dimensionality of the input variables, and uses the fewest features
to represent the original information. It also simplifies the structure of the wind speed forecasting
model and reduces its training time. The results of a case study and a comparison of several models
show that the short-term wind speed forecasting model using the input variables selected by the RF
method has a high learning rate, better forecasting accuracy and a higher generalization ability than
other models while also requiring fewer computational resources.

The following conclusions can be drawn from this study: (1) The RF method ranks the importance
of candidate input variables and then removes some of them. Extracting the most correlated features
ensures that the input variables used for model input are effective, thus improving the accuracy of the
wind speed forecasting model; (2) Using the RF method to select input variables for ML algorithms
can effectively address the sensitivity of ML algorithms to input variables and improve the forecasting
accuracy and generalization ability of ML algorithms.
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