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Abstract: Five-phase permanent magnet synchronous motors (PMSM) have special applications in 
which highly accurate speed and torque control of the motor are a strong requirement. Direct 
Torque Control (DTC) is a suitable method for the driver structure of these motors. If in this method, 
instead of using a common five-phase voltage source inverter, a three-phase to five-phase matrix 
converter is used, the low-frequency current harmonics and the high torque ripple are limited, and 
an improved input power factor is obtained. Because the input voltages of such converters are 
directly supplied by input three-phase supply voltages, an imbalance in the voltages will cause 
problems such as unbalanced stator currents and electromagnetic torque fluctuations. In this paper, 
a new method is introduced to remove speed and torque oscillator factors. For this purpose, motor 
torque equations were developed and the oscillation components created by the unbalanced source 
voltage, determined. Then, using the active and reactive power reference generator, the controller 
power reference was adjusted in such a way that the electromagnetic torque of the motor did not 
change. By this means, a number of features including speed, torque, and flux of the motor were 
improved in terms of the above-mentioned conditions. Simulations were analyzed using 
Matlab/Simulink software. 

Keywords: permanent magnet synchronous motor; matrix converter; direct power control; 
unbalanced supply voltage 

 

1. Introduction 

Permanent magnet synchronous motors (PMSMs) are similar to ordinary synchronous motors, 
with the exception that their field winding has been replaced with a permanent magnet. Among these 
motors, five-phase PMSM has a number of features such as higher efficiency, reliability, and power 
density than other types of PMSM [1]. These motors are commonly used in special industrial cases 
such as marine propulsion systems, hybrid vehicles, and the aerospace industry. In most cases, it is 
necessary to design a proper driver with small size and high reliability [2,3]. 

One of the common methods to control the torque (and thus finally the speed) of these motor is 
Direct Torque Control (DTC). The block diagram of the Switching Table based Direct Torque Control 
(ST-DTC) scheme is shown in Figure 1 [4]. 



Energies 2017, 10, 1509  2 of 21 

 

 

Figure 1. A block diagram of the Switching Table Based Direct Torque Control with circular stator 
flux path. 

The scheme includes two hysteresis controllers. A stator flux controller imposes the time 
duration of the active voltage vectors, which move the stator flux along the reference trajectory, and 
the torque controller determines the time duration of the zero voltage vectors, which keep the motor 
torque in the defined-by-hysteresis tolerance band. Finally, for every sampling time the voltage 
vector selection block chooses the inverter switching state (SA, SB, SC), which reduces the 
instantaneous and torque errors. 

Figure 2 shows the diagram of a five-phase voltage source inverter which is called the classic 
method of direct torque control in this article. 

 
Figure 2. Diagram of a five-phase voltage source inverter. 

There are two major drawbacks to applying inverter: low-frequency voltage harmonics and high 
torque ripple [5–7]. To eliminate these problems, the direct torque control method with a  
three-phase to five-phase matrix converter (Figure 3) is introduced [8–10]. This circuit is an AC to AC 
converter. Compared to the VSI converter, intermediate circuits and DC link have been removed 
[11,12]. 
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Figure 3. Diagram of a three-phase to five-phase matrix converter. 

Using more degrees of freedom in this converter, an optimal switching table is provided, along 
with the elimination of the mentioned problem, the input power factor is also controlled. 

Because the input voltages of the matrix converter are directly supplied by the input voltage 
source, one of the factors that makes such converters inefficient is the voltage imbalance in the  
three-phase input supply [13]. In a three-phase system, voltage imbalance usually takes place when 
the magnitudes or the phase angles of the line voltages are different from the balanced conditions. 
The voltage imbalance decreases the motor performance. It can also cause current imbalance which 
is more intense than voltage imbalance. Unbalanced currents lead to torque pulsation and increase 
losses. Therefore, the power quality and energy efficiency will be reduced [14]. 

Common causes of voltage imbalance are the faulty operation of the power factor correction 
equipment, unbalanced or unstable utility supply, unevenly distributed single-phase loads on the 
same power system, and unidentified single-phase to ground faults. 

Because such matrix converters are generally applied where the accurate control of the speed 
and torque of a motor is considered, developing a new method to eliminate the imbalance impact on 
process performance is necessary. This paper proposes a direct power control technique to solve this 
problem. First, the motor power and torque equations are developed and the oscillator phrases which 
come into existence by voltage imbalance are separated. Then, using an active and reactive power 
reference generator, the controller power reference is changed so that the machine electromagnetic 
torque remains constant. 

It means that the active and reactive power produced by the generator should properly follow 
the active and reactive power reference which is favorable. In this way, in addition to optimal speed 
control, torque oscillator parameters will also be eliminated. 

2. Modeling of Five-Phase PMSM and Matrix Converter 

The five-phase PMSM stator voltage equation can be expressed as follows: 

,s
s s s s ss s m

d
V R I L I

dt

Λ
= + Λ = + Λ  (1) 

where Rs is the stator resistance matrix, sΛ  is the air gap flux, Lss is the stator inductance matrix 

including self-inductance and mutual inductance, and mΛ  is the linkage flux matrix which is 
generated by the permanent magnet and can be expressed as follows: 

[ ]sin( )sin( 2 / 5)sin( 4 / 5)sin( 4 / 5)sin( 2 / 5) T

m m r r r r rλ θ θ π θ π θ π θ πΛ = − − + +  (2) 

where λm  is the value of the permanent magnet flux and θ r  is the rotor position. 
For the transfer of the components of a five-phase system from (abcde) space to perpendicular 

( )α β−  and 1 2( )Z Z−  spaces [15], namely 1 2( )α β− − −Z Z , the following equations are used: 
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−
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In the above equations, 2 / 5exp( )a π= . Incorporating Equations (3) and (4) into Equation (1), 
stator voltages can be expressed as follows: 

1 2
1 1 2 2, , ,qs ds z s z s

qs s qs ds ds s ds qs z s s z s z s s z s

d d d d
V r i V r i V r i V r i

dt dt dt dt

λ λ λ λωλ ωλ= + + = − + = + = +  (5) 

where qsv , dsv , 1z sv , and 2z sv  are q, d, 1z , and 2z  axes of voltage of the stator, qsi , dsi , 1z si , and 2z si  

are q, d, 1z , and 2z  axes of current of the stator, ω  is angular velocity, and qsλ , dsλ , 1z sλ , and 2z sλ  
are q, d, 1z , and 2z  axes of flux linkage of the stator. They can be expressed as follows: 

1 1 2 2, , ,ds d ds m qs q qs z s ls z s z s ls z sL i L i L i L iλ λ λ λ λ= + = = =  (6) 

where qL  and dL  are the inductance of q and d axes, respectively, and Lls is leakage inductance of 
the stator. The electromagnetic torque can be obtained as follows: 

co
e

m

W
T

θ
∂

=
∂

 (7) 

where θm  is the mechanical angle of the rotor and coW  is the co-energy. Regardless of other 
formulas, the final equation for torque is obtained as follows: 

5 [ ( ) ]
2 2e m qs d q ds qs

p
T i L L i iλ= + −  (8) 

In Equation (8), p is the pole pair number. According to the above equation, in a five-phase 
permanent magnet synchronous motor, only the basic components of the ( )α β−  subspace 
influence the production of the electromagnetic torque. Thus, in the driver system of this motor, 
voltage space vectors of this subspace are selected. It should be noted that when a voltage vector of 
( )α β−  subspace is chosen, its corresponding vector in the 1 2( )Z Z−  subspace will be also 
stimulated simultaneously. 

Having this information, it is possible to easily simulate a five-phase PMSM.  
In the next step, the modeling of a five-phase matrix converter will be discussed. The circuit 

topology of a three-phase to five-phase matrix converter is shown in Figure 3. As can be seen, this 
converter has five bases; every base has three two-way switches. Each switching function is defined 
as follows: 

}{ }{
0 ,

( ) , , , , , , ,
1 ,

jk

jk

jk

switch S is open
S t j A B C k a b c d e

switch S is closed

= = =


 (9) 

where J and k are the input and output phases, respectively. 
The converter output voltage vectors in the ( )α β−  and 1 2( )−Z Z  subspaces can be obtained 

by: 
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5

2 ( )
5

j j j j j o
o a b c d e o
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V V V e V e V e V e V e
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π π π π
α
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− −−

 = + + + + =

 = + + + + =


 (10) 

where ov  is the size of the output voltage vector and oα  is the phase angle. Generally, there are 
53 243=  switching states in the matrix converter; however, only 93 voltage vectors consisting of 
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three zero vectors and 90 active vectors which have constant directions can be used. Like the  
five-phase voltage source inverter (VSI), these 90 vectors form ten concentric regular polygons which 
are divided into large, medium, and small sizes. Figure 4 shows the voltage vectors in the ( )α β−  
and 1 2( )−Z Z  subspaces. The numbers shown in this figure correspond to the switching status. 

(a) (b)

Figure 4. Phase-to-ground voltage output vectors in the subspaces (a) ( )α β−  (b) 1 2( )−Z Z . 

3. DTC Method Using a Matrix Converter 

The principle of the direct torque control method using a matrix converter is similar to the classic 
method of direct torque control (using voltage source inverter). 

First, the classic direct torque control is done and the inverter output voltage vectors are 
determined. These vectors are called virtual voltage vectors (vectors 1v  through 10v  inside the small 
circle are shown in Figure 4. Then, it must be determined which vectors of the matrix converter can 
be replaced by the inverter virtual vector. In general, there are six matrix converter voltage vectors 
for each virtual voltage vector. For example, the vector 1v  means vectors 3, 5, 13, 15, 23, and 25 from 
the switching status. The next step is to study where the phase-to-ground voltage vectors are located, 
in which sector of the six vector space. Figure 5 shows the path of the input voltage of a three-phase 
to a five-phase converter. Knowing the input voltage vector section, and according to Figure 5, the 
path is divided into six sectors, the first of which starts from 0rad . 

 
Figure 5. Input voltage vector direction starting from 0rad . 

In this case, there will be six voltage vectors in every sector which do not change their sign in 
the sector, and thus can be used in the direct torque control method. From among the six vectors, four 
vectors are small and two vectors are large. Three voltage vectors (two small vectors and one large 
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vector) can be used in each sector as shown in Figure 5. It can be concluded that compared to classical 
direct torque control in which only one voltage vector is produced in each sampling cycle, the matrix 
converter can deliver three voltage vectors. These vectors have the same effect on increasing or 
decreasing the flux and torque. Therefore, the matrix converter has two more degrees of freedom 
than the voltage source inverter, which is used to control other parameters of the machine such as 
power factor and line current THD, therefore, reducing high flux and torque ripples. According to 
the above statement, a switching table is provided for the direct torque control of the five-phase 
PMSM, which can be seen as a part of the block diagram of the DTC method using a matrix converter, 
as shown in Figure 6 [16]. 

 
Figure 6. A block diagram of the direct torque control method using a matrix converter. 

4. Five-Phase PMSM Control in Terms of Unbalanced Supply Voltage  

4.1. Direct Power Control of a Five-Phase PMSM  

In the rotor reference frame of PMSM, the voltage of the stator equation can be expressed as 
follows [17]: 

r
r r rs

s s s r s

d
V R I j

dt

ϕ ω ϕ= + +  (11) 

where sV , sR , and sϕ  represent the stator voltage, resistance, and flux, respectively. 
The stator flux linkage vector in the rotor reference frame is expressed as follows: 

r r

s s s rL Iϕ ϕ= +  (12) 

where sL  is the self-inductance of the stator. 

The relationship between the rotor flux and stator flux in the stationary reference system ( )α β−  
and the rotor reference system ( )r rα β−  is shown in Figure 7. 
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Figure 7. Flux of the rotor and stator flux vector in the rotor and stationary reference frame. 

The stator flux in the ( )r rα β−  reference frame is expressed as follows: 

r r j

s s e θϕ ϕ= ⋅  (13) 

where θ  is the angle of the stator flux in the rotor reference frame, as well as the angle between the 
stator flux and the rotor flux.  

The stator active power Equation is as follows [18]: 

5
2

r r

s s sP V i=  (14) 

Substituting Equation (11) in Equation (14), and regardless of the stator resistance, sP  can be 
expressed as follows: 

5 ( )
2

r
r rs

s r s s

d
P j I

dt

ϕ ω ϕ= + ⋅  (15) 

where rω  is the angular frequency of the rotor. 
By deriving Equation (13), Equation (16) can be obtained: 

rr
s j j rs

s

dd d
e je

dt dt dt
θ θϕϕ θ ϕ= ⋅ + ⋅ ⋅  (16) 

Referring to Figure 7, the following Equation is obtained: 

1 2

d

dt

θ ω ω= −  (17) 

where 1ω  is the stator’s angular frequency. 
Substituting Equation (17) in Equation (16): 

1 1( ) ( )
r rr
s sj j r j rs

r s r s

d dd
e j e e j

dt dt dt
θ θ θϕ ϕϕ ω ω ϕ ω ω ϕ= ⋅ + − ⋅ = ⋅ + −  (18) 

On the other hand, the stator current in the rotor frame can be calculated using the following 
Equation: 

r
r s r
s

s

I
L

ϕ ϕ−=  (19) 

Using the equations obtained above, the active power Equation can be written as follows: 

5 1
2

r r

s r s r

s

P sin
L

ω ϕ ϕ θ= −  (20) 

By deriving Equation (19), active power changes are obtained as follows: 
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sin
= −

r

srs
t r r

d( )dP
k

dt dt

ϕ θ
ω ϕ  (21) 

Similarly, reactive power is obtained from the following Equation [19]: 

5
2

r r

s s sQ V i= ×  (22) 

Incorporating equations, Equation (23) is expressed as follows: 

5 ( )
2

= − + ×
r

r rs
s r s s

d
Q j I

dt

ϕ ω ϕ  (23) 

As a result, the reactive power Equation can be written as follows: 

5 ( cos )
2

= −r r rr m
s s r s

s r

L
Q

L L

ω ϕ ϕ θ ϕ
σ

 (24) 

and similar to Equation (21), the reactive power changes are obtained as follows: 

( cos )r

srs
t r r

ddQ
k

dt dt

ϕ θ
ω ϕ=  (25) 

According to Equations (21) and (25), rapid changes of active and reactive power can be made 
by changes in sinr

sϕ θ  and cosr

sϕ θ  respectively. It can be seen from Figure 7 that sinr

sϕ θ  and 

cosr

sϕ θ  are the components of the stator flux r

sϕ , perpendicular to the rotor flux, and in the 

direction of the rotor flux, respectively. This shows that, if the stator flux variation is in the direction 
of the rotor flux, namely cosr

sϕ θ , reactive power sQ  changes. Similarly, if the stator flux variation 

is perpendicular to the rotor flux, namely sinr

sϕ θ , active power sP  changes. 

4.2. Investigating the Effect of Two-Level Inverter Voltage Vectors on Active and Reactive Power Changes 

To study the effect of voltage vectors, the vector space of voltages of a two-level inverter is 
divided into six sectors, each sector covers 60 degrees [20]. This is illustrated in Figure 8. 

1V

2V3V

4V

6V5V
 

Figure 8. Six vector sectors of a three-phase voltage source inverter. 

In reference [21], the effect of voltage vectors on active and reactive power changes was 
investigated. 

According to Figure 9, suppose that the stator flux vector in the reference frame of the rotor ( 1
r

sϕ ) 
is located in the second section of the vector space. As shown in this figure, this vector leads the rotor 
flux vector by 1θ  degrees. Now, if the voltage vector 1V  is applied to the converter, the position of 
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the stator flux vector is changed and moved to 2
r

sϕ . It can be seen that by applying the voltage vector 

1V  to the converter, the value of sinr

sϕ θ  decreases and the value of cosr

sϕ θ  increases. As a result, 
with respect to the Equations (21) and (25), the active and reactive power increases. 
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Figure 9. Effect of vector 1V  on active and reactive power changes. 

In the same way, knowing the position of the stator flux in the rotor reference frame, the effect 
of all voltage vectors on active and reactive power changes can be studied. According to the example, 
a switching table can be prepared and used for different modes. 

4.3. Vector Space under Imbalance Conditions 

In this section, an imbalance caused by an unbalanced load is studied. An asymmetric five-phase 
system can be decomposed into five symmetrical systems of five phases. These five systems are called 
the sequence of zero, positive sequence ( )α β−  subspace, negative sequence ( )α β−  subspace, 
positive sequence 1 2( )Z Z−  subspace, and negative sequence 1 2( )Z Z−  subspace. They can be 
obtained by, 

2 3 4

0 4 3 2

1 2 1 2
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2 4

1       1         1       1       1   
1       a         a      a       a

1 1       a        a      a       a
5

1       a        a       a       a
1       a        a      a
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z z z zx x x x xα β α β
+ − + −

− − − −  = 

3        a
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b
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d

e

x

x

x

x

x

   
   
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   
   
   
     

 (26) 

where (2 /5)ja e π= . Parameters xa, xb, xc, xd, and ex  represent the unbalanced system. Parameters 0x , 

x + , and x −  represent zero, positive, and negative sequence components, respectively. It is assumed 
that the five-phase system being studied is a five-wire five-phase system. This means that the system 
does not have a neutral wire. In this case, the sum of the five-phase currents is always equal to zero 
( 0)a b c d ei i i i i+ + + + = . As a result, the zero sequence current component would be equal to zero. 
Consequently, the components of the zero sequence voltage are zero ( 0)a b c d ev v v v v+ + + + = . 

Therefore, to take into account the positive and negative sequence, the voltage and current 
vectors can be expressed as follows: 

1 2 1 1 2 2

1 2 1 1 2 2

( ) ( ) ( ) , ( ) ( ) ( )

( ) ( ) ( ) , ( ) ( ) ( )
z z z z z z

z z z z z z

v v v v jv v v j v v v v v v jv v v j v v

i i i i ji i i j i i i i i i ji i i j i i

α β α α β β

α β α α β β

+ − + − + − + − + − + −

+ − + − + − + − + − + −

 = + = + = + + + = + = + = + + +


= + = + = + + + = + = + = + + +

    

      (27) 

Thus, two space vector of the five-phase system can be expressed as follows: 
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2 3 4 3 4 2
c 1 2 1 2

2 2( ), ( )
5 5a b d e z z z z a b c d ex x jx x ax a x a x a x x x j x x a x a x a x a xα β α β− −= + = + + + + = + = + + + +

 
 (28) 

A five-phase unbalanced system can be demonstrated as the sum of positive and negative 
sequences as follows: 

An unbalanced five-phase system can be represented as the sum of two positive and negative 
sequence vectors that rotate in the opposite direction with the same frequency as follows: 

( ) ( )j t j tx x x x e x eω θ ω θ+ −+ − + + − − += + = +
   

 (29) 

4.4. Direct Power Control 

Figure 10 shows a block diagram of the direct power control method of a five-phase PMSM. 

 
Figure 10. A block diagram of direct power control. 

It can be seen from the figure that the voltage and current are sampled from the stator and 
transmitted to the stationary reference frame. Then, using these voltages and currents, active and 
reactive powers can be calculated. Moreover, the size of the stator flux and its angle are obtained 
using the following Equation [22]: 

1( )    , ( )s s s s sV R I dt tg β

α

ϕ
ϕ ϕ

ϕ
−= − =  (30) 

The stator flux obtained from the synchronous reference frame is transmitted to the rotor 
reference frame and r

sϕ  is calculated. Then, according to the angle of the flux, the region where the 
flux vector is located is obtained (with N as shown in Figure 10). In general, the purpose of the direct 
power control method is that the active and reactive power of the motor properly follow the favorable 
active and reactive power references. In order to achieve this, the estimated power values are 
compared with the reference values, and their differences are transmitted to two three-level 
hysteresis comparators, which are described below. 

   

 

5

3
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4.5. Three-Level Hysteresis Comparators 

To determine the status of active and reactive power, the three-level hysteresis comparators are 
used as shown in Figure 11. 

 
(a) (b)

Figure 11. Three-level hysteresis comparators: (a) active power; (b) reactive power. 

The difference between the actual value of the power and the reference value is expressed by: 

error errorP P P Q Q Q= − = −* *, ,  (31) 

In this equation, the reference values of the active and reactive power are shown by *P  and 
*Q , respectively. 

These error values are sent to the comparators and, according to the allowable band of error, 
they produce suitable active and reactive power shown as pS  and qS , respectively. 

If this difference is greater than the permitted error value that is interpreted as the allowed band, 
the comparator output sends the digital number (1), and if the error is in its allowed band, the 
comparator output sends the digital number (0). 

Also, if the error is less than the allowed band, the comparator output sends the digital number 
(−1). 

4.6. Analysis of Five-Phase PMSM under Imbalance Conditions 

The five-phase PMSM stator voltage equation was given in Equation (1). From Equations (1) and 
(8), the torque equation can also be expressed as follows: 

{ }*5 5Im .  [ . ]
2 2 2e s s

p
T i i iα β β αρ λ λ λ= = −

 
 (32) 

where ρ  is the derivative operator and “*” sign represents the conjugate of each complex vector. 
When the stator voltage is unbalanced, all vectors in Equation (1) have a positive and negative 
sequence. Firstly, the effect of unbalanced voltages on the stator flux is studied. From Equations (1) 
and (27), the relationship between the stator flux and voltage can be expressed as follows: 

s s s s s s s s
V r i j V r i jωλ ωλ+ + + − − −= + = −,  (33) 

As can be seen from Figure 12, the stator flux includes two sets of positive and negative 
components that rotate in opposite directions. 



Energies 2017, 10, 1509  12 of 21 

 

 
Figure 12. Relationship between fluxes, voltage, and current vectors of stator. 

Substituting the components of the positive and negative sequence of the stator flux and current 
in Equation (32), the following equation is obtained: 

{ }* * * *5 .  .  .  .  
2e s s s s s s s sT Im i i i iρ λ λ λ λ+ + + − − + − −= + + +

       
 (34) 

It can be seen that the electromagnetic torque consists of two constant phrases (phrases that are 
the product of identical sequences) and two phrases at 2ω  speed (phrases that are the product of 
different sequences). 

Thus, substituting Equation (33) in Equation (34), the following Equation is obtained: 
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 (35) 

Equation (35) can be expressed as follows: 

( )− − − − −= − + − −e S T S T S T S T S T

p
T A B C D E

ω
 (36) 

which −S TA , −S TB , −S TC , −S TD , and −S TE  are: 
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 (37) 

The relationship between active and reactive power can be expanded as follows: 

5 * * * *( ) ( ) ( ) ( .  .  .  .  )
2

+ − − ++ − + −= + = + + +
     

S t P t j Q t v i v i v i v is s s s s s s s  (38) 

The active power equation extracted from Equation (38) can be expressed as follows: 

( )s p s p s p s pP A B C D− − − −= + + +  (39) 

which −S pA , −S pB , −S pC , and −S pD  are: 

{ } { }5 5 5 5* *Re  . (   ) , Re  . (  )
2 2 2 2
5 5 5 5* *Re  . (   ), Re . (  
2 2 2 2

α α β β α α β β

α α β β α α β β

− −

− −

+ + + + + + − − − − − −= = + = = +

   − ++ + − + − − − + − += = + = = +   
   

  

  

S P S P

S P S P

A V i v i v i B V i v i v is s s s

C V i v i v i D V i v i v is s s s )





  

(40) 

Similarly, the reactive power Equation can be expressed as follows: 
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( )S Q S Q S Q S QQ A B C D− − − −= + + +  (41) 

which −S QA , −S QB , −S QC , and −S QD  are: 

{ } { }
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2 2 2 2
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S Q S Q

A V i v i v i B V i v i v i

C V i v i v i D V i v i v is s s s

β α α β β α α β

β α α β β α α β

− −

− −

 + + + + + + − − − − − −= = − = = −


+ − + − + − − + − + − + = = − = = −


  

  
 (42) 

As can be seen from Equation (37), −S TC  and −S TD  are oscillating factors in the electromagnetic 
torque, since they include voltage and current components with two different sequences. 

Similarly, according to Equations (40) and (41), −S PC , −S PD , −S QC  and −S QD  cause 
fluctuations in the active and reactive power, respectively. 

Meanwhile, according to Equations (37) and (40), it can be seen that − −=s T S PC C  and − −=s T S PD D . 
As a result, the oscillating factors of the active power and the electromagnetic torque are similar. 
In the following, it is first studied whether the electromagnetic torque fluctuations will be 

eliminated by eliminating the active and reactive power oscillators. Otherwise, because the priority 
is to eliminate the electromagnetic torque fluctuations, the conditions to eliminate the oscillator of the 
electromagnetic torque are applied and under these conditions, new references for active and reactive 
powers will be obtained. 

4.7. Remove Power Oscillator Factor 

According to Figure 13, and as previously mentioned, a reference value is considered to control 
the power. The controller must act so that the stator powers properly follow the reference power. 
Because there is an imbalance in the source voltage, the controller must adjust the source reference so 
that it creates a new reference power. In Figure 13, the primary reference power (before an imbalance) 
is shown as ( −requiredP ) and the new reference power (after an imbalance) is shown as ( )refP . 

 
Figure 13. Production of the new power sources in an imbalance condition. 

It can be seen from Equation (39) that for the production of constant active power, the sum of 
two oscillator factors ( s p s p

C D− −, ) must be zero as follows: 

0− −+ =s p s pC D  (43) 

Also based on Equation (41), for the production of constant reactive power, the sum of two 
oscillator factors ( s Q s Q

C D− −, ) must be zero as follows: 

0− −+ =s Q s QC D  (44) 

Since each of the values −s pC , −s pD , −s QC , and −s QD  is dependent on the positive and negative 
sequence components, none of them can be zero by itself. In that case, the stator current should be 
zero, which is not desirable. Therefore, only their sum can be zero. ( 0− −+ =s p s pC D  and 

0− −+ =s Q s QC D ). 
In this condition the reference powers before and after an imbalance will also be equal as follows: 
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− −= = +required ref s p s pP P A B  (45) 

− −= = +required ref s Q s QQ Q A B (46) 

The torque equation can also be obtained as follows: 

( 2 ) ( 2 )− − − − − − − −= − + − = − − −e S T S T S P S T S T S T S P S T

p p
T A B C E A B D E

ω ω  
(47) 

As can be seen from Equation (45), torque oscillator factors are still present, which is not 
desirable. 

It should be noted that the main goal is to obtain a constant torque in imbalance conditions, not 
constant power. 

4.8. Remove Torque Oscillator Factor 

According to Equation (36), the only way to eliminate the torque oscillator factors is obtained 
under the following conditions: 

0− −− =S T S TC D  (48) 

As a result, the electromagnetic torque value can be obtained as follows: 

( )− − −= − −
e S T S T S T

p
T A B E

ω
 (49) 

In this condition, the relationship between reference powers before and after an imbalance 
condition is as follows: 

2 2− −= + = +ref required S P required S PP P C P D  (50) 

− −= = +required ref s Q s QQ Q A B (51) 

Based on Equations (50) and (51), the controller should operate so that the motor powers 
properly follow the new reference powers and the motor is used in constant torque and consequently 
in constant speed. 

5. Simulation Results 

In this section, the speed control of a matrix converter-fed five-phase PMSM under an 
unbalanced input voltage, which is improved with the proposed method in this paper, is simulated 
using Matlab/Simulink software. The steady-state and dynamic performance of the motor is studied. 
The results are compared with those of a three-phase supply input voltage unbalanced network 
without correction. The motor’s parameter is shown in Table 1. 

Table 1. Characteristics of five-phase permanent magnet motor. 

Parameter Symbol Value
Pole P 2 

Reference speed N 600 R.P.M 
D-axis inductance dL  18 mh 

q-axis inductance qL  42 mh 

Stator resistance sr  0.7 Ω  
Inertia J 0.01 

Coefficient of friction B 0.005 
Motor permanent magnet flux fϕ  0.5 wb 

Load torque LT  10 N.m 
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An unbalanced three-phase voltage source can be created in different states, such as differences 
in amplitude, phase, frequency, and/or all of them. 

Figure 14 illustrates an unbalanced three-phase source whose amplitude of phase “A” is 
different from other phases. 

 
Figure 14. Unbalanced three-phase voltage source. 

Other characteristics of the source (phase and frequency) are the same as a normal three-phase 
power supply. This happens when the phase area is loaded by separate single phased appliances 
connected to a typical three-phase input. Also a short part of the time (0.04 s) is selected. 

Figure 15 illustrates the simulation results with the proposed method under the  
above-mentioned conditions. 

(a) (b)

 
(c)

Figure 15. Characteristics of the motor compared with the reference. (a) Speed of the motor; (b) 
Electromagnetic torque; (c) stator flux in the α  axis of the stationary frame. 

As shown in Figure 15a, the motor speed will follow its reference value properly. The reference 
speed value is 600 R.P.M. and the results are shown in Table 2. 
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Table 2. Characteristics of the motor speed curve. 

Parameter Value
Rise Time 0.1181 
Settling Time 0.1461 
Settling Min 540 
Settling Max 606.4635 
Overshoot 1.0850 
Undershoot 1.7385 
Peak 606.4635 
Peak Time 0.1513 

Figure 15b shows the load torque in comparison with the electromagnetic torque. The load 
torque value is 10 N.M. The information obtained from simulation is shown in Table 3. 

Table 3. Characteristics of the motor torque curve. 

Parameter Value
Rise Time 0.0018 
Settling Time 0.6517 
Settling Min 8.4863 
Settling Max 17.4246 
Overshoot 69.5143 
Undershoot 0.2335 
Peak 17.4246 
Peak Time 0.0057 

Figure 15c demonstrates the stator flux diagram on the α  axes of stationary frame. It should be 
noted that the reference flux is equal to the motor permanent magnet flux and is considered to be  
0.5 (wb). This figure shows that the stator flux will follow its reference value properly. The 
information was obtained from simulation is shown in Table 4. 

Table 4. Characteristics of the motor flux curve. 

Parameter Value
Rise Time 1.9811 × 10−5 
Settling Time 3 
Settling Min 0.4917 
Settling Max 0.5091 
Overshoot 1.3884 
Undershoot 0 
Peak 0.5091 
Peak Time 2.1875 

Figure 16 shows the same characters of the motor as in Figure 15 under the same input 
conditions, but without using the imbalance correction method. 

Figure 16a illustrates the motor speed without using the correction method. The information 
obtained from simulation is shown in Table 5. 
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(a) (b)

 
(c)

Figure 16. Characteristics of the motor compared with the reference (without correction). (a) Speed of 
the motor; (b) electromagnetic torque; (c) stator flux in the α  axis of the stationary frame. 

Table 5. Characteristics of the motor speed curve without using the correction method. 

Parameter Value
Rise Time 0.1175 
Settling Time 0.1619 
Settling Min 539.9668 
Settling Max 615.8829 
Overshoot 2.6581 
Undershoot 0.0143 
Peak 615.8829 
Peak Time 0.1508 

As shown in Table 5, a lot of the motor speed characteristics as settling time, settling max, 
overshoot and peak value are more than Figure 15a. 

Figure 16b shows the load torque in comparison with the electromagnetic torque without using 
the correction method. The information obtained from simulation is shown in Table 6. 

Table 6. Characteristics of the motor torque curve without using the correction method. 

Parameter Value
Rise Time 0.0162 
Settling Time 2.9891 
Settling Min 0.4657 
Settling Max 24.9209 
Overshoot 143.8072 
Undershoot 0.3182 
Peak 24.9209 
Peak Time 0.0462 
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As shown in Table 5, also a lot of motor torque characteristics as settling time, settling max, 
overshoot and peak value are more than Figure 15b. 

Figure 16c demonstrates the stator flux diagram on the α  axes of the stationary frame without 
using the correction method. The information obtained from simulation is shown in Table 7. 

Table 7. Characteristics of the motor flux curve without using the correction method. 

Parameter Value
Rise Time 1.8018 × 10−5 

Settling Time 3 
Settling Min 0.4877 
Settling Max 0.5130 
Overshoot 1.9681 
Undershoot 0 
Peak 0.5130 
Peak Time 0.1124 

According to Table 7, the overshoot of motor flux is increased and there is a worse situation than 
previously. 

To evaluate the motor performance with the proposed method in dynamic conditions, a step 
load at the reference speed of 600 (RPM) is applied to the motor (Figure 17). 

 
Figure 17. The step load applied to the motor. 

According to this figure, the torque load direction was changed between 0.3 to 0.6 s. 
Figure 18 illustrates the motor characteristics. 

 
(a)
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(b)

Figure 18. Characteristics of the motor compared with the reference (with applying step load). (a) 
Speed of the motor; (b) electromagnetic torque. 

As shown in Figure 18a, the motor speed follows its reference value properly. The reference 
speed value is 600 R.P.M. the information obtained from simulation is shown in Table 8. 

Table 8. Characteristics of the motor speed curve. 

Parameter Value
Rise Time 0.1181 
Settling Time 0.6424 
Settling Min 540 
Settling Max 634.7243 
Overshoot 5.7967 
Undershoot 1.7385 
Peak 634.7243 
Peak Time 0.3028 

Figure 18b shows the load torque in comparison with the electromagnetic torque. The load 
torque value is 10 N.M. the information obtained from simulation is shown in Table 9. 

Table 9. Characteristics of the motor torque curve. 

Parameter Value
Rise Time 0.0018 
Settling Time 0.6170 
Settling Min −13.9769 
Settling Max 17.4974 
Overshoot 70.0334 
Undershoot 135.8224 
Peak 17.4974 
Peak Time 0.6063 

6. Conclusions 

In this paper, a new technique is proposed to eliminate the unbalanced three-phase voltage 
source effect on a five-phase permanent magnet motor performance that uses a matrix converter in 
its driver structure. This method is based on direct power control. Because of the imbalance in the 
voltage source, the motor torque and speed will fluctuate. By identifying the torque oscillation factors 
and by eliminating these factors, the motor power reference changes. A reference generator has the 
task of generating a new power reference every time. With a control unit, the active and reactive 
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powers of the motor properly follow the new active and reactive power references. Each time the 
reference power changes, however, the torque and speed characteristics remain constant. 

Author Contributions: Borzou Yousefi surveyed the backgrounds of the research and proposed the 
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