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Abstract: In order to enhance the maximum power point tracking (MPPT) speed of solar generators,
offline calculated maximum power line (MPL) is often used as a feed-forward signal added to the
output of MPPT controller. MPL is nonlinear static electrical characteristic of renewable energy
generators connecting all the maximum power points for given temperature. In this letter, electrical
side MPL is derived for a typical wind turbine generator (WTG). It is shown that MPLs of solar
and wind generators possess similar structure, supporting the similarity between the two energy
conversion processes.
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1. Introduction

Renewable energy sources possess the so-called soft source characteristics, requiring careful
interfacing (i.e., maximum power point tracking, MPPT) to allow optimal utilization in terms of
cost and reliability [1,2]. A generalized renewable energy conversion system is shown in Figure 1,
consisting of a renewable energy generator (REG), an interfacing power converter (IPC), and a load.
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Figure 1. Generalized renewable energy conversion system operating in maximum power point 
tracking (MPPT) mode. IPC: interfacing power converter; MPL: maximum power line; REG: 
renewable energy generator. 

Typical inputs affecting REG operation are the energy producing variable ξ (solar irradiation, 
wind, etc.) and the temperature T. On the electrical side of the REG, voltage and current are sampled 
and fed back into an MPPT algorithm in order to utilize as much harvested energy as possible [3,4]. 
In order to increase the response time of conventional (MPP) trackers and decrease the effect of fast 
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Figure 1. Generalized renewable energy conversion system operating in maximum power point
tracking (MPPT) mode. IPC: interfacing power converter; MPL: maximum power line; REG: renewable
energy generator.

Typical inputs affecting REG operation are the energy producing variable ξ (solar irradiation,
wind, etc.) and the temperature T. On the electrical side of the REG, voltage and current are sampled
and fed back into an MPPT algorithm in order to utilize as much harvested energy as possible [3,4].
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In order to increase the response time of conventional (MPP) trackers and decrease the effect of fast
varying energy processing variable, the authors of [5] proposed the inclusion of a feed-forward term
which predicts REG MPP voltage (v*) from measured REG current I according to a priori calculated
MPL, as shown in Figure 2. Thus, the feed-forward term brings the operational point of the IPC to the
vicinity of MPP and the tracker performs only the fine-tuning required due to parameter inaccuracies
and slow varying temperature. The method is used in both solar [6] and wind [7] energy conversion
systems; nevertheless, the latter typically employ mechanical rather than electrical side MPL, utilizing
torque control requiring mechanical sensors [8]. In this brief, electrical side MPL is derived for wind
generators, treated as electrical sources to allow application of the well-studied methods of interfacing
photovoltaic generators to wind turbine generators without the need of mechanical sensors.
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Figure 2. Electrical side REG characteristics for different values of energy producing variable and
corresponding MPL.

2. Wind Turbine Generator (WTG) MPL Derivation

Wind power extracted by a wind turbine is given by [9]

PW =
1
2

ρACPv3
W , (1)

where ρ is air density, A is the area swept by turbine’s blades, vW is wind speed, and CP is power
coefficient, which is a nonlinear function of turbine tip-speed ratio (TSR), given by

TSR =
ωT R
vW

, (2)

with R denoting blade radius. Substituting (3) into (2), there is

PW =
1
2

ρACP

(
R

TSR

)3
ω3

T . (3)

The typical CP-versus-TSR curve is bell-shaped, possessing a single MPP, defined by (TSROPT,
CP,MAX) pair which is constant for a given wind turbine. Hence, maximum power is extracted from the
wind blowing with speed vW by rotating the turbine at

ωT,MPP =
TSRMPP

R
vW (4)

and is given by

PW,MPP =
1
2

ρACP,MAX

(
R

TSROPT

)3

︸ ︷︷ ︸
KMPP

ω3
T,MPP = KMPPω3

T,MPP. (5)
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Note that KMPP is temperature-dependent since it is influenced by air density. Consequently,
the relation between wind-produced torque and turbine speed at MPP is given by

TW,MPP =
PW,MPP

ωT,MPP
= KMPPω2

T,MPP ⇔ ωT,MPP =
√

K−1
MPPTW,MPP, (6)

defining mechanical MPL of the wind turbine, typically used in the literature.
Consider (without loss of generality) a WTG, consisting of wind turbine WT, driving DC generator

(DCG) via stiff gear G, as shown in Figure 3. Low-frequency dynamics of the WTG is governed by

JT
.

ωT + BTωT = TW − TT =
PW
ωT
− TT , (7)

where JT and BT are turbine moment of inertia and friction coefficient, respectively, ωT is turbine
angular speed, TW is wind-produced torque, and TT is DCG torque, reflected to the low-speed turbine
shaft. The transmission relates turbine and generator speeds and torques as

G =
ωM
ωT

=
ηGTT
TM

(8)

with ηG denoting gear efficiency. Dynamics of the generator mechanical part is governed by

JM
.

ωM + BMωM = TM −
KTi
ηM

, (9)

where JM, BM, and ηM are machine moment of inertia, friction coefficient, and efficiency, respectively, i
is DCG output current, and KT is DCG torque constant. Combining (7)–(9), generator-side dynamics is
obtained as

JEQ
M

dωM
dt

+ BEQ
M ωM =

ηG
G

TW −
KTi
ηM

(10)

with
JEQ
M = JM + JTηG

G2 , BEQ
M = BM + BTηG

G2 . (11)

Electrical side DCG behavior is described by

LM
.
i + RMi = e− v = KTωM − v (12)

with LM and RM denoting machine coil inductance and resistance, respectively, e = KT·ωM signifying
back electromotive force and v symbolizing DCG terminal voltage. Since electrical time constant is
typically much lower than the mechanical one, (12) may be approximated by

v ∼= e− RMi, (13)

neglecting phase inductance dynamics. Further substituting DCG speed with back electromotive force
results in the electrical-side system of equations, given by{

JEQ
M
KT

de
dt +

BEQ
M

KT
e = ηG

G TW − KT i
ηM

v = e− RMi
. (14)

In steady state, (14) reduces to  BEQ
M ηM
K2

T
e = ηGηM

GKT
TW − i

v = e− RMi
. (15)
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Combining (6) and (8) with (15) gives after rearranging{
e2 − BEQ

M KT G3

ηGKMPP
e− K3

T G3

ηMηGKMPP
i = 0

v = e− RMi
. (16)

Electrical-side MPL is obtained by solving (16) as

v =
BEQ

M KTG3

2ηGKMPP
+

√√√√(BEQ
M KTG3

2ηGKMPP

)2

+
K3

TG3

ηMηGKMPP
i− RMi. (17)

In some cases, REG power rather than voltage is fed back to the controller; i.e., power-voltage
plane MPL is required, obtained as

p =
BEQ

M KTG3

2ηGKMPP
i +

√√√√(BEQ
M KTG3

2ηGKMPP
i

)2

+
K3

TG3

ηMηGKMPP
i3 − RMi2. (18)
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Figure 3. Wind turbine generator under study. 

3. Numerical Example 

Consider a WTG-DCG system, shown in Figure 3, characterized by the following parameters: 
Turbine nominal power 24 kW, base wind speed 12 m/s, base rotational speed 60 rpm, total 

moment of inertia 10·× 10−3 N·m·s2/rad, KT = 0.02 Nm/A, gear ratio 10, DCG rotor resistance 40 mΩ. 
Power coefficient versus tip-speed ratio was adopted from [10]. Figure 4 presents the electrical side 
characteristics of the system for different wind speeds at 25 °C with corresponding MPPs specified 
by circles. The MPLs shown were calculated according to (17) and (18). It may be concluded that 
estimated MPLs accurately link all the indicated MPPs in both current and power domains. 
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3. Numerical Example

Consider a WTG-DCG system, shown in Figure 3, characterized by the following parameters:
Turbine nominal power 24 kW, base wind speed 12 m/s, base rotational speed 60 rpm, total

moment of inertia 10 × 10−3 N·m·s2/rad, KT = 0.02 Nm/A, gear ratio 10, DCG rotor resistance 40 mΩ.
Power coefficient versus tip-speed ratio was adopted from [10]. Figure 4 presents the electrical side
characteristics of the system for different wind speeds at 25 ◦C with corresponding MPPs specified
by circles. The MPLs shown were calculated according to (17) and (18). It may be concluded that
estimated MPLs accurately link all the indicated MPPs in both current and power domains.
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4. Discussion 

Several important remarks should be emphasized as follows: 

1. Even though a simple model of a DC Generator was utilized, it may be easily shown that in case 
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indicating pure quadratic relation between DC current and voltage. This result was reported in some 
earlier works. Furthermore, comparing (19) to the right-hand side of (6) reveals that in case the DCG 
is lossless (i.e., perceived as an ideal mechanical-to-electrical energy transformer), (19) is a 
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4. Discussion

Several important remarks should be emphasized as follows:

1. Even though a simple model of a DC Generator was utilized, it may be easily shown that in
case permanent magnet generator (PMG) driving a three-phase diode rectifier (DR) is utilized,
the solution form remains (some scaling should be carried out). Interested readers are referred
to [7,11] for detailed modeling of a PMG-DR unit.

2. The derived expression (17) contains KMPP and is therefore temperature-dependent. This is
the main reason (apart from parameter uncertainty and possible variations) for the necessity of
employing MPPT algorithm in addition to utilizing MPL. Nevertheless, since both temperature
and parameter variations are relatively slow, high-bandwidth MPPT is unnecessary.

3. The MPL for solar generators was recently derived in [12] and is given by

v = χ(T, i)− Rsi, (19)

where χ(·) is a nonlinear operator (Lambert-W function related) and Rs is solar generator output
series resistance. Note that the form of (18) is similar to that of (17), including temperature
dependence. This further supports the similarity between solar and wind generators, recently
pointed out in [13].

4. It should be pointed out that if friction and series resistance are neglected, (17) reduces to

v =

√
K3

TG3

ηMηGKMPP
i, (20)

indicating pure quadratic relation between DC current and voltage. This result was reported in
some earlier works. Furthermore, comparing (19) to the right-hand side of (6) reveals that in case
the DCG is lossless (i.e., perceived as an ideal mechanical-to-electrical energy transformer), (19) is
a mechanical-to-electrical domain transformation of (6); i.e., v ~ωT and i ~TW.

5. Conclusions

In this brief, electrical-side MPL for wind turbine generators was derived. The finding allows
a wind generator to be treated as an electrical source and thus potentially makes it possible to
apply well-studied methods of interfacing photovoltaic generators to wind turbine generators.
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Moreover, mechanical sensorless operation is enabled, requiring information regarding electrical-side
variables only.

Conflicts of Interest: The authors declare no conflict of interest.
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