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Abstract: For high power Li-ion batteries, an important approach to improve the accuracy of 
modeling and algorithm development is to consider the current dependence of internal resistance, 
especially for large current applications in mild/median hybrid electric vehicles (MHEV). For the 
first time, the work has experimentally captured the decrease of internal resistance at an 
increasing current of up to the C-rate of 25 and developed an equivalent circuit model (ECM) with 
current dependent parameters. The model is integrated to extended Kalman filter (EKF) to 
improve SOC estimation, which is validated by experimental data collected in dynamic stress 
testing (DST). Results show that EKF with current dependent parameters is capable of estimating 
SOC with a higher accuracy when it is compared to EKF without current dependent parameters. 

Keywords: Li-ion battery modeling; current dependence; state of charge estimation; extended 
Kalman filter; battery management system 

 

1. Introduction 

1.1. Current Dependence of Li-ion Batteries 

Hybrid electric vehicles (HEV) are efficient in improving fuel economy and reducing emissions. 
When compared to full or plug-in HEVs, mild/median HEVs (MHEV) can provide such benefits 
with a downsized Li-ion battery for less cost and weight penalty. Li-ion batteries in MHEV not only 
support start/stop load in 3 to 5 kW, but also to recuperate and deliver high power of up to 15 kW in 
regenerative braking and engine boosting [1–4]. On the other hand, the usable energy of these 
batteries can be as small as 200 Wh because MHEVs do not have pure electric drive mode and the 
energy stored from braking can be immediately used for boosting acceleration [3]. Due to the high 
power-to-energy ratio, Li-ion batteries for MHEV need to not only sustain small continuous loads, 
but to also deliver large short pulses of up to 30 C (for a 14 Ah cell, 1 C is equivalent to 14 A). 

When a Li-ion battery is operated at an increased C-rate of charge or discharge, the internal 
resistance is found to be smaller than usual, according to recent studies [5–12]. Waag et al. has 
measured the internal resistance, which is also known as direct current resistance (DCR) of a Li-ion 
battery from 0.5 C to 4 C and found a clear trend of a decreasing DCR as C-rate increases [5,6]. Xu et 
al. has reported the test data of 10-second DCR as a function of current and showed that DCR 
decreases when the charging rate increases from 1 C to 6 C [7]. Maheshwari also found that the 
diffusion process becomes significantly faster when current increases from 0.5 C to 6 C, indicating a 
decreasing of DCR with an increasing current [8]. All of these findings suggest that the current 
dependence of DCR can no longer be neglected when the current has large variations, especially for 
Li-ion batteries in MHEVs. 
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The mechanism of current dependence of DCR is mainly attributed to the nonlinear behavior of 
charge transfer reaction, which is described by the Butler-Volmer equation [5,6,9–11]. The equation 
shows that charge transfer resistance can be approximated as constant when current is relatively 
small, but it tends to decrease when the current becomes large. Some researchers also believe that 
the various sizes of electrode particles can contribute to the dependence of DCR on current [8]. 
Battery with LiFePO4 cathodes (LFP) is regarded as an excellent candidate for large current 
applications, such as MHEV, due to its high power performance and low cost, however its current 
dependence of DCR is more significant since the olivine structure of LFP undergoes phase change 
during charge or discharge [8,13,14]. 

1.2. Existed Algorithms of State of Charge (SOC) Estimations 

In Battery Management Systems (BMS), the most straightforward algorithm to estimate SOC is 
coulomb counting. It is an open loop method that induces an accumulated error given disturbances, 
such as an poor initial guess of SOC or a biased current measurement. To ensure a more robust SOC 
estimation, numerous studies have proven that model-based closed loop algorithms are superior to 
open loop methods. Under certain disturbances, closed loop algorithms can find the error of 
terminal voltage calculated from the model by comparing it to the measured terminal voltage. After 
applying certain filters, the error is used to compensate the model for a better SOC estimation. 
Therefore, the accuracy of closed loop SOC estimation heavily relies on the accuracy of the battery 
model. 

Most battery models incorporated in closed loop algorithms are equivalent circuit models 
(ECM) that use resistance-capacitance (RC) network as basic components to represent the voltage 
response under the current inputs. The models include first order RC [15–17], second order RC [18–
23], and third order RC [24]. However, none of them have implemented current dependent 
parameters, according to a recent comprehensive review of ECM [25]. Although existed 
electrochemical models are more sophisticated than ECMs, current dependence is still not 
considered in most of the work due to assumptions, such as the linearized Butler-Volmer equation. 
As elaborated in Section 1.1, when it comes to MHEV applications where the current has larger 
variations (1 C–30 C), the dependence of DCR on current becomes obvious. Therefore, such models that 
are generated without considering current dependent parameters will predict inaccurate terminal 
voltage in MHEV applications and lead to poor SOC estimation. 

In addition to models, there are different types of closed loop methods for SOC estimations, 
such as direct feedback [6,26], extended Kalman Filters (EKF) [27–31], unscented Kalman Filters 
(UKF) [32], and neural network [33]. Among the work, only Waag et al. considered the current 
dependence of DCR [6]. They developed a first order ECM with current dependent charge transfer 
resistance, which is implemented it to an on-line parameter identification algorithm, a relatively 
simple feedback strategy. In contrast, EKF is used in this work to further improve the accuracy since 
it can recursively estimate the uncertainty of existed system state estimations and adapt Kalman 
gain to achieve optimal estimation in the next time step. To the best of our knowledge, no work can 
be found in the literature that has integrated a battery model with current dependent parameters 
into advanced filtering algorithms, such as EKF. 

1.3. Advances of Current Work 

Considering the growing prospect of MHEV and the existed technical gap, this work has 
developed a Li-ion battery model considering both the current and SOC dependences of DCR and 
integrated it into EKF for accurate SOC estimation at large current applications. For the first time, 
both simulation and testing have covered a wide range of currents, from 1 C to 25 C, which has not 
been addressed in the literature [5,6,9–12] because the highest current ever investigated is 4 C [6]. In 
this work, current dependence is not only considered for both charge transfer [6], but also for solid 
phase diffusion, which should not be neglected [8]. Results show that the model with current 
dependent parameters predicts more accurate terminal voltages under the dynamic stress test (DST) 
profile. The mathematical derivation is provided when the current dependent model is integrated to 
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EKF. As a result, more accurate SOC estimation is achieved based on the simulation of DST profile, 
which is validated by experimental data. 

2. The Battery Model 

2.1. The Overall Scheme 

The Li-ion battery studied in this work is A123® pouch type high power cell with 14 Ah 
capacity. The active material of anode and cathode are graphite and LFP, respectively. Its 
electrochemical property is modeled by using an equivalent electrical circuit, as shown in Figure 1a. 
In a steady state, the battery terminal voltage, VT, is equal to open circuit voltage (OCV, or Voc). Voc is 
a function of SOC and hysteresis voltage, which will be described in Section 2.2. 

 

(a) (b) 

Figure 1. (a) The Overall Scheme of equivalent circuit model (ECM) and (b) open circuit voltage 
(OCV), versus state of charge (SOC). 

The internal resistance of a battery, or DCR, is modeled by a resistor (R0) and two RC circuits 
consisting of resistors and capacitors (R1, R2, C1, and C2). R0 is used to describe the ohmic resistance of 
the electrolyte, separator and electrode of the battery. R1 and C1 are used to model the fast dynamic 
response, which is dominated by charge transfer processes. R2 and C2 are used to model the slow 
dynamic process, which is governed by the diffusion of lithium ions in electrodes. When the battery 
is charged or discharged by a current I, the voltage drops on these components can be calculated as 
IR0, V1, and V2. Therefore, VT can be expressed as: 

210ocT VVIRVV +++=  (1) 

The mathematical descriptions of V1 and V2 are provided in Section 2.3. 

2.2. OCV and Hysteresis 

SOC is an indicator of the amount of charges remaining in the battery. It can be calculated as: 

( )+=
t

dttI
Cap

zz
00 3600

1
 (2) 

where z indicates SOC. When the battery is fully charged, SOC is equal to 1 and Voc is equal to 3.45 V. 
When the battery is completely discharged, SOC is equal to 0 and Voc is equal to 2.5 V. Cap is the 
rated capacity, or maximum capacity, of the battery cell. It is equal to the integration of current over 
time when the cell is discharged from 100% to 0% SOC. Since this work has not considered capacity 
degradation caused by aging and the variation of cell temperature is relatively small (<3 °C), Cap is 
considered as a constant value of 14 Ah. 

The detailed relation between OCV and SOC can be obtained by conducting a standard OCV 
test procedure. The first step is to fully charge the battery to 100% SOC. Then, discharge the battery 
by 2% of SOC, rest it for 5 h, and record the voltage as Voc,dis. By repeating the process for 50 times, 
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SOC will decrease to 0% and the curve of Voc,dis versus SOC is obtained. After that, charge the battery 
by 2% of SOC, rest it for 5 h and then record the voltage as Voc,ch. By repeating the process 50 times, 
SOC goes back to 100% and the curve of Voc,ch versus SOC is obtained as well. The OCV 
measurements from three cells are plotted as symbols in Figure 1b, showing good statistical 
repeatability. 

In general, OCV increases with an increasing SOC, but Voc,ch measured in the charging process is 
always higher than Voc,dis measured in the discharging process because of the hysteresis effect [34,35]. 
Therefore, OCV is modeled as the summation of averaged OCV and hysteresis voltage. 

havgoc,oc VVV +=  (3) 

where Vh is hyeteresis voltage and Voc,avg is obtained by taking an average of Voc,ch and Voc,dis at each SOC. 

( ) ( ) ( )[ ]zVzVzV disoc,choc,avgoc,     
2

1 +=  (4) 

With the input of SOC, the values of Voc,ch and Voc,dis are calculated using linear interpolation 
from look-up tables whose data are plotted in Figure 1b. Unlike finding a polynomial function of 
SOC to OCV [36], linear interpolation is more efficient as long as the resolution of SOC-OCV data is 
high enough (for example, 2% SOC in this work). 

The hysteresis voltage, Vh, is modeled using a differential equation [26,27,29,31]: 

( ) ])(sign    [ hmaxh,
h VIzVI
dt
dV −= β  (5) 

where β is the hysteresis coefficient and sign (I) is equal to 1, 0 and −1 for I > 0, I = 0 and I < 0, 
respectively. Vh,max(z) is the maximum hysteresis voltage obtained by subtracting Voc,ch by Voc,dis at 
each SOC and taking a half. 

( ) ( ) ( )[ ]zVzVzV disoc,choc,maxh,   s  
2

1 −=  (6) 

which is also indicated in Figure 1b. In Equation (5), β is a coefficient that determines how fast Vh 
follows Vh,max and is assumed as: 

Cap×3600×1.0

1=β  (7) 

In the actual duty cycles, the direction of current changes frequently and Voc will vary 
accordingly between the two curves of Voc,ch and Voc,dis. In other words, Vh changes at charge or 
discharge but its absolute value never exceeds Vh,max. 

2.3. RC Circuits 

The voltage drops on the RC circuits, V1 and V2, are described by two differential equations: 

1

1

1

11

ττ
IRV

dt
dV +=  (8) 

2

2

2
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dt
dV +=  (9) 

where τ1 and τ2 are time constants of dynamic processes and they can be calculated by: 

111 CR=τ  (10)

222 CR=τ  (11)
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3. Identification of Model Parameters 

The model has 10 parameters to be identified: 

dis 0,dis 1,dis 2,dis 1,dis 2,disR R Rθ τ τ =    (12)

ch 0,ch 1,ch 2,ch 1,ch 2,chR R Rθ τ τ =    (13)

where θ indicate parameter sets. In general, each parameter can be considered as a function of SOC, 
current and temperature if the model needs to be applicable to a wide range of operating 
conditions. However, since the scope of this work is to investigate current dependence, certain 
simplifications and assumptions are made. First, the temperature dependence of all parameters is 
not considered because in this work the battery cell is tested in an environmental chamber where 
ambient temperature is always controlled at 23 °C. The air convection is good enough so that cell 
temperature does not exceed 26 °C during the test. According to Figure A1 in Appendix A, such 
temperature variation leads to very small changes in each parameter, therefore temperature 
dependence of each parameter is neglected in this work for simplification. Second, R0,dis and R0,ch are 
assumed as independent of SOC and current because they are dominated by the resistance of 
electrolyte and current collectors. Test data also shows little variance of R0,dis and R0,ch at different 
SOC and current. Third, unlike cells with Li[MnNiCo]O2 cathodes (NMC), the DCR of LFP cells 
does not change much in the SOC window of 20–80%, so SOC dependence is only considered in the 
parameters of R1,dis, R2,dis, R1,ch, and R2,ch, while τ1,dis, τ2,dis, τ1,ch, and τ2,ch are assumed as constant at 
different SOC. Such simplification can save computational time and reduce the size of parameter 
sets with little tolerance in model accuracy. In summary, there are eight parameters to be identified 
by fitting the model to the experimental data: 

dis,fit 1,dis 2,dis 1,dis 2,dis( , ) ( , ) ( ) ( )R z I R z I I Iθ τ τ=     (14)

ch,fit 1,ch 2,ch 1,ch 2,ch( , ) ( , ) ( ) ( )R z I R z I I Iθ τ τ=     (15)

To ensure modeling accuracy, look-up tables are used for parameterization [22] with 
considerations of SOC and current dependencies, which are studied in Sections 3.1 and 3.2, 
respectively. In contrast, R0,dis and R0,ch have been assumed as constants at different SOC and 
current, so they can be simply found by using the voltage drop at the beginning of a pulse. 

3.1. SOC Dependence of Parameters 

A Hybrid Pulse Power Characterization (HPPC) test is conducted to identify the parameters at 
different SOCs, as shown in Figures 2 and 3. At a certain SOC, the test applies a 100 A/20 s 
discharge pulse, rest and a 75 A/20 s charge pulse. Then, a 1 C continuous discharge current is used 
to set SOC to a lower value. Such a procedure is repeated until SOC decreases from 85% to 15%. 
The test is conducted to three battery cells to assess statistical repeatability. Note that the currents of 
discharge and charge pulses are always 100 A and 75 A, respectively. They are considered as the 
baseline current so that the current dependence of parameters can be excluded when SOC 
dependence is investigated in this section. 
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(a) (b) 

Figure 2. (Hybrid Pulse Power Characterization) HPPC test conducted to identify parameters at 
different SOC with (a) the entire process and (b) a zoomed-in profile at 47%. 

(a) (b) 

Figure 3. Identified parameters versus SOC at baseline currents including (a) R1 and (b) R2. 

The data of discharge pulses and charge pulses in HPPC are used for fitting. It is assumed that 
the battery is in the steady state before a pulse starts. Since the current is constant during a pulse, V1 
and V2 can be solved analytically: 

1
1
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and terminal voltage during a pulse can be found as: 

2
2

1
1

0ocT exp1exp1 IRtIRtIRVV 


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




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


−−++=

ττ
 (18)

Voc can be calculated in advance according to Equations (4) and (5). R0 is simply found by 
dividing the initial voltage drop of a pulse by current. The averaged values of R0,dis and R0,ch are 
identified as 0.58 mΩ and 0.61 mΩ, respectively. 

The parameters of R1, R2, τ1, and τ2 can be estimated by fitting the simulated terminal voltage 
to experimental data during a pulse at discharge or charge. Nonlinear least square fitting is used to 
minimize the error and optimize the parameters. An example of fitting is shown in Figure 4, where 
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the fitting at other currents will be explained in the next section. It shows that simulation fits the 
experimental data well for both charge and discharge pulses. In particular, DCR during a pulse is 
calculated by subtracting VT by Voc, and then dividing it by I. 

(a)

(b)

Figure 4. Pulses tested at (a) 4 discharge currents and (b) 4 charge currents at 50% SOC. Dots 
represent experimental data and the curves represent simulation. The root-mean-square (RMS) 
errors between simulated and experimental voltage are below 1.5 mV, showing good fitting quality. 

2
2

1
1

0
ocT exp1exp1 DCR RtRtR

I
VV
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
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−−+






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



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
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ττ
 (19)
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Figure 4a,b show that DCR starts from R0 and gradually increases with time under discharge or 
charge. 

The fitting process is repeated at different SOCs tested in HPPC (Figure 2). Estimated R1,dis, R2,dis, 
R1,ch, and R2,ch are plotted in Figure 3 versus SOC. The markers in Figure 3 indicate the value of 
parameters estimated by fitting. As shown, R1,dis and R1,ch tend to decrease slowly with an increasing 
SOC. Both R2,dis and R2,ch are smaller in the middle region of SOC and become larger at two ends. R2,dis 
increases significantly when SOC is smaller than 20%, while R1,ch increases significantly when SOC is 
larger than 80%. Since the data are noisy especially for discharge, 2nd order polynomial is used to 
smooth R1 and 4th order polynomial is used to smooth R2. The smoothed values are as plotted as 
curves in Figure 3. 

In the fitting process, the time constants, τ1,dis, τ2,dis, τ1,ch, and τ2,ch, are identified as 1.05 s, 8.76 s, 
0.78 s, and 8.78 s, respectively. Note that they are treated as SOC independent. For both discharge 
and charge, τ1 is about one order of magnitude smaller than τ2 because the first RC circuit is 
responsible for the fast dynamic response while and second RC circuit is responsible for the slow 
dynamic response. 

3.2. Current Dependence of Parameters 

The previous section has identified the parameters and their SOC dependence at baseline a 
current, which is 100 A for discharge and 75 A for charge. In this section, tests are conducted to 
investigate how parameters change at different currents. Pulses with four different currents are 
tested for charge and discharge, as summarized in Table 1. Charge currents are smaller than 
discharge currents to ensure cell the voltage does not go too high at charging, which may lead to 
lithium plating. For small current (14 A), the pulse duration is extended to 60 s because small 
current loadings from auxiliary load usually have longer durations in MHEV applications. For large 
current (350 A discharge and 200 A charge), the pulse duration is shortened to 10 s because peak 
power from engine boosting and regenerative braking usually lasts less than 10 s. Also, large 
currents with long durations will induce large variations in SOC and heat generation, which will 
adversely affect the fitting quality and should be avoided. 100 A discharge and 75 A charge are 
considered as baseline currents because they have the power level of 3 to 5 kW, which meets the 
key funcions of 48 V battery pack such as start-stop [1–4]. 

Table 1. Pulses used to identify current dependence of parameters (at 50% SOC). 

Discharge Charge
14 A/60 s 14 A/60 s 

100 A/20 s (Baseline) 75 A/20 s (Baseline) 
200 A/20 s 140 A/20 s 
350 A/10 s 200 A/10 s 

To exclude the dependence of parameters on SOC, all of the currents are tested at 50% SOC 
only. This is done by setting SOC back to 50% every time before a pulse is applied. The test is 
conducted to three battery cells to assess for statistical repeatability. The experimental data of each 
pulse are plotted in Figure 4, where (a) shows discharge pulses under currents of 14 A, 100 A, 200 
A, and 350 A, and (b) shows charge pulses under currents of 14 A, 75 A, 140 A, and 200 A. As 
indicated, when a cell is discharged using a larger current, the terminal voltage becomes lower due 
to the increased voltage drop on internal resistance. However, DCR turns out to be smaller if a 
larger current is used. Similar trends can be found for charge pulses as well. 

Fitting is conducted to identify current dependence of parameter sets (θdis,fit and θch,fit). 
Similarly, terminal voltage and DCR are calculated using Equations (18) and (19). By optimizing 
parameters at different currents, simulation agrees well with experimental data, as shown in Figure 
4. 

The identified parameters at different currents are plotted versus currents in Figure 5. In 
general, R1,dis, R2,dis, R1,ch, and R2,ch decrease when the current increases, indicating smaller DCR at 
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larger currents. It is interesting to find that τ1,dis, τ2,dis, τ1,ch, and τ2,ch also decreases when the current 
increases, which implies that the battery gets to a steady state faster if a larger current is used. 
Except for R1,dis and τ1,dis, all of the other parameters decrease significantly when the current 
increases from 14 A to 100 A. After the current exceeds 100 A, the change of parameters becomes 
insignificant. 

(a) (b)

(c) (d)

Figure 5. Identified parameters versus current at 50% SOC including (a) R1; (b) R2; (c) τ1, and (d) τ2. 

By comparing Figure 5 and Figure 3, one can find that the change of parameters at different 
currents is more obvious than the change of parameters at different SOC. This is particularly true 
for LFP cells in MHEV applications where SOC operating window is small (30–80%) and current 
variation is large (1 C–30 C). The trend is also observable in Figure 6. 

(a) (b)
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(c) (d)

Figure 6. Contour plots of 2D look-up tables for each parameter at different SOC and current 
including (a) R1,dis; (b) R2,dis; (c) R1,ch, and (d) R2,ch. 

As explained previously, R1,dis, R2,dis, R1,ch, and R2,ch are dependent on both SOC and current. In 
Section 3.1, parameters at different SOCs are identified at a baseline current (100 A as discharge and 
75 A as charge). In Section 3.2, parameters at different currents are obtained at baseline SOC (50%). 
To complete the model, we need to build a two-dimensional (2-D) look-up table for each parameter 
that covers the entire SOC range (15–85%) and current range (14 A–350 A for discharge and 14 A–
200 A for charge). In this work, we assumed the same SOC dependence at different currents. This is 
done by scaling the one-dimentional (1-D) table versus SOC obtained from Section 3.1 for different 
currents, where the scaling factor at each current is determined by the current dependence obtained 
from Section 3.2. The resultant 2D look-up tables are presented as the contour plots in Figure 6, 
where R1,dis, R2,dis, R1,ch, and R2,ch change with SOC and current. 

4. Simulation and Validation 

4.1. Validation of the Li-ion Model 

This section investigates the accuracy of Li-ion model with and without considering current 
dependence of model parameters. A dynamic stress test (DST) that mimics the drive cycle of MHEV 
is conducted to the battery cell. As shown in Figure 7, the test profile consists of small pulses, such 
as 20 A for 36 s, and large pulses, such as 223 A for 5 s. 

In Figure 7a, simulation is conducted by the model without considering current dependence of 
parameters. Note that the model uses the SOC dependent but current independent parameters that 
are solely identified at baseline current in Section 3.1, as shown in Equations (20) and (21): 

dis 1,dis 2,dis 1,dis 2,dis( ,100A) ( ,100A) (100A) (100A)   for  15% 85% R z R z zθ τ τ= < <    (20)

ch 1,ch 2,ch 1,ch 2,ch( , 75A) ( , 75A) (75A) (75A)   for  15% 85% R z R z zθ τ τ= < <    (21)

In Figure 7a, there are certain discrepancies between simulated terminal voltage, Vsim and 
measured terminal voltage, Vexp. Particularly, Vsim is larger than Vexp at 223 A charge pulse and 
smaller than Vexp at 223 A discharge pulse because the model has ignored the fact that DCR decreases 
with an increasing current. The error between Vsim and Vexp is plotted as well and the 
root-mean-square (RMS) error is 16.4 mV. 

If the model uses SOC and current dependent parameters that were identified in Section 3.2 and 
shown in Equations (22) and (23), 

dis 1,dis 2,dis 1,dis 2,dis( , ) ( , ) ( ) ( )   for  15% 85%  14A 350AR z I R z I I I z Iθ τ τ= < < < <    (22)

ch 1,ch 2,ch 1,ch 2,ch( , ) ( , ) ( ) ( )   for  15% 85%  14A 200AR z I R z I I I z Iθ τ τ= < < < <    (23)
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then a more accurate prediction of terminal voltage is achieved, as shown in Figure 7b. The RMS 
error has decreased to 11.1 mV, as compared to 16.4 mV in Figure 7a. 

 
(a)

 
(b)

Figure 7. (a) Simulation of dynamic stress testing (DST) without considering current dependence of 
parameters and (b) Simulation of DST considering current dependence of parameters. 

4.2. SOC Estimation with EKF 

EKF is an algorithm that effectively estimates the unknown state, such as SOC, of a nonlinear 
system based on system model and measurement of system output. To implement EKF, the battery 
model, Equations (2), (5), (8), and (9), are discretized in state space representation: 
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( ) kk2,k1,k0kh,avgoc,kT, vVVIRVzVV k +++++=
 (25)

where [V1,k V2,k Vh,k zk]T is a vector of system state that includes SOC. [Ik Vh,max(zk)]T is system input, 
VT,k is system output, w is system state noise, v is measurement noise, and k is the index of time step. 
In each time step, EKF can find the error of the model by comparing the model predicted VT with 
the measured VT. The error is then used to compensate the model for better SOC estimation. Details 
of the theory and implementation of EKF can be found in the literature [4,29,30,37]. 

An extended DST profile that lasts for 4.7 h is applied to the battery, as shown in Figure 8. The 
overall DST is composed of a charge-increasing DST and a charge-depleting DST. Starting at 16% 
SOC, the battery is operated in charge-increasing DST where the amount of charge is slightly larger 
than that of discharge so that SOC tends to increase. When SOC reaches 72%, the battery is 
operated in charge-depleting DST where the amount of charge is slightly smaller than that of 
discharge so that SOC tends to decrease. This process is repeated three times and the test data is 
used to validate the SOC estimation algorithm. In addition, Figure 8 shows that the cell temperature 
increases from 23.5 °C to 25.7 °C during DST profile. Such a small change is considered to have a 
minimal effect on cell parameters, based on Figure A1. 

 
Figure 8. Test data of current and cell temperature under DST profile. 

4.2.1. Simulation with Initial SOC Error 

The same DST profile shown in Figure 8 is used for simulation. The initial SOC used in EKF is 
deliberately set as 20% larger than the actual initial SOC. EKF is first simulated with current 
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independent parameters (Equations (20) and (21)) and the results are plotted in Figure 9a. It shows 
that EKF can effectively correct the biased initial SOC and the estimated SOC, zsim converges to 
actual SOC, zexp, in approximately 0.8 h. After that, zsim is able to follow zexp but there are certain 
discrepancies. The error of SOC estimation is controlled within −6% to +4% and the RMS error of 
SOC estimation is 3.09%. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 9. SOC estimation using extended Kalman Filters (EKF) with (a) current independent 
parameters given 20% initial SOC error; (b) current dependent parameters given 20% initial SOC 
error; (c) current independent parameters given 0.5 A biased current measurement; and (d) current 
dependent parameters given 0.5 A biased current measurement. 

If current dependent parameters are used (Equations (22) and (23)), EKF has improved the 
accuracy of SOC estimation. As shown in Figure 9b, after zsim has converged to zexp at 0.8 h, zsim 
precisely matches zexp until the test finishes. The error of SOC estimation is controlled within −2% to 
+2% and the RMS error of SOC estimation is 0.89%, when compared to 3.09% in Figure 9a. Such 
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enhancement is attributed to the model with current dependent parameters that can predict 
terminal voltage with higher accuracy. 

4.2.2. Simulation with Biased Current Measurement 

The Li-ion battery pack used in HEVs usually uses inexpensive current sensors whose 
accuracy may not be as high as those used in the lab. Assuming the current sensor has 0.5 A biased 
measurement, the SOC solely based on Ah counting (no EKF) will deviate from the actual value 
over time. The error of SOC estimation could be as large as 20% at the end of the DST profile 
because of the accumulated error from biased current measurement. 

In Figure 9c, EKF is simulated under the same DST profile using current independent 
parameters (Equations (20) and (21)). It shows that the accumulated error of SOC estimation 
induced by biased current measurement (0.5 A) has been eliminated. The error of SOC estimation is 
controlled within −7% to +4% and RMS error of SOC estimation is 3.26%. 

Simulation is repeated using current dependent parameters (Equations (22) and (23)). As 
shown in Figure 9d, EKF not only eliminates the accumulated error caused by a biased current 
measurement but also maintains an accurate SOC estimation. The SOC error is controlled within 
−1% to 3% and RMS error is 1.37%. Comparisons between Figure 9a and Figure 9b, as well as Figure 
9c and Figure 9d, have revealed the advantage of using current dependent parameters in EKF for 
SOC estimations. 

5. Conclusions and Discussion 

This work has verified the significance of current dependent parameters in Li-ion battery 
models and the advancement of its application in EKF-based SOC estimations. First, experimental 
data has revealed the trend of decreasing DCR at an increasing current of up to 25 C (Figure 5) and 
a Li-ion battery model is developed considering both current and SOC dependence of parameters. 
Results show that the model can predict a more accurate terminal voltage under DST profile, as 
shown in Figure 7 and summarized in Table 2. Furthermore, the model is implemented in EKF to 
improve the accuracy of SOC estimation. EKF is capable of compensating the error induced by a 
poor initial guess of SOC and a biased current measurement. Particularly, EKF, using current 
dependent parameters, is proven to have a more accurate SOC estimation than EKF using current 
independent parameters, as shown in Figure 9 and summarized in Table 2. The error of SOC 
estimation can be reduced by more than 50% if current dependence is considered, according to 
simulation using DST profile. 

Table 2. Summary of improvements by using current dependent parameters. 

Simulation Cases Errors 
With Current 

Independent Parameters 
With Current 

Dependent Parameters 
Simulation of the Li-ion Model RMS error of VT 16.4 mV 11.1 mV 

SOC estimation using EKF given 20% 
initial SOC error 

Bounds of SOC error −6%–4% −2%–2% 
RMS error of SOC 3.09% 0.89% 

SOC estimation using EKF given 0.5 A 
biased current measurement 

Bounds of SOC error −7%–4% −1%–3% 
RMS error of SOC 3.26% 1.37% 

In conclusion, an important approach to improve the accuracy of Li-ion battery simulation and 
SOC estimation is to identify the current dependence of DCR. This is essential for LFP batteries 
used in MHEV where large pulses are present. 

Future work will extend the work to state of power (SOP) algorithms. Considering the current 
dependent parameters can make huge enhancement in SOP estimations because the calculation of 
maximum power heavily relies on accurate DCR at large current. 

Author Contributions: C.W. and R.F. developed the models and algorithms; C.W. conducted simulations; R.F 
collected and analyzed the experimental data; Z.X. conceived the work; Y.C. conducted literature review; R.F. 
wrote the paper  
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Appendix A. Temperature Dependence of Model Parameters 

The scope of this work is to investigate the current dependence of batteries in large current 
applications. To keep the main text concise, temperature dependence was not discussed. 

In this Appendix, model parameters at different temperatures are provided in Figure A1. 
Based on that, we can tell the temperature variations in the main study (Figures 2, 4 and 8) only 
lead to a small change in each parameter. Therefore, not considering temperature dependence in 
this work only induces a small amount of error. 

 
(a) (b) 

 
(c) (d) 

Figure A1. Model Parameters at different cell temperatures including (a) R1; (b) R2; (c) τ1 and (d) τ2. 

In real world applications, however, cell temperature will have much larger variations so 
temperature dependence will have to be considered. In this case, the two-dimensional parameter 
sets need to be extended to three-dimensional, i.e., θ (z, I and Tcell). Also, Equation (24) needs to be 
updated accordingly by finding each parameter value based on the cell temperature measured at 
the current time step. Last but not least, temperature dependence of OCV should be considered as 
well to ensure accurate SOC estimations [32]. 

References 

1. Kuypers, M. Application of 48 Volt for Mild Hybrid Vehicles and High Power Loads; SAE Technical Paper 
2014-01-1790; SAE International: Warrendale, PA, USA, 2014; doi:10.4271/2014-01-1790. 

2. Pesaran, A. Choices and Requirements of Batteries for EVs, HEVs, PHEVs a CALSTART Webinar; National 
Renewable Energy Laboratory: Golden, CO, USA, 2011. 

3. European Automobile Manufacturers Association. A Review of Battery Technologies for Automotive 
Applications; European Automobile Manufacturers Association: Brussels, Belgium, 2014. 

4. Plett, G. Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs 
Part 1: Background. J. Power Sources 2004, 134, 252–261. 

5. Waag, W.; Kabitz, S.; Sauer, D. Experimental investigation of the lithium-ion battery impedance 
characteristic at various conditions and aging states and its influence on the application. Appl. Energy 2013, 
102, 885–897. 



Energies 2017, 10, 1486  16 of 17 

 

6. Waag, W.; Fleischer, C.; Sauer, D. On-line estimation of lithium-ion battery impedance parameters using a 
novel varied-parameters approach. J. Power Sources 2013, 237, 260–269. 

7. Xu, X.; Shui, M.; Zheng, W.; Shu, J.; Hui, L.; Xu, L.; Cheng, L.; Feng, L.; Ren, Y. Time-domain simulations of 
transient response in LiFePO4 cathode lithium ion batteries. Curr. Appl. Phys. 2014, 14, 702–707. 

8. Maheshwari, A.; Dumitrescu, M.; Destro, M.; Santarelli, M. Inverse parameter determination in the 
development of an optimized lithium iron phosphate e Graphite battery discharge model. J. Power Sources 
2016, 307, 160–172. 

9. Noren, D.; Hoffman, M. Clarifying the Butler-Volmer equation and related approximations for calculating 
activation losses in solid oxide fuel cell models. J. Power Sources 2005, 152, 175–181. 

10. Ratnakumar, B.; Smart, M.; Whitcanack, L.; Ewell, R. The impedance characteristics of Mars Exploration 
Rover Li-ion batteries. J. Power Sources 2006, 159, 1428–1439. 

11. Waag, W.; Fleischer, C.; Sauer, D. Adaptive on-line prediction of the available power of lithium-ion 
batteries. J. Power Sources 2013, 242, 548–559. 

12. Huang, J.; Zhang, J.; Li, Z.; Song, S.; Wu, N. Exploring Differences between charge and discharge of 
LiMn2O4/Li half-cell with dynamic electrochemical impedance spectroscopy. Electrochim. Acta 2014, 131, 
228–235. 

13. Srinivasan, V.; Newman, J. Discharge model for the lithium iron-phosphate electrode. J. Electrochem. Soc. 
2004, 151, A1517–A1529. 

14. Wang, C.; Kasavajjula, U.S.; Arce, P.E. A discharge model for phase transformation electrodes: 
Formulation, experimental validation, and analysis. J. Phys. Chem. C 2007, 111, 16656–16663. 

15. Dubarry, M.; Vuillaume, N.; Liaw, B.Y. From single cell model to battery pack simulation for Li-ion 
batteries. J. Power Sources 2009, 186, 500–507. 

16. Chiang, Y.H.; Sean, W.Y.; Ke, J.C. Online estimation of internal resistance and open-circuit voltage of 
lithium-ion batteries in electric vehicles. J. Power Sources 2011, 196, 3921–3932. 

17. Liaw, B.Y.; Nagasubramanian, G.; Jungst, R.G.; Doughty, D.H. Modeling of lithium ion cells—A simple 
equivalent-circuit model approach. Solid State Ion. 2004, 175, 835–839. 

18. Dubarry, M.; Liaw, B.Y. Development of a universal modeling tool for rechargeable lithium batteries. J. 
Power Sources 2007, 174, 856–860. 

19. Hu, Y.; Yurkovich, S.; Guezennec, Y.; Yurkovich, B.J. A technique for dynamic battery model identification 
in automotive applications using linear parameter varying structures. Control Eng. Pract. 2009, 17, 1190–
1201. 

20. Hu, Y.; Yurkovich, S. Linear parameter varying battery model identification using subspace methods. J. 
Power Sources 2011, 196, 2913–2923. 

21. Chen, M.; Rincon-Mora, G. Accurate electrical battery model capable of predicting runtime and IV 
performance. IEEE Trans. Energy Convers. 2006, 21, 504–511. 

22. Einhorn, M.; Conte, F.; Kral, C.; Fleig, J. Comparison, selection, and parameterization of electrical battery 
models for automotive applications. IEEE Trans. Power Electron. 2013, 28, 1429–1437. 

23. Saxena, S.; Raman, S.R.; Saritha, B.; John, V. A novel approach for electrical circuit modeling of Li-ion 
battery for predicting the steady-state and dynamic I–V characteristics. Sādhanā 2016, 41, 479–487. 

24. Andre, D.; Meiler, M.; Steiner, K.; Walz, H.; Soczka-Guth, T.; Sauer, D.U. Characterization of high-power 
lithium-ion batteries by electrochemical impedance spectroscopy. II: Modelling. J. Power Sources 2011, 196, 
5349–5356. 

25. Hu, X.; Li, S.; Peng, H. A comparative study of equivalent circuit models for Li-ion batteries. J. Power 
Sources 2012, 198, 359–367. 

26. Verbrugge, M.; Tate, E. Adaptive state of charge algorithm for nickel metal hydride batteries including 
hysteresis phenomena. J. Power Sources 2004, 126, 236–2449. 

27. Huria, T.; Ludovici, G.; Lutzemberger, G. State of charge estimation of high power lithium iron phosphate 
cells. J. Power Sources 2014, 249, 92–102. 

28. Lee, S.; Kim, J.; Lee, J.; Cho, B. State-of-charge and capacity estimation of lithium-ion battery using a new 
open-circuit voltage versus state-of-charge. J. Power Sources 2008, 185, 1367–1373. 

29. Plett, G. Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs 
Part 2. Modeling and identification. J. Power Sources 2004, 134, 262–276. 

30. Plett, G. Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs 
Part 3. State and parameter estimation. J. Power Sources 2004, 134, 277–292. 



Energies 2017, 10, 1486  17 of 17 

 

31. Hu, X.; Li, S.; Peng, H.; Sun, F. Robustness analysis of State-of-Charge estimation methods for two types of 
Li-ion batteries. J. Power Sources 2012, 217, 209–219. 

32. Xing, Y.; He, W.; Pecht, M.; Tsui, K. State of charge estimation of lithium-ion batteries using the 
open-circuit voltage at various ambient temperatures. Appl. Energy 2014, 113, 106–115. 

33. He, W.; Williard, N.; Chen, C.; Pecht, M. State of charge estimation for Li-ion batteries using neural 
network modeling and unscented Kalman filter-based error cancellation. Int. J. Electr. Power Energy Syst. 
2014, 62, 783–791. 

34. Marongiu, A.; Nubbaum, F.; Waag, W.; Garmendia, M.; Sauer, D. Comprehensive study of the influence of 
aging on the hysteresis behavior of a lithium iron phosphate cathode-based lithium ion battery—An 
experimental investigation of the hysteresis. Appl. Energy 2016, 171, 629–645. 

35. Dreyer, W.; Jamnik, J.; Guhlke, C.; Huth, R.; Moskon, J.; Gaberscek, M. The thermodynamic origin of 
hysteresis in insertion batteries. Nat. Mater. 2010, 9, 448–453. 

36. Hoque, M.; Hannan, M.; Mohamed, A. Charging and discharging model of lithium-ion battery for charge 
equalization control using particle swarm optimization algorithm. J. Renew. Sustain. Energy 2016, 8, 
doi:10.1063/1.4967972. 

37. Kalman, R.E. A new approach to linear filtering and prediction problems. J. Basic Eng. 1960, 82, 35–45. 

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access  
article distributed under the terms and conditions of the Creative Commons Attribution  
(CC BY) license (http://creativecommons.org/licenses/by/4.0/). 


