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Abstract: The driving pattern has an important influence on the parameter optimization of the energy
management strategy (EMS) for hybrid electric vehicles (HEVs). A new algorithm using simulated
annealing particle swarm optimization (SA-PSO) is proposed for parameter optimization of both
the power system and control strategy of HEVs based on multiple driving cycles in order to realize
the minimum fuel consumption without impairing the dynamic performance. Furthermore, taking
the unknown of the actual driving cycle into consideration, an optimization method of the dynamic
EMS based on driving pattern recognition is proposed in this paper. The simulation verifications for
the optimized EMS based on multiple driving cycles and driving pattern recognition are carried out
using Matlab/Simulink platform. The results show that compared with the original EMS, the former
strategy reduces the fuel consumption by 4.36% and the latter one reduces the fuel consumption by
11.68%. A road test on the prototype vehicle is conducted and the effectiveness of the proposed EMS
is validated by the test data.

Keywords: hybrid electric vehicles (HEVs); energy management strategy (EMS); particle swarm
optimization (PSO); multiple driving cycles; driving pattern recognition

1. Introduction

To meet user demands for vehicle power performance, the parameters of hybrid electric vehicles
(HEVs) are optimized to maintain the battery state of charge (SOC) and reduce the vehicle fuel
consumption. This is not only related to the design parameters of the power system, but also the
control parameters of the energy management strategy (EMS). To improve HEV performance in
terms of fuel economy and ensure excellent driving performance, the simultaneous optimization
for the main parameters of powertrain components and control system is necessary [1]. Recently,
numerous works have been proposed to find the best solution. The genetic algorithm is used for
the optimization of HEV control parameters which effectively improves the fuel economy [2–5].
The energy management algorithms based on adaptive multi-operating modes proposed in [6]
solve the problem that different driving cycles should be provided with different control algorithms.
Besides, the matching method of the powertrain based on driving cycles is presented for fuel cell
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HEVs [7]. The above optimization algorithms are used to optimize the parameters of the power
system or energy control strategy of HEVs. Several algorithms have been employed to optimize the
parameters of both the power system and control strategy, such as the particle swarm optimization
(PSO) algorithm [8–10] and multi-objective genetic algorithm [11]. A genetic algorithm with simulated
annealing is proposed in [12] to balance between economy and dynamic performance. The DIRECT
algorithm global optimization method has been used for calibrating the parameters of the vehicle EMS
from the perspective of fuel economy [13]. Compared with the mentioned optimization algorithms,
simulated annealing particle swarm optimization (SA-PSO) has the advantages of achieving a global
optimal solution [14]. It is difficult but necessary to develop a set of global optimal solutions for the
simultaneous optimization of power system and control parameters.

It’s well known that the effectiveness of EMS for HEVs is greatly influenced by the driving
patterns. However, the optimized parameters of HEVs based on a certain driving pattern may not
maintain the battery SOC balance in other patterns, not to mention the best fuel consumption [15].
Therefore, energy management strategies based on driving pattern recognition have recently been
put forward in the literature [16,17]. To optimize the vehicle performance on a random driving
pattern, a multi-mode driving control algorithm using driving pattern recognition is developed for
HEVs [18,19]. An intelligent energy management for parallel HEV based on driving cycle identification
is proposed using a fuzzy logic controller or fuzzy neural network [20–22]. The machine-learning
methods intelligently and automatically discriminate between the driving conditions [23,24]. To solve
the multi-objective optimization problem for the longevity and energy efficiency of the energy
storage system, a new optimization framework for determining an instantaneously optimized power
management strategy has been proposed by Zhang et al. in [25], which shows excellent real-time
power optimization performance against unknown diving cycles and operating conditions.

In these studies, the parameter optimization of the energy storage system, which is also very
important for the effectiveness of EMS, is not taken into consideration. As mentioned above,
the advantage of SA-PSO compared with other optimization algorithms is that it can obtain global
optimization results, so it is meaningful to utilize the SA-PSO to realize the parameter optimization
based on multiple driving cycles. Meanwhile the EMS based on driving pattern recognition should
take advantage of the optimized parameters. However, few works have comprehensively analyzed
how to combine the optimized parameters with the EMS based on driving pattern recognition. Besides,
the EMS based on driving pattern recognition should emphasize more the influence of the variation
range of battery SOC while focusing on the vehicle fuel economy. In general, the simultaneous
optimization for parameters of power system and control strategy on this premise of maintaining
balance of the battery SOC is worth studying and meaningful to improve the fuel economy.

In this paper, a new methodology for parameter optimization using a SA-PSO algorithm
is proposed to pursue the best fuel consumption without impairing the dynamic performance.
The parameters of the power system and control strategy for HEV are both optimized based on
multiple driving cycles. In addition, an algorithm of the dynamic EMS based on driving pattern
recognition is proposed in this paper. Twenty-three typical driving cycles from ADVISOR (2002,
National Renewable Energy Laboratory, Golden, CO, USA) have been selected and classified according
to the clustering analysis method through the Euclidean distance. Furthermore, the Euclid approach
degree is used to realize the driving pattern recognition. The control parameters have been optimized
at each class of driving patterns based on the optimization of multiple driving cycles. The proposed
energy management strategies based on parameter optimization under multiple driving cycles and
driving pattern recognition are both simulated on the Matlab/Simulink (R2010a, MathWorks, Natick,
MA, USA) platform under the comprehensive driving cycles. Furthermore, road tests of the prototype
vehicle with the proposed control strategy are conducted. The results of both the simulation and road
tests validate the effectiveness of the proposed control strategies.
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2. Hybrid Electric Vehicle (HEV) Rule-Based Energy Management Control Strategy

The hybrid power system considered in this paper is a typical parallel Integrated Starter and
Generator (ISG) hybrid system, as shown in Figure 1. The engine and ISG motor are connected through
a master clutch, and either of them can drive the vehicle alone. The ISG motor can also be used as a
generator to charge the battery.
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Figure 2. Logic diagram of control strategy. (a) SOC > SOClow; (b) SOC ≤ SOClow. 

  

Figure 1. Configuration of the integrated starter and generator (ISG) type hybrid electric vehicle (HEV).

As shown in Figure 2, the basic control strategy in this paper is a rule-based logic threshold EMS
which relies on several modes or states of operation and its decision to change modes is dependent on
the power requirement of acceleration or deceleration, the SOC of the energy storage unit, and the
vehicle speed [26,27]. In order to ensure that the engine operates more in high efficiency regions, in this
paper, the coefficients of the engine torque in high efficiency regions (Fup and Flow) are designed to
obtain the maximum and minimum engine torques based on the existing results presented in [28].
As shown in Figure 2a, when the battery SOC is higher than the low limit SOClow and if the required
speed is less than a certain value V1, the vehicle will operate at pure electric mode. When the battery
SOC is lower than SOClow in Figure 2b, an additional torque Tchg is required from the engine to charge
the battery. Therefore, the revised rule-based EMS is proposed as shown in Table 1. The parameters of
the control strategy are shown in Table 2.
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Table 1. Revised rule-based energy management strategy (EMS).

Operating Mode Constraint Condition Torque Distribution

Electric Driving Mode

0 < Tv ≤ Toff
SOCup > SOC > SOClow; V > Vl
SOCup > SOC > SOClow; V ≤ Vl
SOC > SOCup

Tm = Tv; Te = 0

Driving & Charging Mode
Toff < Tv ≤ Tlow
SOClow ≤ SOC ≤ SOCup; V > Vl
0 ≤ Tv ≤ Tup

Te = Tlow
Tm = Tv − Tlow
Te = Tup
Tm = max(Tv − Tup, Tchg max)

Engine Driving Mode
Tlow ≤ Tv ≤ Tup
SOCup > SOC > SOClow; V > Vl
Tup ≤ Tv; SOC ≤ SOClow

Te = Tv; Tm = 0

Motor Driving Mode Tup < Tv; SOC > SOClow; V > Vl Te = Tup; Tm = Tv − Tup

Regenerative Braking Mode Tv ≤ 0; SOC < SOCup Tv = Tm + Tmechanic

Tv ≤ 0 and SOC > SOCup Tv = Tmechanic

Table 2. Parameters of control strategy.

Name Unit Description

SOCup - Maximum expectation of battery SOC
SOClow - Minimum expectation of battery SOC

V km/h Current speed
Vl km/h Speed floor. When SOC > SOClow and V < Vl, pure electric mode starts

Tmax Nm Maximum steady-state torque of engine
Foff - Engine off torque coefficient, To f f = Tmax × Fo f f

Flow - Minimum torque coefficient of engine in high efficiency regions,
Tlow = Tmax × Flow

Fup - Maximum torque coefficient of engine in high efficiency regions,
Tup = Tmax × Fup

Tchg Nm Active charging torque of ISG motor. Tchg max is the maximum charging torque
of motor

Tv Nm Vehicle demand torque
Tm Nm Output torque of the ISG
Te Nm Output torque of the engine

Tmechanic Nm Mechanic braking torque

3. Power System and Control Strategy Parameter Optimization Based on Multiple Driving Cycles

3.1. Basic Idea for Parameter Optimization

To pursue the best fuel consumption under actual driving cycle conditions, the parameter
optimization of the power system and control strategy of HEV based on multiple driving cycles
has been proposed. Six types of typical cycles are employed, considering the influence of urban
congestion, suburban and highway conditions. The constraints of dynamic performance for the vehicle
are shown in Table 3. The six types of driving cycles are shown in Table 4. The parameters of the
vehicle’s power system are shown in Table 5. The optimization method for the main parameters of
power system and control strategy based on multiple driving cycles is generalized as follows:

(1) The assumption that the revised rule-based EMS is used for HEV.
(2) The initial parameters of power system and control strategy are selected and their values

are chosen.
(3) Six types of driving cycles are selected and combined into a comprehensive driving cycle.
(4) The simultaneous optimization for the main parameters of power system and control strategy is

carried out using SA-PSO algorithm with vehicle performance constraints.
(5) The optimal power system and control parameters are applied to the HEV EMS.
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Table 3. Constraints of dynamic performance for the HEV.

Max. Speed Max. Slope of Climb Acceleration Time from 0 to 100 km/h

km/h % s

160 ≥50 ≥30 ≤12
(Engine Driving Mode) (Electric Driving Mode) (Engine Driving Mode) (Hybrid Driving Mode)

Table 4. Six types of typical driving cycles.

Mode FTP LA92 SC03 UDDS HWFET US06_HWY

Type urban congestion suburban highway

Table 5. Power source parameters of the HEV.

Description Engine (PIC) ISG Motor (PISG)

Max Power (kW) 72 30
Max Torque (Nm) 137 115

The diagram of optimization method based on multiple driving cycles is shown in Figure 3.
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3.2. Parameter Definition of Power System and Control Strategy

The parameters of the power system and control strategy in terms of engine power (PIC) and ISG
power (PISG) are optimized in this paper to make sure that the engine and motor work in high efficiency
regions on the premise of satisfying the requirements of vehicle dynamic performance. The variation
of each design parameter of the power system (PIC and PISG) is considered ±70% about the initial
values, according to the results presented in [15]. The control parameters (Flow, Fup, Foff, SOClow, SOCup

and Vl) are designed to ensure that the engine can work in high efficiency regions without interference
with each other, as shown in Table 6. The initial values of selected parameters are obtained from the
prototype vehicle.



Energies 2017, 10, 54 6 of 20

Table 6. Variation of each parameter.

Optimal Variable Initial Value Variation Range

PIC (kW) 72.0 21.6–122.4
PISG (kW) 30.0 9–51

Flow 0.6 0.43–0.73
Fup 0.9 0.75–0.93
Foff 0.235 0.2–0.4

SOClow 0.25 0.2–0.4
SOCup 0.8 0.75–0.9

Vl 32 10–50

3.3. State of Charge-Fuel Consumption Correction Method

In order to eliminate the influence of SOC on the vehicle fuel consumption evaluation, the battery
SOC correction method should be used to correct fuel economy in the case initial and final battery SOC
are not the same during a driving cycle. The SOC-fuel consumption correction method used in this
paper is as follows:

∆ f uel =
∆SOC ·Qcap ·Ubat · ηeng_chg

1000 · ρ (1)

where ∆fuel is the equivalent fuel consumption (L), ∆SOC is the variation of battery SOC between
the starting and ending points, Qcap is the total battery capacity (Ah), Ubat is the average battery bus
voltage during drive cycles (V), ηeng_chg is the average the engine power efficiency (g/kWh), and ρ is
the gasoline density (g/L).

3.4. Optimization Objective Function

Taking the characteristics of different driving cycles into consideration, the target of parameter
optimization of the power system and energy management control strategy is to achieve a set of
optimal parameters to reduce fuel consumption as much as possible without impairing the dynamic
performance. The fuel consumption is the optimization objective with the dynamic performance as the
constraint. In order to prevent the excessive variation of battery SOC (∆SOC), and specifically avoid
exceeding the lower limit of SOC range, the weight coefficient of ∆fuel under different driving cycles is
set to enable the motor to drive alone. The fitness function is as follows:

Min f (x) =
∫

Fueluse(t)dt +
6

∑
i=1

wi·|∆ f ueli| (2)

s.t. uj(x) ≥ 0 j = 1, 2, 3, ..., m
xl

i ≤ xi ≤ xk
i i = 1, 2, 3, ..., n

where uj(x) are the constraint conditions of vehicle dynamic performance (e.g., maximum speed and
accelerating ability) as shown in Table 3, n is the number of optimization variables, which equals 8 in
this study, xl

i and xk
i are the upper and lower bounds on the optimization variables respectively.

Considering the difference of the speed range and mileage of each driving cycle, the weight
coefficients wi of ∆fuel under driving cycles HWFET, FTP, LA92, US06_HWY, UDDS, SC03 through
enumerative technique based on experience and simulation are chosen as 1.0, 1.0, 1.5, 1.3, 1.3 and
1.0, respectively.

3.5. Parameter Optimization for HEV Based on Simulated Annealing Particle Swarm Optimization Algorithm

The SA-PSO algorithm, firstly introduced by Metropolis et al. [29], is an optimization algorithm
which combines the PSO with the Simulated Annealing method. This method has high efficiency
in searching the global minimum value and the characteristics that it is easily realizable and has
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the advantages of both SA and PSO algorithms [30]. The particle swarm will gravitate towards the
optimum solution after continuous iterations. All particles’ positions and velocities are updated
according to the following formulas:

vt+1
i = w(t)vt

i + c1r1(pt
i − xt

i ) + c2r2(pt
gi − xt

i ) (3)

xt+1
i = xt

i + vt+1
i (4)

where pt
i is the individual best optima for particle i after t iterations, pt

gi is the group optima after t
iterations, w(t) is the inertia weight, c1 and c2 are two positive constants, r1 ∈ [0, 1] and r2 ∈ [0, 1] are
two random parameters independent of each other, vt

i is the velocity of particle i in iterative t, and xt
i is

the position of particle i in iterative t.
Based on the above analysis, the complete SA-PSO algorithm flowchart is shown in Figure 4.
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The detailed procedure of SA-PSO algorithm for parameter optimization is explained as follows:

Step 1: Initialize a group of random particles. The inertia should be chosen to provide a balance
between the global and local exploration. The initialization consists of the following major parameters:

• Generation number: 25 Constants; c1 and c2: 2.05, 2.05; Initial temperature T: 9000 ◦C; Final
temperature T0: 0.05 ◦C; Anneal speed K: 0.9.

Step 2: Calculate and update the fitness function f (x) of all particles. Determine pt
i and pt

gi of the current
generation. Update new velocities and positions of each particle according to Equations (3) and (4).



Energies 2017, 10, 54 8 of 20

Step 3: Calculate the difference between the optimal and non-optimal function value ∆f (x). Accept
the optimal solution if ∆f (x) is greater than 0, otherwise generate a random number r within (0, 1).
When r is lower than min[1, exp(−∆ f (x)/t)], accept the optimal solution and go to Step 2, or go to the
next step.
Step 4: Introduce the simulated annealing mechanism. Stop the program and output the optimal
solution if the convergence criteria is satisfied, otherwise carry out the annealing process and the
command “T = 0.9 × T”.

3.6. Simulation of Optimal Parameters Based on Multiple Driving Cycles

The simulation studies for the vehicle fuel economy are carried out using the Matlab/Simulink
platform. The selected six types of driving cycles (HWFET, FTP, LA92, US06_HWY, UDDS, SC03)
are successively combined into a comprehensive cycle according to driving cycles. The time-speed
relationship of the comprehensive driving cycle is shown in Figure 5. The eight parameters of the
power system and control strategy are optimized by the SA-PSO algorithm based on the comprehensive
driving cycle, and the optimization results of the parameters are shown in Table 7.
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Table 7. Comparison of optimization results.

Optimal Variable Initial Value Optimal Value

PIC (kW) 72.0 67.0
PISG (kW) 30.0 26.0

Flow 0.6 0.48
Fup 0.9 0.90
Foff 0.235 0.23

SOClow 0.25 0.30
SOCup 0.8 0.78

Vl 32 35.06

The optimized parameters satisfy the requirements of vehicle dynamic performance. The variation
of the battery SOC and engine operation points of HEVs are simulated under the comprehensive
cycle conditions, as shown Figures 6 and 7. The variation of battery SOC stays within 0.05 which
meets the requirements for HEV in terms of the battery SOC consistency. Meanwhile, the battery
SOC always fluctuates around the initial SOC value, which enables the battery to work in its high
charging/discharging efficiency region. Furthermore, the engine can work in its high efficiency region
and the vehicle can be driven in the electric driving mode with low speed and torque, which effectively
improves the overall efficiency of whole system.
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4. HEV Dynamic Control Strategy Based on Driving Pattern Recognition

As mentioned above, the control parameters optimization based on multiple driving cycles is
analyzed under known driving cycle conditions. However, in practice, the vehicle actual driving cycle
is a random and uncertain process. In order to achieve better fuel economy, the EMS of HEVs based
on driving pattern recognition is proposed after the parameter optimization under multiple driving
cycles, which can optimize the control parameters in vehicle real-time control.

The diagram of EMS for HEVs based on driving pattern recognition is shown in Figure 8. Firstly,
the characteristic parameters of different typical driving cycles are picked up, which are used for the
clustering analysis. The control parameters of each class of the driving cycle are optimized offline
based on multiple driving cycles as mentioned in Section 3. The driving pattern recognition has been
realized using the Euclid approach degree. At last, the dynamic energy management control strategy for
HEVs based on driving pattern recognition is achieved for vehicle real-time control.
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4.1. Selection and Classification of Characteristic Parameters for Typical Patterns

In view of the variety and complexity of vehicle driving patterns, it is significant to take all
types of driving patterns into account. However, this is impractical due to the massive workload
and limitation of calculation ability. Therefore, twenty-three typical driving cycles from ADVISOR
are used as the research object. These driving cycles shown in Table 8 are Mode 1: JPN1015; Mode 2:
ARTERIAL; Mode 3: CBD14; Mode 4: CBDTRUCK; Mode 5:COMMUTER; Mode 6: ECE_EUDC;
Mode 7: HL07; Mode 8: LA92; Mode 9: MANHATTAN; Mode 10: NYCC; Mode 11: NYCCOMP;
Mode 12: NYCTRUCK; Mode 13: NurembergR36; Mode 14: REP05; Mode 15: SC03; Mode 16: UDDS;
Mode 17: UDDSHDV; Mode 18: US06_HWY; Mode 19: WVUCITY; Mode 20: WVUSUB; Mode 21:
ARB02; Mode 22: ECE; Mode 23: IM240.

Table 8. Related characteristic parameters of twenty-three typical cycles.

Mode vmax vavg amax dmax aavg davg ri

1 69.97 22.68 0.79 0.83 0.57 0.65 0.32
2 64.37 39.70 1.07 2.01 0.60 1.79 0.22
3 32.19 20.42 0.98 2.06 0.81 1.79 0.214
4 32.19 14.85 0.36 0.62 0.29 0.56 0.187
5 88.51 70.28 1.03 2.01 0.28 1.89 0.122
6 119.99 32.11 1.05 1.39 0.54 0.79 0.277
7 128.75 85.75 3.58 2.55 1.29 0.80 0.097
8 108.15 39.61 3.08 3.93 0.67 0.75 0.163
9 40.72 10.98 2.06 2.50 0.54 0.67 0.362

10 44.58 11.41 2.68 2.64 0.62 0.61 0.351
11 57.94 14.10 4.11 3.88 0.48 0.54 0.331
12 54.72 12.15 1.96 1.87 0.55 0.65 0.52
13 53.70 14.34 1.88 2.11 0.58 0.55 0.31
14 129.23 82.88 3.79 3.19 0.44 0.50 0.034
15 88.19 34.50 2.28 2.73 0.50 0.60 0.195
16 91.25 31.51 1.48 1.48 0.51 0.58 0.189
17 93.34 30.32 1.96 2.07 0.48 0.58 0.333
18 129.23 97.91 3.08 3.08 0.34 0.41 0.033
19 57.65 13.58 1.14 3.24 0.30 0.39 0.303
20 72.10 25.86 1.30 2.16 0.33 0.42 0.252
21 129.20 70.03 3.53 3.62 0.66 0.70 0.075
22 49.99 18.26 1.06 0.83 0.64 0.74 0.33
23 91.23 47.07 1.47 1.56 0.44 0.68 0.05

There have been some works in the literature about the selection of characteristic parameters
for typical cycles [20–24]. Based on the relative importance of each parameter in driving pattern
recognition, seven parameters are chosen as the characteristic parameters of driving pattern recognition
in this paper. They are the maximum vehicle speed vmax, average vehicle speed vavg, maximum
acceleration amax, maximum deceleration dmax, average acceleration aavg, average deceleration davg

and engine idle time ratio ri, respectively. The clustering analysis is used for classification of the typical
cycles. The distance between each two driving patterns of the twenty-three typical ones is calculated
by the characteristic parameters with Euclidean distance, as expressed by Equation (5):

‖yi − yj‖ =
√(

yi1 − yj1
)2

+
(
yi2 − yj2

)2
+ ... +

(
yim − yjm

)2

=

√
10
∑

m=1

(
yim − yjm

)2

i 6= j∩i, j ∈ Z+∩i, j ∈ [1, 23]

(5)
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Before the calculation, the feature matrix of driving cycles and under-recognition cycles should be
dealt with by min–max Normalization due to the inconsistency between the physical dimension and
quantity of feature vectors of driving cycles, as described in Equation (6):

y′i =
yi − ymin

ymax − ymin
(6)

where yi is the original variable, ymin is the minimum value of unscaled variable and ymax is the
maximum value of an unscaled variable. The feature vectors are scaled to the closed interval [0, 1].

The clustering-feature tree shown in Figure 9 is obtained through Statistical Product and Service
Solutions (SPSS) software (20.0, IBM SPSS, New York, NY, USA). As the clustering scale of samples
decreases and the sample space is more subtly divided, the driving cycles of each category become
higher. In this paper, in order to ensure the similarity of each driving cycle and the accuracy of the
classes, the twenty-three types of typical driving patterns are divided into five classes when the scale
of clustering distance is 0.057 (the first class includes 6, 9–13, 19; the second class includes 1, 8, 17, 20,
22; the third class includes 4, 21, 23; the forth class includes 3, 7, 14; the five class includes 5 and 18).
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4.2. Recognition and Parameter Optimization of Driving Patterns

Although the actual vehicle driving patterns are random and uncertain, one of the twenty-three
typical patterns can be selected to represent the actual driving pattern with the maximum similarity as
the recognition result, and this is the basic idea of the dynamic control strategy for HEVs.

The driving pattern recognition is achieved using the Euclid approach degree. The representative
feature vector An (n = 1, 2, . . . , 23) stands for the selected twenty-three reference driving patterns,
and each vector contains seven characteristic parameters of the reference driving patterns shown in
Table 8. The vector B also contains seven characteristic parameters of the driving patterns. The distance
between the feature vector of actual driving pattern and reference feature vectors is calculated by the
Euclidean distance σ (An, B):

σ(An, B) = 1− 1√
m

(
m

∑
k=1

(An(k)− B(k))2

) 1
2

(7)

where m is the number of the characteristic parameters (m = 7). In order to eliminate the deviation
caused by different parameter units, parameters are standardized using the method of Maximum
magnitude of 1.
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The driving pattern showing the maximum similarity is recognized as the reference driving cycle
as expressed:

σ(B, Ai) = max{σ(B, A1),σ(B, A2), ...,σ(B, An)} (8)

As shown in Equation (8), the result of driving pattern recognition means that the historical actual
driving pattern B belongs to the driving pattern Ai. In order to verify the effectiveness of driving
pattern recognition, a comprehensive test driving cycle is established to represent the actual driving
pattern. The comprehensive test driving cycle consists of five different types of typical cycles including
NEDC, LA92, HWFET, UDDS and US06, as shown in Figure 10. An algorithm for real-time driving
pattern recognition is proposed based on the assumption that the driving pattern will not change
suddenly within a short period of time. This real-time driving pattern recognition algorithm can
predict future driving cycles through the past sampling data analysis within a short time window.
The time window for the information extraction of characteristic parameters is 120 s based on the
research as presented in [31,32]. The recognition of driving patterns for each time window is realized
using the Euclid approach degree. The result of driving pattern recognition under the comprehensive test
driving cycles is shown in Figure 11.
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4.3. Optimization of Control Parameters Based on Driving Pattern Recognition

In this section, the control parameters (Flow, Fup, Foff and V1) of each class have been optimized
based on multiple driving cycles, which has been introduced in Section 3 in detail. The optimization
results of control parameters of each class are shown in Table 9.
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Table 9. Optimization results of control parameters.

Classes Flow Fhigh Foff Vl

First 0.50 0.80 0.25 23.66
Second 0.48 0.90 0.23 35.06
Third 0.63 0.83 0.32 11.77
Forth 0.59 0.917 0.33 23.64
Fifth 0.68 0.80 0.40 15.98

In order to verify the effectiveness of the control parameter optimization, the driving cycles of
the first class is taken as an example. The seven typical driving cycles of the first class are set as a
comprehensive driving cycle (ECE_EUDC + MANHATTAN + NYCC + NYCCOMP + NYCTRUCK +
NurembergR36 + WVUCITY) as shown in Figure 12. The variation of battery SOC (∆SOC) in the first
class of driving cycles is shown in Figure 13 and Table 10, where the control parameters are effective in
controlling the variation of battery SOC.
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Table 10. Variation of state of charge.

Mode ECE_EUDC MAN-HATTAN NYCC NYC-COMP

∆SOC −0.007 −0.017 0.01 0.009

Mode NYC-TRUCK NuremberR36 WVU-CITY Comprehensive

∆SOC 0.02 0.006 −0.015 0.005

5. Simulation

The proposed dynamic control strategy for HEVs based on parameter optimization at multiple
driving cycles and driving pattern recognition has been simulated using the Matlab/Simulink platform
under the comprehensive driving cycle (NEDC + LA92 + HWFET + UDDS + US06).
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As shown in Figure 14, the variation of battery SOC stays within 0.01 under comprehensive
driving cycle conditions with the proposed EMS based on driving pattern recognition. Meanwhile,
the battery SOC always fluctuates around the initial SOC during the whole process, which enables
the battery maintain to work in the high efficiency region. Compared with the EMS without driving
pattern recognition, the battery SOC variation is more reasonable.
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Besides, the engine output power with the proposed EMS is generally larger than that with the
EMS without driving pattern recognition, as shown in Figure 15. Therefore, the load of the engine is
improved, which means that the engine will operate in higher efficient regions. The motor output
torque at the comprehensive driving cycle is shown in Figure 16. The proposed EMS based on driving
pattern recognition can adjust the control parameters to drive the vehicle in pure electric driving mode
with low speed and torque, which prevents the engine from working in the low efficiency region and
reduces fuel consumption. The reduction of the engine fuel consumption is shown in Figure 17.
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Figure 15. Engine power under the comprehensive driving cycle. (a) Engine power based on driving
pattern recognition; (b) engine power based on multiple driving cycle optimization.
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The comparison results of fuel economy among control strategies of rule-based, multiple driving
cycles optimization and driving pattern recognition are shown in Table 11 where Q100 is the fuel
consumption of 100 km. For fuel economy comparison, SOC correction is very necessary. Therefore
the SOC correction method in the SAE standards [33] is applied to compensate for the SOC difference.
Compared with the rule-based control strategy, the fuel consumptions of energy management strategies
based on multiple driving cycle optimization and driving pattern recognition are improved by 4.36%
and 11.68%, respectively. Meanwhile the variation of battery SOC becomes smaller, which effectively
improves the economic performance of the HEV vehicle.
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Table 11. Fuel economy comparison results.

Factor Rule-Based
Control Strategy

Multiple Driving
Cycles Optimization

Driving Pattern
Recognition

Fuel Consumption (L) 3.23 3.10 2.96
Corrected Fuel Consumption (L) 3.43 3.28 3.03

Q100 (L/100 km) 4.75 4.55 4.36
Corrected Q100 (L/100 km) 5.05 4.83 4.46

Fuel Saving - 4.24% 8.24%
Fuel Saving (SOC corrected) - 4.36% 11.68%

∆SOC −0.28 −0.250 −0.098

6. Road Test on the Prototype Vehicle

The proposed dynamic control strategy for HEVs based on driving pattern recognition has been
experimentally validated on a prototype HEV. The specifications of the prototype vehicle are shown in
Table 12. The vehicle control software is developed on the Development to Production (D2P, DEV+PROD,
Germany E.ON, Essen, Germany) and Matlab/Simulink platforms. The experiment is performed
under the following conditions:

(1) Since the prototype HEV can only be tested on campus, for the sake of safety, the road test is
only carried out at the low speed. Although the campus condition is only classified as an urban
driving cycle, it is still valid to analyze the effectiveness of the proposed optimization method of
HEV control strategy.

(2) The required torque during the whole test is too small compared with the maximum capacity
of the HEV power system. To ensure that the vehicle operates in each mode without loss of
generality, the parameters Foff = 0.20, Flow = 0.44, Fup = 0.64, Vl = 15 are designed as the optimal
control strategy parameters according to the actual test conditions.

Table 12. Specifications of the prototype vehicle.

Main Parameter Value

Curb weight (kg) 1350
Rated payload (kg) 1875
Effective radius (m) 0.295

Frontal area (m2) 2.28
Maximum engine torque (Nm) 137

Nominal motor power (kW) 20
Rated voltage (V) 288

The results of the road test have been presented in Figure 18 where the vehicle speed ranges
from 0 to 45 km/h. The operation modes include the electric driving mode, driving & charging mode,
engine driving mode and hybrid driving mode. The prototype HEV operates at electric driving mode
during the starting process, and the small required torque prevents the engine from working in the
low efficiency region. The engine driving mode is mostly activated during cruising (30–35 km/h).

The effectiveness of the control strategy proposed in this paper is well verified, as seen in
Figure 18. The engine can operate in the designed operating region, which effectively improves
the system efficiency. Meanwhile, the battery SOC fluctuates smoothly and the magnitude of SOC
variation is only 0.005, which well meets the requirements to keep the battery SOC as constant as
possible. The engine is able to work in tandem with the motor, so as to improve the vehicle economy.

In order to show the effectiveness of the proposed algorithm better, the comparison results of
road tests among different control strategies have shown in Table 13. However, during the different
road rests, the vehicle can’t be ensured to operate under the same working conditions among the
several road tests with different control strategies. Therefore, these comparison results are roughly
taken as a reference.
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Figure 18. Road test results under the comprehensive driving cycle. (a) Time-speed curve of the road
test; (b) variation of battery SOC; (c) engine operating points during testing; and (d) engine and motor
toque distribution during testing.
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Table 13. Road test comparison results.

Factor Rule-Based
Control Strategy

Multiple Driving
Cycles Optimization

Driving Pattern
Recognition

Total Mileage (km) 21.67 22.23 21.24
Fuel Consumption (L) 1.38 1.34 1.25

Corrected Fuel Consumption (L) 1.45 1.40 1.27
Corrected Q100 (L/100 km) 6.69 6.30 5.98

7. Conclusions

(1) A new methodology for parameter optimization under multiple driving cycles using SA-PSO
algorithm is proposed to the simultaneous optimization for parameters of power system and
control strategy. It’s beneficial to achieve the best fuel consumption without impairing the
dynamic performance.

(2) The EMS of HEVs based on driving pattern recognition, which optimizes the control parameters
in real-time, is proposed after the parameter optimization under multiple driving cycle conditions.
The proposed dynamic control strategy for HEVs based on parameter optimization under multiple
driving cycles and driving pattern recognition has been simulated using Matlab/Simulink
platform under the comprehensive driving cycle. Basically, the problem that the optimization
based on a certain driving cycle cannot keep the battery SOC balance in other cycles has been
solved in this paper.

(3) The simulation results show that compared with the original EMS, the former strategy reduces the
fuel consumption by 4.36% and the latter one reduces the fuel consumption by 11.68%. The results
validate the fact that the fuel consumption of EMS based on driving pattern recognition is greatly
improved compared with that of the rule-based control strategy and more effective than that of
multiple driving cycles. Meanwhile, the variation of battery SOC with the EMS based on driving
pattern recognition is more reasonable than that of the optimization based on multiple driving
cycles. It will serve as a guideline for calibrating the key parameters for road test.

(4) The proposed dynamic control strategy for HEVs based on driving pattern recognition is validated
on a prototype HEV by a road test. The test results show that the EMS developed in this paper
can effectively distribute the engine torque and motor torque, and significantly improve the fuel
consumption of the vehicle. Furthermore, the battery SOC fluctuates smoothly and the battery
SOC balance is well maintained during the test process. It will serve a reference role in dynamic
control strategy for HEVs in real world.
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