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Abstract: The exhaustion of natural resources has increased petroleum prices and the environmental
impact of oil has stimulated the search for an alternative source of energy such as biodiesel. Waste
cooking oil is a potential replacement for vegetable oils in the production of biodiesel. Biodiesel is
synthesized by direct transesterification of vegetable oils, which is controlled by several inputs or
process variables, including the dosage of catalyst, process temperature, mixing speed, mixing time,
humidity and impurities of waste cooking oil that was studied in this case. Yield, turbidity, density,
viscosity and higher heating value are considered as outputs. This paper used multi-response surface
methodology (MRS) with desirability functions to find the best combination of input variables used in
the transesterification reactions to improve the production of biodiesel. In this case, several biodiesel
optimization scenarios have been proposed. They are based on a desire to improve the biodiesel
yield and the higher heating value, while decreasing the viscosity, density and turbidity. The results
demonstrated that, although waste cooking oil was collected from various sources, the dosage of
catalyst is one of the most important variables in the yield of biodiesel production, whereas the
viscosity obtained was similar in all samples of the biodiesel that was studied.
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1. Introduction

In recent scenarios, the consumption of energy has increased greatly due to the change in life
styles and the significant growth of population. This increase of energy demand has been supplied by
the use of fossil resources, which is having a serious environmental impact on global warming and
deforestation. Fossil fuels are limited sources of energy. Thus, this increasing demand for energy has
led to a search for an alternative, renewable fuel, such as biodiesel. Biodiesel is renewable, clean and
environmentally acceptable as it is derived from vegetable oils and animal fats [1]. Waste cooking oil
could be a potential replacement for vegetable oils for the production of biodiesel due to its low raw
material cost and because it solves the disposal problem [2,3]. The quantity of waste cooking oil that is
generated annually is immense, and the methods of disposal of waste cooking oil are problematic as
the may contaminate water in the environment. The amount of waste cooking oil that each country
generates varies with the use of the vegetable oil. The potential amount of waste cooking oil to be
collected in Spain is estimated at 150 million liters per year [4].

Production of biodiesel from waste cooking oils involves a fossil energy saving of 21% in
comparison to the use of crude oil, and an energy saving of 96% compared to fossil diesel production [5].
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Each kilogram of collected waste cooking oil can be converted into 0.92–0.97 kg of biodiesel.
The production of biodiesel from waste cooking oil is one of the best ways to utilize it efficiently
and economically. Biodiesel is synthesized by direct transesterification of vegetable oils, in which the
corresponding triglycerides react with a short-chain alcohol in the presence of a catalyst. The catalyst
improves the solubility and hastens the reaction [6,7]. Typically used alkaline catalysts are sodium
hydroxide (NaOH) and potassium methoxide (KOCH3) [8]. The transesterification process is influenced
by several process variables. The type and dosage of catalyst, process temperature, agitation speed,
agitation time, water content and impurities, are the main variables that affect biodiesel yield [9,10].
Thus, the amount and type of products that are formed during frying affect either the biodiesel
properties or the transesterification reaction. For example, the water in waste cooking oil affects the
methyl ester yield by favoring a saponification reaction [11–13]. To remove the undesirable compounds
in waste cooking oil, pretreatment is necessary prior to transesterification.

The transesterification process involves many variables that affect the reaction. In addition,
optimizing so many reaction factors requires a great number of experiments, which are laborious,
time-consuming, and not economically viable. Accordingly, a few investigators have used response
surface methodology (RSM) to minimize the number of experiments that are necessary to find an
optimal combination of process or input variables. Furthermore, due to the simultaneous effects of
some process variables on the system, the designed application of modeling tool, such as the RSM
response, are essential for maximizing productivity and reducing the costs of the production process.
RSM is a statistical method that is used widely to model and optimize processes. It uses the input
variables of the process and their responses or outputs to identify the combined effect of the input
variables and to obtain the best response [14]. RSM attempts to replace the implicit functions of the
original design optimization problem with an approximation model that is traditionally a polynomial
function (regression model) and, therefore, less expensive to evaluate. When there is more than one
output, several response surfaces should be optimized using Multi-Response Surface Methodology
(MRS). This paper used MRS with desirability functions [15] to find the best combination of input
process variables in biodiesel production from waste cooking oil in several optimization scenarios.
The dosage of catalyst, process temperature, mixing speed, mixing time, humidity and impurities of
waste cooking oil are the input variables that were considered in this case. The outputs studied are:
yield, turbidity, density, viscosity and high heating value (HHV) (Figure 1).
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2. Materials and Methods

2.1. Materials

To prepare biodiesel by NaOH catalyzed transesterification, used cooking sunflower oils of
domestic origin were collected from various local restaurants and used as raw materials. Prior to
transesterification, these samples of waste cooking oils were filtered by a cellulose filter to remove any
insoluble impurities and heated at 100 ◦C for 10 min to remove most of the moisture. All chemicals,
including methanol (98%) and NaOH, were of analytical reagent grade. Experiments were conducted
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in a laboratory scale setup, with 50 mL of the oil heated to the desired temperature using a water
bath and a magnetic hot plate stirrer with a temperature controller. The speed of the stirrer was kept
constant throughout each experiment. The amounts of NaOH and methanol were then added to the
oil. The heating and stirring were stopped after the reaction had reached the preset reaction time.
The biodiesel was washed by deionized water several times until the waste water had become clear.
This biodiesel then was added to glass containers and were subsequently analyzed to determine the
yield (η), turbidity (Turb), density (ρ), viscosity (µ) and higher heating value (HHV).

2.2. Response Surface Method for Optimizing Biodiesel

The RSM method seeks to establish the relationships between input variables (i.e., independent
variables) and one or more output variables (i.e., response variables). Box and Wilson introduced it
in 1951 [16] for experimental data that were gathered to provide a model or optimal response. RSM
was developed originally to model experimental responses, but has been used with other techniques
to optimize industrial processes and products [17,18]. Essentially, RSM consists of a collection of
statistical techniques that use a regression model that relies on a low-degree polynomial function
(Equation (1)):

Y = f (X1, X2, X3, . . . , Xk) + e (1)

where Y is an experimental response, f is a function that consists of cross-products of the polynomial’s
terms, X1, X2, X3 . . . , Xk are the input vectors and e is an error. The quadratic model (second-order) is
a commonly used polynomial function. It is seen in Equation (2):

Y = b0 +
n

∑
i=1

bi·Xi +
n

∑
i=1

bii·X2
i +

n−1

∑
i=1

n

∑
j=i+1

bij·Xi·Xj + e (2)

where the linear part is the first summation, the quadratic part is the second part and the product of
the pairs of all variables is the third part. The values of coefficients b0, bi, bii and bij are determined by
regression analysis, although these functions do not always provide good results for complex problems
that involve many nonlinearities and inputs. The reason is that they cannot be adjusted when the
data are sparse as they are continuous functions that are defined by polynomials. The p-value (or
Prob. > F) is defined as the probability of obtaining a result that is equal to or greater than what
was actually observed. This assumes that the model is accurate. The p-value can be computed by
analyzing the variance (ANOVA). If it exceeds the model’s F and the model has no term that exceeds
the significance level (e.g., α = 0.05), the model will suffice within a confidence interval of (1–α). Some
researchers have used ANOVA to determine the effect of the process variables or inputs on the process
outputs [19,20]. If there is more than one output for a problem, the latter is described as MRS. It causes
and suggests that outputs are in conflict, because the optimal configuration may differ greatly from
one output to output. Harrington [15] suggested a compromise. It provides desirability functions for
each output, Equations (3) and (4), as well as an overall desirability, namely the geometric mean of the
D (desirability) of each output (Equation (5)):

dmax
r =


0 if f r(X) < A(

fr(X)−A
B−A

)S
if A ≤ fr(X) ≤ B

1 if f r(X) > B

(3)

dmin
r =


1 if f r(X) < A(

fr(X)−B
A−B

)S
if A ≤ fr(X) ≤ B

0 if f r(X) > B

(4)
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D =

(
R

∏
r=1

dr

)1/R

(5)

where A and B are the limiting values, s is an exponent that indicates the importance of achieving the
target value, X is the input vector and fr is the model for prediction. It is desirable to use a second
higher degree polynomial to optimize responses [21]. In the desirability approach, each estimated
response is transformed into a unit-less utility that is bounded by 0 < dr < 1. A higher value of dr

indicates a more desirable response value. The optimization aspect of the R package v.1.6 [22] looks
for a combination of importance factors (or weights from 1 to 3) that satisfies the process criteria of
each response and input.

3. Experiments Design

In order to create accurate models with the minimum amount of data to support the initial
hypotheses, RSM must establish a design of experiments (DoE) [23]. Several methods have been
suggested. However, this requires a design matrix (inputs) to be constructed in order to measure the
response or outputs. A Box–Behnken design (BBD) [24] with three factors and three levels was used in
this case. The input variables that were used to develop the DoE were methanol/oil molar ratio (M),
catalyst (C), temperature (T), speed (S), time (t), humidity (H) and impurities (I). The experimentally
selected factors for optimization and their respective ranges were as follows: methanol/oil molar
ratio (6:1–9:1), quantity of NaOH catalyst (1–2 wt. %), reaction temperature (20–40 ◦C), reaction speed
(500–1000 rpm), humidity (0–3 wt. %) and impurities (0–3 wt. %). The variable ranges that are provided
in Table 1 were adopted to cover the intervals that commonly are utilized in literature [25–29].

Table 1. Independent variables and experimental design levels used with the Box–Behnken design
(BBD) method.

Inputs Notation Magnitude
Levels

−1 0 +1

Ratio oil M 6/1 7.5/1 9/1
Catalyst C wt. % 1 1.5 2

Time t min 20 30 40
Speed S rpm 500 750 1000
Temp T ◦C 20 30 40

Humidity H wt. % 0 1.5 3
Impurity I wt. % 0 1.5 3

Once the inputs and levels have been set as in Table 1, the design matrix and their corresponding
combination of operating conditions are generated using the Statistical Software R (R Development
Core Team, Auckland, New Zealand) [30]. In this case, 56 experiments are needed to cover the entire
range of possibilities and to determine the optimal production of biodiesel. The design matrix (see
Table 2) shows the number of experiments and the corresponding values for the combination of
variables (ratio oil, catalyst, temperature, speed, time, humidity and impurities).
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Table 2. Design matrix for transesterification of waste cooking oil.

Sample

Inputs

Molar
Ratio

Catalyst
(wt. %)

Time
(min)

Speed
(rpm)

Temp
(◦C)

Humidity
(wt. %)

Impurity
(wt. %)

25 6 1 30 500 30 1.5 1.5
29 6 1 30 1000 30 1.5 1.5
27 6 2 30 500 30 1.5 1.5
31 6 2 30 1000 30 1.5 1.5
41 6 1.5 20 750 20 1.5 1.5
45 6 1.5 20 750 40 1.5 1.5
9 6 1.5 30 750 30 0 0

13 6 1.5 30 750 30 0 3
11 6 1.5 30 750 30 3 0
15 6 1.5 30 750 30 3 3
43 6 1.5 40 750 20 1.5 1.5
47 6 1.5 40 750 40 1.5 1.5
26 9 1 30 500 30 1.5 1.5
30 9 1 30 1000 30 1.5 1.5
28 9 2 30 500 30 1.5 1.5
32 9 2 30 1000 30 1.5 1.5
42 9 1.5 20 750 20 1.5 1.5
46 9 1.5 20 750 40 1.5 1.5
10 9 1.5 30 750 30 0 0
14 9 1.5 30 750 30 0 3
12 9 1.5 30 750 30 3 0
16 9 1.5 30 750 30 3 3
44 9 1.5 40 750 20 1.5 1.5
48 9 1.5 40 750 40 1.5 1.5
49 7.5 1 20 750 30 0 1.5
53 7.5 1 20 750 30 3 1.5
17 7.5 1 30 750 20 1.5 0
21 7.5 1 30 750 20 1.5 3
19 7.5 1 30 750 40 1.5 0
23 7.5 1 30 750 40 1.5 3
51 7.5 1 40 750 30 0 1.5
55 7.5 1 40 750 30 3 1.5
50 7.5 2 20 750 30 0 1.5
54 7.5 2 20 750 30 3 1.5
18 7.5 2 30 750 20 1.5 0
22 7.5 2 30 750 20 1.5 3
20 7.5 2 30 750 40 1.5 0
24 7.5 2 30 750 40 1.5 3
52 7.5 2 40 750 30 0 1.5
56 7.5 2 40 750 30 3 1.5
33 7.5 1.5 20 500 30 1.5 0
37 7.5 1.5 20 500 30 1.5 3
35 7.5 1.5 20 1000 30 1.5 0
39 7.5 1.5 20 1000 30 1.5 3
1 7.5 1.5 30 500 20 0 1.5
5 7.5 1.5 30 500 20 3 1.5
3 7.5 1.5 30 500 40 0 1.5
7 7.5 1.5 30 500 40 3 1.5
2 7.5 1.5 30 1000 20 0 1.5
6 7.5 1.5 30 1000 20 3 1.5
4 7.5 1.5 30 1000 40 0 1.5
8 7.5 1.5 30 1000 40 3 1.5

34 7.5 1.5 40 500 30 1.5 0
38 7.5 1.5 40 500 30 1.5 3
36 7.5 1.5 40 1000 30 1.5 0
40 7.5 1.5 40 1000 30 1.5 3
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The response variable that was used to select the biodiesel yield was established in each
experiment after phase separation. The biodiesel yield can be calculated using Equation (6) [31]:

Yied =
weighto f product (g)
weighto f rawoil (g)

× 100 (6)

In addition to yield, the following variables were determined in the final biodiesel product:
turbidity measurements were carried out with a 2100Q Turbidimeter (Hach Company, Loveland,
CO, USA). Kinematic viscosity values were determined with Cannon–Fenske viscometers (Cannon
Instrument Co., State College, PA, USA) at a temperature of 40 ◦C following the standard ASTM
D445 method [32]. Density measurements were carried out using a pycnometer according to ASTM
D941 [33]. The HHV of the biodiesel was obtained in a bomb calorimeter (Parr-1351, Parr Instrument
Company, Moline, IL, USA), according to the ASTM D2015 standard method [34].

4. Using Response Surface Methodology to Optimize Biodiesel Variables

The reaction conditions for pretreatment and biodiesel production have been optimized using
RSM by many authors. For example, the RSM technique was applied by Mumtaz et al. [35] for
optimization of biodiesel production from rice bran and sunflower oils. Mansourpoor and Shariati [36]
used the RSM technique to optimize the biodiesel production from sunflower oil. Yuan et al. [37]
studied the use of waste rapeseed oil with high free fatty acids as feedstock for production of biodiesel
using RSM to optimize the conditions for maximum conversion to biodiesel and understand the
significance and interaction of the factors affecting the biodiesel production. The biodiesel yield was
obtained by Dhingra et al. using the RSM technique on Karanja oil using KOH as catalyst [38].

Several researchers have used the RSM to obtain the optimal combination of inputs or process
variables in biodiesel yield. However, most of this work is based on the modeling and optimization
of relatively few output and input variables. This makes the optimization problem much easier. For
example, Aworanti et al. [39] investigated the effects of methanol to oil molar ratio, catalyst amount and
reaction time on the transesterification of waste cooking oil to biodiesel using RSM. Omar et al. [40]
used RSM to study the relationship of methanol to oil molar ratio, catalyst loading, reaction time
and reaction temperature on methyl ester yields and free fatty acid conversion in heterogeneous
transesterification of waste palm cooking oil to biodiesel by Sr/ZrO2 catalyst.

Other authors, such as Noshadi [41], have investigate the process variables that affect
acid-catalyzed transesterification of waste cooking oil with methanol in a continuous reactive
distillation column, in order to better understand the relationship between operating conditions and
the response yield, and to determine the optimal condition of the process using RSM. Rashid et al. [42]
applied RSM with central composite rotatable design to explore the optimum conditions for
transesterification of Moringa oleifera oil. The four process input variables that were considered
were reaction temperature, reaction time, methanol/oil molar ratio and catalyst concentration.

Furthermore, Hameed et al. [43] studied the influence of process variables (methanol/oil molar
ratio, reaction time and amount of catalyst) on the production of biodiesel from palm oil using
KF/ZnO catalyst. In this case, the effects of three transesterification process variables were studied
simultaneously on the response (yield) using RSM based on central composite design (CCD). Ghoreishi
and Moein [44] applied RSM to analyze the effect of four independent variables (molar ratio of
methanol to oil, reaction temperature, pressure and time) on the yield of the biodiesel production by the
supercritical methanol method. Waste vegetable oil was used as raw material and the transesterification
reaction took place in a supercritical batch reactor. In a similar fashion, Azócar et al. [45] studied the
application of waste frying oil mixed with rapeseed oil as a feedstock for the effective production of
fatty acid methyl esters in a lipase-catalyzed process. RSM was used to optimize the interaction of four
variables: the percentage of waste frying oils (WFO) in the mixed feedstock, the methanol-to-oil ratio,
the dosage of Novozym as a catalyst and the reaction temperature. Pullen and Saeed [46] studied
the effects of catalyst type, number of reaction stages, the free fatty acid and moisture content for



Energies 2017, 10, 130 7 of 20

optimized biodiesel production from rapeseed oil. De Paola et al. [47] used a factor analysis to evaluate
the effect of process variables on yields of biodiesel production from husk oil. The two variables
considered are mixing rate and enzyme loading, since it has been recognized that they affect process
performance singularly and through interaction effects. Furthermore, Ghadge and Raheman [12] used
a central composite rotatable design to study the effect of methanol quantity, acid concentration and
reaction time on the reduction of free fatty acid content of mahua oil during its pre-treatment for the
production of biodiesel. Each of the three variables significantly affected the acid value of the product,
with methanol being the most effective followed by reaction time and acid catalyst concentration.
Using response surface methodology, a quadratic polynomial equation was obtained for acid value by
multiple regression analysis.

Kim et al. [48] studied the optimization of experimental variables, such as catalyst type, catalyst
concentration, and molar ratio of methanol to oil and reaction temperature, on the transesterification for
the production of rapeseed methyl ester. According to the Taguchi method, the catalyst concentration
played the most important role in the yield of rapeseed methyl ester.

More recently, Dwivedi and Sharma [49] implemented the Box–Behnken response surface
methodology for maximizing biodiesel yield from Pongamia oil by optimizing four process variables.
They were: methanol-to-oil molar ratio, catalyst (KOH) concentration, reaction temperature and
reaction time. Hamze et al. [29] applied RSM based on Box–Behnken design to investigate the effects
of the main process variables, including the methanol-to-oil molar ratio, catalyst concentration, and
reaction temperature, on the biodiesel yield. The results revealed that the catalyst concentration is the
most important parameter.

In this study, the biodiesel variables or outputs of yield, density, viscosity and high heating
value were optimized when the input or process variables were the methanol-to-oil molar ratio, the
dosage of catalyst, process temperature, mixing speed, mixing time, humidity and impurities of waste
cooking oil.

5. Results

5.1. Experimental Results

Table 3 shows the experimental results obtained for the output variables (η, Turb, ρ, µ, and HHV)
according to the Box–Behnken DoE design matrix (Table 2).

Table 3. Design experimental matrix for transesterification of waste cooking oil.

Sample
Outputs

η Turb (NTU) ρ (g/mL) µ (mm2/s) HHV (MJ/Kg)

25 93 0.65 0.83 7.03 42.70
29 93 1.05 0.85 5.15 41.83
27 40 1.78 0.822 5.65 42.06
31 9.5 58.5 0.83 5.05 41.78
41 29 8.48 0.84 5.40 41.94
45 29 0.21 0.85 5.93 42.19
9 87 86 0.83 6.00 42.22

13 76 1 0.86 5.40 41.94
11 75 1.89 0.85 8.05 43.17
15 77 1.18 0.83 5.39 41.94
43 31 2.44 0.85 4.67 41.61
47 57 2.94 0.79 7.40 42.87
26 88 6 0.83 9.83 43.99
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Table 3. Cont.

Sample
Outputs

η Turb (NTU) ρ (g/mL) µ (mm2/s) HHV (MJ/Kg)

30 55 3.52 0.80 6.07 42.26
28 50 3.81 0.79 9.24 43.72
32 23 1.66 0.79 6.38 42.40
42 59 1.09 0.81 6.16 42.30
46 91 2.45 0.83 7.97 43.13
10 83 6.29 0.82 5.67 42.07
14 90 1.42 0.80 5.65 42.06
12 90 1.01 0.82 7.81 43.06
16 71 10.14 0.85 10.15 44.14
44 85 0.67 0.84 6.15 42.29
48 82 1.01 0.81 6.17 42.30
49 93 1.47 0.80 8.96 43.59
53 89 1.62 0.82 8.20 43.24
17 92 1.06 0.81 6.47 42.44
21 95 0.69 0.82 9.40 43.79
19 91 1.53 0.83 9.43 43.81
23 86 1.61 0.81 7.24 42.80
51 94 0.22 0.84 6.13 42.28
55 89 0.42 0.83 11.99 44.99
50 63 0.34 0.82 0 39.45
54 87 0.36 0.81 4.48 41.52
18 45.5 53 0.82 5.97 42.21
22 23 1.09 0.82 5.32 41.91
20 24.6 0.64 0.80 6.07 42.25
24 22 18.03 0.81 4.67 41.61
52 66 0.31 0.81 4.08 41.33
56 90 1.01 0.84 5.77 42.12
33 93 1.18 0.82 5.65 42.06
37 83 1.34 0.84 8.22 43.25
35 100 0.56 0.81 6.10 42.27
39 93 0.72 0.73 6.36 42.39
1 98 0.48 0.84 3.78 41.20
5 75 1.85 0.79 11.98 44.99
3 86 2 0.81 4.82 41.68
7 86 1.59 0.77 7.15 42.75
2 83 2.71 0.79 12.14 45.06
6 82 0.9 0.82 8.16 43.22
4 88 0.63 0.83 6.03 42.23
8 95 0.94 0.81 6.35 42.38

34 78 0.74 0.81 5.83 42.14
38 77 7.42 0.82 8.59 43.42
36 93 0.78 0.83 5.54 42.01
40 85 1.96 0.82 7.81 43.06

5.2. Analysis of Variance

Equation (2) was fitted using the data shown in Table 2 to obtain regression equations for all
responses with the use of the R Base package [30,50]. For each response, second-order polynomial
models were constructed. Then, the most accurate model was selected with the use of several criteria
(R2, p-value, mean absolute error (MAE) and root mean square error (RMSE)).

Equations (7)–(11) show the second-order polynomial functions that were obtained to model yield
(η), turbidity (Turb), density (ρ), viscosity (µ) and high heating value (HHV). These equations show
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how a combination of second-order polynomials that are formed by combining the input variables
provide the output.

η = −355.81892 + 96.8359·M − 7.50198·M2 + 13.61993·M·C − 53.42693·C2 + 7.60976·T −
0.12404·T2 − 29.99115·H + 10.00732·C·H + 4.98413·H2 (7)

Turb = 190.98147 − 34.29524·M + 2.6746·M2 − 9.20669·M·C + 15.08333·C2 + 2.59409·t −
0.04323·t2 − 0.01376·M·S + 0.07336·C·S − 0.70959·C·T − 46.81611·H + 4.85389·M·H −

74.14871·I + 4.99833·M·I + 0.59234·T·I + 5.46056·H·I + 2.56599·I2

(8)

ρ = 1.33807 − 0.09641·M + 0.00469·M2 − 0.00537·t + 0.00055·M·t - 1 × 10-5·M·S + 1 × 10-5·t·S
+ 0.00028·M·T − 0.00037·C·T − 0.00016·t·T − 0.04724·H + 0.00306·M·H + 3 × 10-5·S·H

+ 0.00078·t·I - 3 × 10-5·S·I
(9)

µ= 6.573 − 0.01721·M·t + 0.00107·T2 + 0.3601·M·H − 1.32117·C·H + 0.08747·t·H
− 0.00473·S·H + 0.25198·H2 + 0.26241·M·I − 0.06006·T·I

(10)

HHV = 20.21439 + 0.41141·M − 1.82536·C + 0.5899·C2 − 0.003·M·t − 0.00875·M·T
− 6 × 10-5·S·T + 0.00217·T2 + 0.77049·H − 0.33924·C·H + 0.01583·t·H − 0.00122·S·H

+ 0.09299·H2 + 0.06526·M·I − 0.01564·T·I
(11)

Tables 4–8 show the results of ANOVA for each of the final quadratic models. The p-value of
most process variables is less than 0.01. Thus, the variables used for quadratic models are statistically
significant. The multiple correlation coefficient (R2) is a measure of the variation about the mean of the
values provided by the regression model. All values of R2 in the following results are close to 1. This
indicates that these models have good predictive capability.

Table 4. Analysis of Variance (ANOVA) table for the “η” quadratic model.

Variable Degrees of freedom Sum of Square Mean Square F Value p-Value Significance Code

M 1 1211.3 1211.3 6.0928 0.017267 *
M2 1 2992.5 2992.5 15.0525 0.000325 ***

M × C 1 10,324.9 10,324.9 51.9357 3.98 × 10-9 ***
C2 1 4004.9 4004.9 20.1451 4.63 × 10-5 ***
T 1 67 67 0.337 0.564327
T2 1 2819 2819 14.1802 0.000462 ***
H 1 0 0 0.0002 0.988511

C × H 1 498.1 498.1 2.5057 0.120145
H2 1 1610.2 1610.2 8.0996 0.006541 *

Residuals 47 9343.7 198.8
R2 0.846 - - - -

Significance codes: 0 “***” 0.001 “**” 0.01 “*” 0.05 “.” 0.1 “ ” 1.
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Table 5. Analysis of Variance (ANOVA) table for the “Turb” quadratic model.

Variable Degrees of freedom Sum of Square Mean Square F Value p-Value Significance Codes

M 1 672.6 672.57 6.8629 1.24 × 10-2 *
M2 1 379.6 379.58 3.8733 5.60 × 10-2 .

M·C 1 481.1 481.06 4.9088 3.25 × 10-2 *
C2 1 601.6 601.62 6.1389 1.75 × 10-2 *
t 1 0 0 0 9.98 × 10-1

t2 1 366.4 366.44 3.7392 6.02 × 10-2 .
M·S 1 44.1 44.08 0.4497 5.06 × 10-1

C·S 1 1011.1 1011.13 10.3175 2.60 × 10-3 **
T 1 108.6 108.56 1.1077 2.99 × 10-1

C·T 1 266.4 266.4 2.7183 1.07 × 10-1

H 1 954.2 954.19 9.7365 3.35 × 10-1 **
M·H 1 486.7 486.72 4.9665 3.15 × 10-2 *

I 1 1011.8 1011.83 10.3246 2.60 × 10-3 **
M·I 1 691.1 691.14 7.0524 1.13 × 10-2 *
T·I 1 1207.6 1207.62 12.3225 1.12 × 10-3 **
H·I 1 425.6 425.63 4.3431 4.36 × 10-2 *
I2 1 672.6 672.57 6.8629 1.24 × 10-2 *

Residuals 1 379.6 379.58 3.8733 5.60 × 10-2 .
R2 0.8304 - - - - -

Significance codes: 0 “***” 0.001 “**” 0.01 “*” 0.05 “.” 0.1 “ ” 1.

Table 6. Analysis of Variance (ANOVA) table for the “ρ” quadratic model.

Variable Degrees of freedom Sum of Square Mean Square F Value p-Value Significance Codes

M 1 0.002408 0.002408 11.0961 1.87 × 10-3 **
M2 1 0.002043 0.002043 9.4134 3.86 × 10-3 **

t 1 0.000626 0.000625 2.8818 9.74 × 10-2 .
M·t 1 0.000535 0.000535 2.4668 1.24 × 10-1

M·S 1 0.000229 0.000229 1.0563 3.10 × 10-1

t·S 1 0.002631 0.002631 12.1215 1.22 × 10-3 **
S2 1 0.001614 0.001614 7.4355 9.45 × 10-3 **

M·T 1 0.000399 0.000399 1.8386 1.83 × 10-1

C·T 1 0.000831 0.000831 3.8272 5.74 × 10-2 .
t·T 1 0.002083 0.002083 9.5978 3.56 × 10-3 **
S·T 1 0.001085 0.001085 4.9986 3.10 × 10-2 *
H 1 1.6E-06 1.62E-06 0.0075 9.32 × 10-1

M·H 1 0.000379 0.000379 1.7466 1.94 × 10-1

S·H 1 0.001178 0.001178 5.4282 2.49 × 10-2 *
t·I 1 1.63E-05 1.63E-05 0.075 7.86 × 10-1

S·I 1 0.002431 0.002431 11.203 1.79 × 10-3 **
Residuals 40 0.008681 0.000217

R2 0.8249 - - - - -

Significance codes: 0 “***” 0.001 “**” 0.01 “*” 0.05 “.” 0.1 “ ” 1.

Table 7. Analysis of Variance (ANOVA) table for the “µ” quadratic model.

Variable Degrees of freedom Sum of Square Mean Square F Value p-Value Significance Codes

M·t 1 2.524 2.524 1.3462 2.52 × 10-1

S2 1 1.383 1.383 0.7375 3.95 × 10-1

T2 1 1.613 1.613 0.8601 3.59 × 10-1

M·H 1 21.914 21.914 11.6874 1.33 × 10-3 **
C·H 1 37.86 37.86 20.1916 4.70 × 10-5 ***
T·H 1 5.704 5.704 3.0419 8.78 × 10-2 .
S·H 1 32.831 32.831 17.5093 1.27 × 10-4 ***
H2 1 3.889 3.889 2.074 1.57 × 10-1

M·I 1 2.316 2.316 1.2353 2.72 × 10-1

T·I 1 10.54 10.54 5.6212 2.20 × 10-2 *
Residuals 46 86.252 1.875

R2 0.7635 - - - - -

Significance codes: 0 “***” 0.001 “**” 0.01 “*” 0.05 “.” 0.1 “ ” 1.
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Table 8. Analysis of Variance (ANOVA) table for the “HHV” quadratic model.

Variable Degrees of freedom Sum of Square Mean Square F Value p-Value Significance Codes

M 1 1.3244 1.3244 10.9006 2.00 × 10-3 **
C 1 1.912 1.91204 15.7373 2.86 × 10-4 ***
C2 1 0.0526 0.05259 0.4329 5.14 × 10-1

M·t 1 0.002 0.00199 0.0164 8.99 × 10-1

S2 1 0.1591 0.15914 1.3098 2.59 × 10-1

M·T 1 0.1132 0.11318 0.9315 3.40 × 10-1

S·T 1 0.1062 0.10621 0.8741 3.55 × 10-1

T2 1 0.6665 0.66652 5.4859 2.41 × 10-2 *
H 1 0.517 0.51699 4.2551 4.55 × 10-2 *

C·H 1 0.5179 0.51788 4.2625 4.53 × 10-2 *
t·H 1 0.4687 0.46874 3.858 5.63 × 10-2 .
S·H 1 1.6756 1.67561 13.7913 6.09 × 10-4 ***
H2 1 0.5589 0.55887 4.5999 3.79 × 10-2 *
M·I 1 0.0383 0.03825 0.3148 5.78 × 10-1

T·I 1 0.6052 0.60519 4.9811 3.12 × 10-2 *
Residuals 41 4.9814 0.1215

R2 0.7977 - - - - -

Significance codes: 0 “***” 0.001 “**” 0.01 “*” 0.05 “.” 0.1 “ ” 1.

MAE and RMSE are calculated to determine the generalization capacity of the quadratic models
using the samples shown in Table 4 according to Equations (12) and (13):

MAE =
1
m
·

m

∑
k=1

∣∣∣Yk Experiment −Yk Model

∣∣∣ (12)

RMSE =

√
1
m

m

∑
k=1

(
Yk Experiment −Yk Model

)2
(13)

In this case, YkExperiment are the experimentally-obtained responses, and YkModel are responses
from the quadratic models that RSM and m experiments produced. Prediction errors are shown in
Table 9. The maximum error corresponds to η (MAE equal to 10.445 and RMSE equal to 12.803), and
the minimum error corresponds to ρ (MAE equal to 0.009 and RMSE equal to 0.012).

Figure 2 shows the relationship between the actual values that were obtained experimentally
(Table 1) and the predicted (quadratic models) values of η (Figure 2a), Turb (Figure 2b), ρ (Figure 2c),
µ (Figure 2d), and HHV (Figure 2e). The figures show that these models suffice for the prediction of
these values, as the residuals that were obtained are small and the correlations between actual and
predicted values are high.

Table 9. Results of the predicted error process criteria for yield (η), turbidity (Turb), density (ρ),
viscosity (µ), and high heating value (HHV) using the quadratic models.

Errors η Turb (NTU) ρ (g/mL) µ (mm2/s) HHV (MJ/Kg)

MAE 10.445 6.305 0.009 0.980 0.231
RMSE 12.803 8.293 0.012 1.230 0.296

In order to test the proposed models, 15 new experiments that had not been used during the
training process were conducted (See Table 10).
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Table 10. Test matrix for transesterification of waste cooking oil.

Sample

Inputs

Molar
Ratio

Catalyst
(wt. %)

Time
(min)

Speed
(rpm)

T
(◦C)

Humidity
(wt. %)

Impurity
(wt. %)

1 6.35 1.16 21.79 531.17 38.04 1.37 2.66
2 8.77 1.49 39.99 804.66 26.08 2.07 1.84
3 6.98 1.7 22.05 587.12 27.44 2.98 1.8
4 7.48 1.57 21.41 881.61 37.85 2.86 0.6
5 6.3 1.57 23.74 531.29 36.59 1.77 0.9
6 6.2 1.56 25.97 808.46 20.3 0.58 1.39
7 6.64 1.27 32.54 747.92 38.14 1.58 1.54
8 7.95 1.91 25.67 772.08 29.35 1.51 0.12
9 7.36 1.03 37.08 526.82 39.83 2.39 2.32

10 7.31 1.71 32.93 528.27 34.67 1.02 1.98
11 6.75 1.2 29.07 711.16 34.27 2.57 2.17
12 8.76 1.35 25.69 929.16 26.92 0.33 1.34
13 7.9 1.69 24.33 855.05 34.23 0.3 0.94
14 8.49 1.86 28.35 830.26 31.21 2.17 0.11
15 7.31 1.71 32.93 528.27 34.67 1.02 1.98
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Table 11 shows the errors obtained from the 15 new experiments. The maximum error corresponds
to η (MAE equal to 15.081 and RMSE equal to 22.853), and the minimum error corresponds to ρ (MAE
equal to 0.063 and RMSE equal to 0.066).

Table 11. Results of the errors in yield (η), turbidity (Turb), density (ρ), viscosity (µ), and HHV using
the quadratic models.

Errors η Turb (NTU) ρ (g/mL) µ (mm2/s) HHV (MJ/Kg)

MAE 15.081 9.130 0.063 1.941 0.449
RMSE 22.853 14.648 0.066 2.202 0.556

5.3. Multi-Response Optimization

Tables 12–20 show the combination of process variables that were studied in examining the
biodiesel production process by means of desirability functions using the Desirability package [51]
according to nine different criteria.

Table 12. The first biodiesel optimization scenario: all variables considered to be equally important.

Goal Importance Value Desirability

M Minimize→ 6 1.0 6.24 0.921
C Minimize→ 1 1.0 0.75 1.000
t Minimize→ 20 1.0 20.00 1.000
S Minimize→ 500 1.0 499.99 1.000
T In range→ 30 1.0 20.40 1.000
H In range→ 1.5 1.0 0.20 1.000
I In range→ 1.5 1.0 0.15 1.000
η Maximize→ 9.50 1.0 99.99 1.000

Turb Minimize→ 0.21 1.0 0.00 1.000
ρ Minimize→ 0.74 1.0 0.83 0.232
µ Minimize→ 3.79 1.0 8.00 0.496

HHV Maximize→ 20.52 1.0 21.55 0.431

Overall Desirability 0.710

Table 13. The second biodiesel optimization scenario: maximizing yield.

Goal Importance Value Desirability

M Minimize→ 6 1.0 6.52 0.827
C Minimize→ 1 1.0 0.78 1.000
t Minimize→ 20 1.0 19.99 1.000
S Minimize→ 500 1.0 499.67 1.000
T In range→ 30 1.0 24.44 1.000
H In range→ 1.5 1.0 0.21 1.000
I In range→ 1.5 1.0 0.17 1.000
η Maximize→ 9.50 3.0 100.00 1.000

Turb Minimize→ 0.21 1.0 0.00 1.000
ρ Minimize→ 0.74 1.0 0.83 0.247
µ Minimize→ 3.79 1.0 7.78 0.523

HHV Maximize→ 20.52 1.0 21.53 0.422

Overall Desirability 0.709



Energies 2017, 10, 130 14 of 20

Table 14. The biodiesel optimization scenario: minimizing turbidity.

Goal Importance Value Desirability

M Minimize→ 6 1.0 6.24 0.921
C Minimize→ 1 1.0 0.75 1.000
t Minimize→ 20 1.0 20.00 1.000
S Minimize→ 500 1.0 499.99 1.000
T In range→ 30 1.0 20.40 1.000
H In range→ 1.5 1.0 0.20 1.000
I In range→ 1.5 1.0 0.15 1.000
η Maximize→ 9.50 1.0 99.99 1.000

Turb Minimize→ 0.21 3.0 0.00 1.000
ρ Minimize→ 0.74 1.0 0.83 0.232
µ Minimize→ 3.79 1.0 8.00 0.496

HHV Maximize→ 20.52 1.0 21.55 0.431

Overall Desirability 0.710

Table 15. The fourth biodiesel optimization scenario: minimizing the density and viscosity.

Goal Importance Value Desirability

M Minimize→ 6 1.0 7.35 0.551
C Minimize→ 1 1.0 1.00 1.000
t Minimize→ 20 1.0 20.00 1.000
S Minimize→ 500 1.0 500.01 1.000
T In range→ 30 1.0 26.79 1.000
H In range→ 1.5 1.0 0.00 1.000
I In range→ 1.5 1.0 0.10 1.000
η Maximize→ 9.50 1.0 94.35 0.938

Turb Minimize→ 0.21 1.0 3.23 0.965
ρ Minimize→ 0.74 3.0 0.82 0.025
µ Minimize→ 3.79 3.0 7.04 0.228

HHV Maximize→ 20.52 1.0 21.43 0.378

Overall Desirability 0.467

Table 16. The fifth biodiesel optimization scenario: maximizing the HHV.

Goal Importance Value Desirability

M Minimize→ 6 1.0 6.40 0.868
C Minimize→ 1 1.0 1.00 1.000
t Minimize→ 20 1.0 20.00 1.000
S Minimize→ 500 1.0 499.60 1.000
T In range→ 30 1.0 33.70 1.000
H In range→ 1.5 1.0 0.21 1.000
I In range→ 1.5 1.0 0.16 1.000
η Maximize→ 9.50 1.0 136.97 1.000

Turb Minimize→ 0.21 1.0 0.00 1.000
ρ Minimize→ 0.74 1.0 0.83 0.241
µ Minimize→ 3.79 1.0 9.86 0.274

HHV Maximize→ 20.52 3.0 22.04 0.256

Overall Desirability 0.626
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Table 17. The sixth biodiesel optimization scenario: minimizing the dose of catalyst.

Goal Importance Value Desirability

M Minimize→ 6 1.0 6.09 0.972
C Minimize→ 1 3.0 0.73 1.000
t Minimize→ 20 1.0 20.00 1.000
S Minimize→ 500 1.0 499.96 1.000
T In range→ 30 1.0 29.78 1.000
H In range→ 1.5 1.0 0.20 1.000
I In range→ 1.5 1.0 0.17 1.000
η Maximize→ 9.50 1.0 100.00 1.000

Turb Minimize→ 0.21 1.0 0.00 1.000
ρ Minimize→ 0.74 1.0 0.83 0.224
µ Minimize→ 3.79 1.0 8.03 0.493

HHV Maximize→ 20.52 1.0 21.55 0.430

Overall Desirability 0.710

Table 18. The seventh biodiesel optimization scenario: minimizing the speed of agitation.

Goal Importance Value Desirability

M Minimize→ 6 1.0 6.24 0.921
C Minimize→ 1 1.0 0.75 1.000
t Minimize→ 20 1.0 20.00 1.000
S Minimize→ 500 3.0 499.99 1.000
T In range→ 30 1.0 20.40 1.000
H In range→ 1.5 1.0 0.21 1.000
I In range→ 1.5 1.0 0.15 1.000
η Maximize→ 9.50 1.0 99.99 1.000

Turb Minimize→ 0.21 1.0 0.00 1.000
ρ Minimize→ 0.74 1.0 0.83 0.232
µ Minimize→ 3.79 1.0 8.00 0.496

HHV Maximize→ 20.52 1.0 21.55 0.431

Overall Desirability 0.710

Table 19. The eighth biodiesel optimization scenario: minimizing the time.

Goal Importance Value Desirability

M Minimize→ 6 1.0 6.09 0.972
C Minimize→ 1 1.0 0.73 1.000
t Minimize→ 20 3.0 19.98 1.000
S Minimize→ 500 1.0 499.96 1.000
T In range→ 30 1.0 29.78 1.000
H In range→ 1.5 1.0 0.20 1.000
I In range→ 1.5 1.0 0.16 1.000
η Maximize→ 9.50 1.0 100.00 1.000

Turb Minimize→ 0.21 1.0 0.00 1.000
ρ Minimize→ 0.74 1.0 0.83 0.224
µ Minimize→ 3.79 1.0 8.03 0.493

HHV Maximize→ 20.52 1.0 21.55 0.430

Overall Desirability 0.710
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Table 20. The ninth biodiesel optimization scenario: minimizing the molar ratio oil.

Goal Importance Value Desirability

M Minimize→ 6 3.0 6.00 1.000
C Minimize→ 1 1.0 0.72 1.000
t Minimize→ 20 1.0 20.00 1.000
S Minimize→ 500 1.0 499.96 1.000
T In range→ 30 1.0 29.78 1.000
H In range→ 1.5 1.0 0.19 1.000
I In range→ 1.5 1.0 0.17 1.000
η Maximize→ 9.50 1.0 100.00 1.000

Turb Minimize→ 0.21 1.0 0.00 1.000
ρ Minimize→ 0.74 1.0 0.83 0.219
µ Minimize→ 3.79 1.0 8.07 0.488

HHV Maximize→ 20.52 1.0 21.55 0.431

Overall Desirability 0.710

The first and second columns show, respectively, the inputs and outputs that were studied, and
the goal that was established in the optimization process. The third column shows the degrees of
importance considered in the optimization process. Finally, the fourth column shows the optimized
values obtained and the fifth column shows the desirability values.

Table 12 shows the results when the design requirements that are based on yield production,
turbidity, density, viscosity and HHV of biodiesel were considered with the same level of importance
(equal to one). In this case, the value of the overall desirability was 0.710.

Table 13 shows the results when the design required were based on maximizing yield were
considered with a higher level of importance than other process criteria. The goal that was established
was a value of three (maximum), and the overall desirability obtained was 0.709. Table 14 shows
the results when the design requirements that were based on minimize turbidity. The overall
desirability obtained was 0.710. Table 15 shows the results when the design requirements were
based on minimizing the density and viscosity. The overall desirability obtained in this case was
0.467. Table 16 shows the results when the design requirements were based on maximizing the H. The
overall desirability obtained was 0.626. Table 17 shows the results when the design requirements were
based on minimizing the density and viscosity. The overall desirability obtained in this case was 0.710.
Table 18 shows the results when the design requirements that were based on minimizing the speed
of agitation. The overall desirability obtained was 0.710. Table 19 shows the results when the design
requirements were based on minimizing the time. The overall desirability obtained in this case was
0.710. Finally, Table 20 shows the results when the design requirements were based on minimizing
the molar ratio oil. The overall desirability obtained in this case was 0.710. From the results that
appear in Tables 12–20, it can be seen that the process variables are very similar for all different design
requirements that were studied. Thus, for example, the ranges of values for the molar ratio oil for the
different design requirements that were studied extend from 6.06–7.35, whereas the ranges for the
catalyst was 0.73 wt. %–0.78 wt. %. The time and speed of agitation were, respectively, 19.98–20 s and
499.96 rpm–500.01 rpm, and the temperature varied from 20–33.70 ◦C. In addition, the humidity and
impurities in the waste cooking oil were, respectively, 0 wt. %–1.82 wt. % and 0.77 wt. %–2.70 wt. %.
Tables 12–20 show that the values of humidity and impurity are practically zero. This indicates that, as
the humidity and impurity values increase, the rest of the variables (η, Turb, ρ, µ, and HHV) decrease.
From these results, it follows that the optimal process variables for different design requirements were
found in a relatively narrow range.

Once the different biodiesel optimization scenarios were obtained, nine new experiments
according to the combination of process variables that appear in Tables 12–20 were prepared in
order to determine the accuracy of the proposed methodology. Table 21 shows the values of different
biodiesel outputs according to the nine biodiesel optimization scenarios that were studied. This table
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shows that the experimentally-obtained values for the nine biodiesel optimization scenarios did not
differ significantly from those that application of the MRS methodology produced (see the results of
Tables 12–20). In this case, in order to compare the different errors in predicting the outputs according
to the nine design requirements under study, MAE and RMSE were obtained from the normalized
data. It is common practice to normalize the data in statistical processes so that all variables use the
same scale (i.e., 0–1). In this case, the data were normalized by subtracting the minimum value from
each original value and dividing by the range of each variable as shown in Equation (14):

Yk, norm =
Yk −min(Y)

range (Y)
(14)

where Yk,norm are the normalized outputs of the models that were developed with RSM and of those
that were obtained experimentally. The error that appears in the last two columns represents the
MAE and RMSE that were normalized for each variable in each of the nine biodiesel optimization
scenarios that were studied. However, the normalized MAE and RMSE in the last two rows correspond
to the errors in each of the outputs that were studied. For example, when minimize the turbidity is
considered to be an optimization variable for biodiesel production, the errors obtained are the smallest
(MAE = 0.04 and RMSE = 0.02), but when minimize the viscosity and density are considered, the error
is the largest (MAE = 0.12 and RMSE = 0.08). In contrast, the maximum errors obtained for each of the
outputs are lower when predicting viscosity (MAE = 0 and RMSE = 0.01) and greater when predicting
turbidity (MAE = 0.03 and RMSE = 0.09). In addition, the values of MAE and RMSE that were obtained
for each of the different outputs are all in acceptable agreement according to the texting error.

Table 21. Experimental outputs that were obtained according to the nine biodiesel
optimization scenarios.

Optimization
Scenarios

Experimental Values Obtained

η Turb (NTU) ρ (g/mL) µ (mm2/s) HHV (MJ/Kg) MAE RMSE

1st Scenario 0.98 0.03 0.89 0.34 0.20 0.05 0.03
2nd Scenario 0.99 0.02 0.63 0.27 0.16 0.09 0.05
3rd Scenario 0.98 0.01 0.89 0.34 0.21 0.04 0.02
4th Scenario 0.00 0.92 0.00 0.00 0.00 0.12 0.08
5th Scenario 0.98 0.02 0.77 1.00 0.99 0.06 0.03
6th Scenario 0.98 0.02 0.98 0.35 0.20 0.07 0.04
7th Scenario 0.97 0.01 0.89 0.34 0.20 0.04 0.03
8th Scenario 0.98 0.03 0.94 0.35 0.20 0.10 0.07
9th Scenario 0.98 0.02 0.99 0.37 0.20 0.05 0.03

MAE 0.02 0.03 0.02 0.00 0.01 0.07 0.04
RMSE 0.06 0.09 0.08 0.01 0.02 0.25 0.14

6. Conclusions

This work was carried out to investigate yield, turbidity, density, viscosity, and HHV of biodiesel
from waste cooking oil. Response surface methodology based on the Box–Behnken design was used
to study the effects of the process variables on the biodiesel production from waste cooking oil.
According to the ANOVA, the results obtained demonstrated that, although waste cooking oil was
collected from different sources, the molar ratio and dosage of catalyst are one of the most important
factors in the yield of biodiesel production (see Table 4), whereas the humidity is one of the lowest
factor. In addition, humidity and impurities are one of the most important factor for increasing the
turbidity (see Table 5), whereas for the HHV the dosage of catalyst is the most important factor (see
Table 8). Finally, the dosage of catalyst is one of the most important factors in the biodiesel production.
The optimal conditions for maximum yield were found to be: molar ratio of 6.52, catalyst loading of
0.78 wt. %, reaction time of 19.99 min, reaction speed of 499.67 rpm, temperature of 24.44 ◦C, humidity



Energies 2017, 10, 130 18 of 20

of 0.21 wt. %, and impurities of 0.17 wt. %. The maximum biodiesel yield under these conditions was
100%. In addition, the optimal conditions for maximum heating value were found to be: molar ratio of
6.4, catalyst loading of 1 wt. %, reaction time of 20 min, reaction speed of 499.6 rpm, temperature of
33.7 ◦C, humidity of 0.21 wt. %, and impurities of 0.16 wt. %. The maximum biodiesel yield under
these conditions was 100%. In conclusion, the optimal conditions for humidity and impurities in
all biodiesel optimization scenarios were closest to the minimum values of the range (0 wt. %, and
0 wt. %). The fuel properties of the biodiesel complied with international standards. Thus, the present
study confirmed the high quality of the biodiesel that was produced from waste cooking oil.
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