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Abstract: This paper analyses the role of barriers preventing the worldwide take-up of a clean
technology: the electrical arc furnace. It also identifies which barriers affect a parameter that
summarises the combined effect of all of them. The first step, determination of the combined
effect of the barriers, is carried out using a novel approach to model the diffusion of innovations.
This new approach is composed only by terms that account for the driver of innovations and the
parameter that summarises the effect of barriers. The objective quantification of the effect of barriers
in the diffusion of innovations opens up new opportunities for designing policies to overcome the
barriers identified as the most relevant, for identifying the effect of existing policies, for relating
innovation indicators with those barriers or for better incorporating the effect of barriers in bottom-up
models that forecast the technological evolution of the economy.

Keywords: diffusion of innovations; energy-system models; energy efficiency gap; barriers; industrial
energy efficiency

1. Introduction

This paper links two broad fields that, although deeply related, are not usually treated simultaneously
in the scientific literature: the modeling of diffusion of innovations and the description of barriers faced
by cost-effective investments. The effect of barriers preventing investments is so pervasive that the
literature of energy efficiency [1–3] has introduced the term “energy-efficiency-gap”. This term refers to
the discrepancy between the observed level of diffusion of a technology and the economically optimal
level. However, when accounting for the spread of innovation, none of the models on diffusion of
technologies (see some comprehensive reviews in [4–6]), specifically include the overall effect of barriers in
their mathematical formulation. Note that already in 1994, Jaffe [7] developed a framework to describe the
very gradual diffusion of apparently cost-effective energy-conservation technologies in the building sector.
Their analysis, based on the incorporation of the effect of some specific barriers affecting the attractiveness
of the investments, confirms the existence of the “energy paradox”. Recently, Moya [8] developed a
new general approach to describe the diffusion of innovations in terms of its main drivers and barriers.
Unlike Jaffe [7], this latter general approach enables us to quantify in just one term the overall effect of the
barriers to the spread of electrical arc furnace technology (EAF). The second section of this paper shows
the suitability of this approach to account for the global diffusion of EAF in the last forty years. Note that
so far, in the scientific literature on barriers (Sorrell et al. [9] provide a large number of references), the
main source of empirical information about barriers comes from surveys or interviews with decision
makers. Based on this information, several taxonomies of barriers have been defined and subsequently
improved [9–13]. This information has also been used to conduct profit models [14] and analyse the
relevance of barriers. However, according to the original approach of Moya [8], the overall effect of barriers
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in the diffusion of innovations can be estimated from historical records about how the diffusion has taken
place. This represents a very novel source of information with huge potential to analyse the relevance of
barriers. Unlike the answers to surveys, this source of information collects a factual answer over time
from decision makers about the actual relevance of barriers. The third section of this paper analyses which
barriers have the highest influence over the summarising parameter of the effect of barriers.

It is easy to understand the interest of policy-makers in unravelling the mechanisms of diffusion
of innovations [15–17] and how barriers are preventing sound investments. This understanding can
support the design of policies to reduce the impact of barriers [16,18–20]. Moreover, regarding energy
demand forecasts, there are two typically separated groups of models, top-down and bottom-up
models. Whereas the former is the first choice of economists, the main trait of the latter is the
further detailed description of technologies. Therefore, they have the potential to model the effects
of technology-oriented policies. Algehed et al. [21] compare top-down and bottom-up models,
Worrell et al. [22] is more focused on the development needs of these latter models and Fleiter et al. [20]
is focused on the role of barriers in bottom-up models. This last reference concludes with the need
to represent the effect of the barriers in these models in a less aggregated and not so simplified
manner. Although the approach proposed in Moya [8] also summarises the effect of barriers in a
single parameter, this simplification comes from a theoretical background. Therefore, it makes sense
to analyse the sensitivity of this single parameter to potential barriers (as done in Section 3 of this
paper). The replication of the findings for other technologies will allow for a review of how the
decision-making criterion of investment in new technologies is incorporated into bottom-up models.
Furthermore, the inclusion of the effect and intensity of barriers into these models will also allow an
analysis of policies aimed to remove those barriers.

2. Diffusion of EAF Based on the Drivers of Innovation Diffusion and the Overall Effect of Barriers

This paper follows the approach to modelling the diffusion of innovations presented in [8].
In this approach, the diffusion of innovations happens in a social medium formed by stakeholders
(innovators, potential adopters, regulators . . . ). In this social medium, there are potential barriers that
affect the driver of the innovations. Mathematically, the diffusion of innovations can be expressed by
the diffusion equation of natural processes:

K δ2h/δx2 = δh/δt, (1)

The application of this expression to the diffusion of innovations requires the conceptual
abstraction of assimilating the spatial dimension x to the dimension of the social medium (geographical
context, interaction among stakeholders, regulators, technology providers . . . ) in which the diffusion
takes place. h is the driver or the innovations (cost-effective investments). Since the innovation process
is based on individual decisions made by innovators, Moya [8] uses as a driver of innovations a
function that collects the main parameters that historically have influenced cost-effectiveness analysis
of any investment in the innovation. K is the permeability or innovation conductivity in the social
medium. For some conditions (1) can be solved analytically, provided the coefficient K is constant [23];
In order to get the analytical solution (2) we can apply the Laplace transformation to (1) to convert the
partial differential Equation (1) into an ordinary differential equation. When x = L and the input in the
system (the driver of innovations) is a Dirac´s delta the anti-transformed of the solution of ordinary
differential equation is:

R(x = L, t) =
Le−

L2
4Kt

2
√

πKt3
(2)

This function is known as a response function. The solution to any arbitrary f (t), that is, when the
boundaries conditions are h = f (t) for x = 0 and t > 0 and h = 0 for t = 0 at any x > 0 can be obtained by
taking advantage of the linearity of the problem to apply the superposition principle. The application
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of this principle boils down to the application of the convolution integral (3) between the response
function and the input f (t):

h(x = L, t) =
∫ t

0
f (t− τ)

L
2τ
√

πKτ
exp
(
− L2

4Kτ

)
dτ (3)

In practical terms, to solve (1), first, we need to fix the value of the societal dimension (let us say
x = L) in which the problem is solved. Moreover, pairs of L and K that keep the same value of L2/K
produce the same solution in (3). Moya [8] uses a linear combination of the steel, scrap and electricity
price as f (t). This function f (t), is able to explain the number of cost-effective innovations (main driver
of the diffusion process), and has the form:

f (t) = β0 + β1 SteelPrice(t) + β2 ScrapPrice(t) + β3 ElectricityPrice(t), (4)

For each country included in the analysis, the regressors β0, β1, β2, β3, and the coefficient K
can be estimated minimising the difference between the solution of (3) and the observed diffusion in
those countries.

The selection of terms included in Equation (4) disregards other factors that could influence
a cost-effectiveness analysis. Some examples of these factors could be the improvement of the
energy efficiency of the EAF technology with time, the breakdown of the electricity price in its
different components (energy price and transmission tariffs), the presence of power plants in existing
steel mills (that could facilitate cheaper electricity prices for the uptake of this technology by the
incumbents), etc. However, as the next section shows, the simple combination of parameters considered
in Equation (4) is enough per se to reproduce quite closely the historical diffusion of the EAF in most
of the countries analysed.

2.1. Application of This New Approach to Model the Diffusion of Innovations to the Worldwide Difusion of EAF

Herein we apply this novel approach to model the historical penetration of the EAF technology in
the global steel industry. In 2001 36 countries accounted for around 83% of the EAF installed capacity.

The diffusion of technology innovations in the steel industry has been studied quite
intensively [24]. There are also some diffusion studies on the electric arc furnace [25–27]. Moya [8]
proves that scrap prices, energy prices and steel price are enough to explain the empirical diffusion
pattern of this technology in Japan using a simple ARMAX model. Thanks to their leverage, these
parameters are used in Moya [8] as the driver of innovations in expression (4) when applying the
methodology previously described. The values used, given in Table 1, come from [28–30].

Table 1. Constant prices (in 2005 Euros) of steel, scrap and electricity used in f (t) of Equations (3) and (4).

Steel Scrap Electricity

EUR/t EUR/t EUR/MWh

1974 850 273 103
1975 778 167 98
1976 738 172 95
1977 695 132 92
1978 649 149 89
1979 600 176 89
1980 551 151 89
1981 477 140 90
1982 348 89 92
1983 307 99 94
1984 311 115 97
1985 291 89 100
1986 278 92 98
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Table 1. Cont.

Steel Scrap Electricity

EUR/t EUR/t EUR/MWh

1987 250 104 98
1988 313 128 98
1989 392 122 97
1990 403 117 95
1991 393 98 90
1992 321 89 84
1993 357 115 79
1994 323 127 75
1995 374 132 72
1996 347 126 70
1997 308 124 67
1998 241 101 63
1999 216 87 56
2000 220 87 46
2001 195 66 51
2002 177 77 55
2003 227 101 59
2004 356 170 62
2005 340 152 68
2006 346 167 75
2007 396 189 78
2008 566 260 86
2009 359 154 97
2010 411 233 98
2011 451 281 106

Since it was not possible to find the evolution of the electricity price in some of the analysed
countries, the German electricity price is used as a proxy for all of them. There is a high correlation
(0.90) between the values of the coefficient K obtained using the electricity prices for countries for
which this data is available and the ones obtained (third column of Table 2) when using the German
electricity prices as a proxy. Nevertheless, we opt for this second option for all countries in order
avoid introducing a systematic bias in the estimations of some of the K values. All values in Table 1
are in constant 2005 prices in Euros (that is, removing the effect of inflation), from [31].The solution
EAFestimated of the diffusion process (at x = L) is the result of the integral of convolution given in (3)
using as f (t) the Function (4). In principle, to estimate EAFestimated first we have to adjust 6 parameters,
β0, β1, β2, β3, L and K. However, since the solution is invariant for the same values of L2/K, we fix the
value of the L and vary the K. All in all, the model requires the adjustment of 5 parameters that can be
found by minimising the sum of squared errors between the value EAFestimated estimated by the model
and the values observed EAFobserved; in other words, finding the minimum:

min

{
t=2010

∑
t=1970

[EAFobserved(t)− EAFestimated(t)]
2

}
(5)

The blue curves of Figure A1 of Appendix A give the historical evolution of the penetration share
of the EAF technology (EAFobserved) in each of the 36 countries analysed. These values come from [32].
The green curves of Figure A1, the EAFestimated, are the best fit of obtained for EAFobserved. The values
of coefficients β0, β1, β2, β3 and K that minimise (5) are given in Table 2. These coefficients can be
obtained by using the code published in Appendix A of Moya [8] to solve the minimisation (5).

The two right-hand columns of Table 2 provide two different measures of the estimation error:
the root-mean-square error (RMSE) and the mean absolute error MAE. Note in some countries, such
as Denmark, Portugal or Iran, although the model is able to reproduce the observed behaviour, the
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changes in the penetration of the EAF happened so quickly that all the error is produced around the
change zone, being most of the mean absolute error, that in these three cases goes up to around 10%.

Table 2. Values of K and the parameters β0, β1, β2, β3 that produce the best fit between the percentage
of EAF observed and estimated.

K
β0 β1 β2 β3

R2 RMSE MAE
(cte.) (steel) (scrap) (elec.)

Belgium BE 0.0046 −105.4760 −0.3101 4.4448 0.2571 0.97 1.99 1.48
Germany DE 0.0236 90.7210 0.0473 −0.0958 −0.6866 0.94 1.54 1.36

Spain ES 0.0469 165.2440 0.0904 −0.2790 −1.2160 0.97 2.19 1.84
France FR 0.0166 −59.6321 −0.0703 −0.1259 2.1585 0.98 1.59 1.33
Italy IT 0.0700 33.5673 −0.0257 0.1921 −0.2313 0.93 1.73 1.37

Poland PL 0.0043 1.2579 0.2498 1.8643 1.5431 0.96 2.42 2.02
Portugal PT 0.0067 −6.3665 −1.7675 6.8168 5.8099 0.80 12.27 9.75
Finland FI 0.0066 11.5788 −0.1851 −3.5585 6.8785 0.81 2.76 2.17
Sweden SE 0.0290 −4.2775 0.3045 −0.2654 −1.1562 0.89 2.25 1.79

U. Kingdom UK 0.0848 −29.0947 0.0848 0.0000 −0.0867 0.86 1.78 1.42
Japan JP 0.0385 −28.5446 0.1021 −0.4049 0.7416 0.97 0.74 0.61

U. States US 0.0198 242.2710 0.1886 −0.2634 −2.2834 0.99 1.40 1.17
Turkey TK 0.0675 108.5870 −0.1392 0.1887 0.1628 0.95 4.62 3.36
Canada CA 0.0229 16.2986 −0.0599 0.2466 0.4197 0.91 2.60 1.80

Australia AU 0.0069 −132.7130 0.4593 −2.4803 4.0450 0.98 0.88 0.73
India IN 0.0170 570.4850 0.4125 −1.3173 −5.5529 0.98 2.22 1.76

South Korea KO 0.0194 1.7850 −0.4727 0.0862 2.1007 0.71 3.47 2.88
South Africa SA 0.0086 −111.6960 −0.1304 1.9165 0.3483 0.88 2.92 2.26

Mexico MX 0.0085 −388.9800 −0.2657 −0.1006 7.6060 0.96 2.46 1.96
Norway NW 0.0029 6.3745 25.9176 27.9845 5.5979 0.92 7.08 4.37

Argentina AR 0.0887 26.6242 0.0929 −0.2592 0.0043 0.65 4.08 3.11
Brazil BR 0.0052 −79.2487 −1.8117 4.3649 3.5434 0.73 1.32 1.03

Romania RO 0.0473 −110.2140 −0.2857 1.6859 0.4990 0.78 3.85 3.08
Russia RU 0.0026 4.5728 −0.2241 2.4194 5.6264 0.82 2.33 1.87
China CN 0.0761 −32.301 0.007195 −0.1904 0.4675 0.93 1.02 0.98
Egypt EG 0.0048 3650.58 3.9466 −5.5601 −45.438 0.85 9.34 7.26

Malaysia MY 0.0084 −14.2784 1.22723 −0.34465 −2.8331 0.96 2.72 1.60
Netherlands NL 0.0514 −18.3229 −0.009616 0.03517 0.1293 0.89 0.53 0.44

Denmark DK 0.1214 −267.396 0.2248 −3.1632 8.3738 0.82 18.46 11.05
Venezuela VE 0.0395 430.71 0.7332 −2.9439 −1.8455 0.98 4.45 2.84

Luxembourg LU 0.0030 1.9222 7.6382 15.577 5.9798 0.95 10.88 6.18
Chile CL 0.0050 −173.676 1.49187 −21.7849 28.408 0.90 2.96 2.16

Bulgaria BG 0.3458 −70.4437 −0.2307 1.0372 0.6317 0.81 8.74 6.91
Hungary HU 0.0043 −1.6880 0.47095 −2.9961 3.1167 0.20 4.86 3.73
Austria AT 0.0123 103.726 −0.3691 1.1992 1.1188 0.80 0.69 0.55

Iran IR 0.4274 6.6421 −0.1759 0.9101 −1.4569 0.74 14.85 11.69

Figure A1 of Appendix A gives all the adjustments obtained for the 36 countries analysed.
Those adjustments show a broad range of behaviours in evolution of the EAF technology in those
countries. This evolution goes from monotone increasing (Belgium, Turkey, India, United States)
to others in which after reaching a maximum penetration there is a clear decline (Japan, Sweden).
For South Korea there is a recognisable decrease in the penetration of EAF in the period studied, that is
later recovered. What is common in almost all panels of Figure A1 is the capacity of the Expression (3)
to model the worldwide diffusion of the EAF technology. According to the determination coefficient,
R2, the adjustment hardly worked for Hungary. This can be explained by the fact that in this country
there are just only two blast furnaces (BF) and two EAF (see Table 3). Therefore, in this case, operational
particularities of those few facilities can introduce a noise that the model is not able to grasp. In other
countries that also have a small number of facilities (such as Portugal, Finland, Norway, Netherlands,
Denmark and Luxembourg) this is not observed.
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Table 3 provides the installed capacities in 2015 from the traditional route (BF-BOF) and the
recycling route (EAF), as well as the number of blast furnaces and electrical arc furnaces [32]. This table
allows us to see that some countries have a small number of facilities and low production. In those
countries small variations in individual facilities can alter significantly, and in a few years, the
production share of the EAF technology. We can see in Figure A1 that newcomers in steel production
adopt clean process more quickly than incumbents [33], since the latter are more limited by the age of
the structure and the need to expand existing capacity processes.

Table 3. Installed capacities and number of blast furnaces (BF) and AC and DC EAF in 2015 in the
countries under study.

Country
Capacity (Mt)

Number of BF Number of EAF
BF EAF

Belgium BE 4.43 4.52 2 7
Germany DE 33.67 16.21 18 39

Spain ES 4.48 17.37 2 27
France FR 12.81 7.57 8 20
Italy IT 14.51 24.18 8 38

Poland PL 7.34 4.6 4 10
Portugal PT 0 1.8 0 2
Finland FI 2.48 1.3 2 2
Sweden SE 4.13 2.41 3 8

United Kingdom UK 12.78 4.75 7 8
Japan JP 93.64 31.37 28 69

United States US 38.33 74.82 24 128
Turkey TK 10.78 33.1 11 31
Canada CA 8.48 7.69 6 17

Australia AU 3.8 1.52 2 3
India IN 79.6 33.12 84 71

South Korea KO 45.82 27.73 13 37
South Africa SA 4.93 5.7 3 10

Mexico MX 5.55 19.86 4 28
Norway NW 0 0.8 0 1

Argentina AR 3.9 3.67 3 9
Brazil BR 41.38 11.32 52 27

Romania RO 4.34 3.71 3 10
Russia Federation RU 59.42 34.68 47 51

China CN 480.27 54.31 425 134
Egypt EG 1.44 11.79 4 22

Malaysia MY 1.03 8.53 2 14
Netherlands NL 6.3 0.26 2 2

Denmark DK 0 0 0 0
Venezuela VE 0 7.1 0 10

Luxembourg LU 0 3.15 0 3
Chile CL 1.15 0.41 2 2

Bulgaria BG 0 3.71 0 10
Hungary HU 1.31 0.95 2 2
Austria AT 6.35 1.47 6 3

Iran IR 3.7 18.04 4 30
Total (36 countries) 993.22 477.82 778 875

Rest of World 101.52 96.45 84 240
TOTAL WORLD 1094.74 574.27 862 1115

Coverage 90.7% 83.3% 90.2% 78.5%
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2.2. Influence of the Parameter K in the Diffusion of EAF Technology

This section shows how the historical evolution of the diffusion of EAF technology in one country
is affected by different values of the ratio L2/K. The blue curve of Figure 1 corresponds to the historical
share of EAF in Japan. The green curve labelled with “K” is the best adjustment obtained with the
approach of Section 2.1, that is, solving Equation (5), in which Equations (3) and (4) are embedded.
This curve agrees quite well with the observed values (as proved by a MAE of 0.61%). The remaining
curves show the effect of different values of K in Equation (3).
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Figure 1. Influence of the parameter K (that summarises the combined effect of the barriers on the
take-up of innovations) over the diffusion of EAF technology in Japan.

An increase of the value of K, ceteris paribus, means that the solution of the model overreacts to
the conditions that favour the use (or dis-use) of the new technology. Similarly, for lower values of K
the adjusted model is not able to achieve the penetration of EAF technology observed in Japan. It is also
noticeable that higher values of K provoke an earlier and higher maximum of the penetration share of
EAF technology. Moreover, in this case, when the conditions are less favourable to the adoption of
EAF technology, it is abandoned earlier and more intensively.

Figure 2 shows that countries with similar values of K can have very different shares of EAF
technology. For example, in 2011 the Netherlands, Romania, Spain and Venezuela, whose K values
are 0.0514, 0.04473, 0.0469 and 0.0395, had a share of EAF technology of 0%, 51%, 71% and 100%,
respectively. Furthermore, in the Netherlands the EAF share was decreasing whereas in the other
three countries it was increasing (Venezuela reached a share of 100% in the 1990s and has not varied
since then).
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In addition, countries with the same EAF share correspond with a wide spectrum of K values.
For example, countries with a total diffusion of the EAF technology by 2011, such as Luxembourg,
Norway, Portugal, Malaysia, Venezuela and Bulgaria (named in increasing order of the parameter K)
have K values ranging from 0.003 to 0.3458.

As shown in Figure 1, the higher the K value, the more sensitive the country is to the conditions
that can alter the investment (or disinvestment) in the EAF technology. Even though the value of K is
related to the structure of the country and the barriers present, its interpretation is not straightforward,
i.e., we cannot say that the deployment of the EAF technology in Luxembourg, Norway and Portugal
faced more barriers than in in Malaysia, Venezuela and Bulgaria. The relationship between the
parameter K and the traits (barriers) of each country will be analysed in next section.

In Figure 2, we can also observe some clustering of the values of K for some countries. For example,
Germany, France, Sweden and Korea have similar penetration of EAF technology and K value. With a
similar K value, but higher penetration of the technology, are India and the United States. Based on the
previous sensitivity analysis of the value of K we would say that these countries have had a similar
dynamic behaviour incorporating EAF technology.

2.3. Traits of the EAF and the Steel Industry

Before analysing the relationship between the parameter that summarises the effect of barriers,
and the potential barriers themselves, this section provides some information that comes in handy to
understand the historical competitiveness of the recycling route (based on the EAF technology).

The main component of the EAF production cost is the raw material cost, i.e., scrap, that even
though is a global commodity (whose historical evolution can be read in Table 1), suffers some regional
variations. Moya el al. [34] provides a production cost comparison of two products from the recycling
route and the traditional route (BF-BOF) for nine non-EU countries and the EU. Eight of those countries
(Brazil, China, India, Japan, Russia, South Korea, Turkey and United States) are also included in this
analysis. This reference presents how small differences in the scrap cost (that is around two thirds of the
total cost) determine the position of each country in the cost curve. Two out of the three countries with
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the highest production costs (China and Japan) in [34] exhibit a clear decline in the historical penetration
of the EAF technology. In South Korea the trend is not so clear. The opposite can also be observed for the
countries with lowest production in 2013 (Russia, Brazil and India). It is worth noting that even though
electricity represents around 5% of the final price in 2011, in 2000 this percentage was up to 20%.

Beside these considerations for the production costs, it is convenient to provide some notes about
the different steel products and their added value. According to its final shape and use, steel can be
classified into two big groups: flat products and long products. The flat products, produced mainly by
the integrated route, provide the highest added value of steel, whereas the long products, produced
mainly in the recycling route are in the lower range of added value. In any case, the historically
clear difference between the production route and long or flat products is waning out, improving
the competitiveness of the EAF technology. Nowadays 100% of long products and 70%–80% of flat
products can be made with scrap [35].

3. Overall Effect of Barriers

In Section 2.2 we applied the approach suggested in Moya [8] to model the diffusion of the
electrical arc furnace in 36 countries. This approach produces a good description of the diffusion
of the EAF technology from 1974 to 2010 in those countries. The only necessary ingredients are the
parameters that can be considered as main drivers of the innovation, and the overall effect of the
barriers. The reason for considering the prices of electricity, scrap and steel as main drivers is that
the right combination of values of these parameters can determine whether a new investment is
worthwhile. Following the approach of Moya [8], other factors affecting the cost-effectiveness of the
investment should be considered as an additional component of the driver of innovations, leaving the
coefficient K to account for the effects that affect the observed diffusion of the technology and cannot
be included in a cost-effectiveness assessment. As mentioned, one of the advantages of this approach
is that it provides in a single parameter the hampering effect of all barriers. Sorrel et al. [12] define
barriers as “a postulated mechanism that inhibits investments in technologies that are both energy
efficient and (apparently) economically efficient”. We assume that all potential factors affecting the
cost-effectiveness of the investment are included when determining what is “economically efficient”.
That is, in our definition of the main driver for innovation, function “f” of Expression (3), we include all
factors that are an intrinsic part of a cost-effectiveness analysis (such as, among other factors, policies
directly modifying the costs). Whereas the parameter K is reserved for barriers (sociological, regulatory
or of any other kind) or supportive measures that can affect the timing of a strategic decision, e.g.,
the lack of confidence of decision makers in the prices incorporated in the cost-effectiveness analysis,
mimicry among investors, etc. In fact, the effect of all barriers or support measures, and therefore of the
coefficient K in the diffusion model, see Figure 1, is to delay or speed-up the adoption of innovations.

Although, the literature describing barriers and their effect is quite broad, there are some basic
references [11,12] with recent updates [9,13] that contain some classifications extensively used in the
literature on barriers [36,37]. Sorrel's classification makes the distinction between barriers due to
market failure (that should receive the attention of policy-makers), and non-market failure barriers (out
of the scope of active policies). Market failure occurs when the requirements for efficient allocation of
resources are violated (market prices known by all participants in the market, zero transaction costs...).
Much of the early criticism to the first attempts to categorise barriers [38,39] comes from the failure to
make this distinction in the identified barriers. Furthermore, in the refinements to the taxonomy of
barriers provided by Cagno et al. [13], they also add a crucial structural perspective, categorising the
barriers as internal and external to the enterprise.

To represent potential barriers, and their evolution for the countries during the period of interest, we
use some of the world development indicators [40]. Among all the indicators, we preselect those (Table A1)
that could be worth retaining as pertaining to one of the categories of barriers indicated in [9,13].

The rest of this paper is devoted to establishing whether the parameter K can be related, using
linear relationship, with some of the preselected indicators. Note that although the number of indicators
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of Table A1 might seem high, Kemp and Volpi [33] quantify the number of relevant factors affecting the
adoption decision of individual companies, and thus the technology diffusion, as well over a hundred.

Estimation of the Influence of Barriers in the Observed Values of the K

For each country (36) we have 81 time series (between 1974 and 2011), one per preselected
indicator. We use the mean of the values of each time series and its slope as independent variables or
explicative parameters. This section will analyse whether a linear model with some of those explicative
parameters is able to account for the observed values of K.

The starting point of any linear regression model is to assure that the conditions required by any
linear model are met. Therefore, we try to assure that the potential indicators, predictors or explanatory
variables are transformed in such a way that there are not any outliers and there is heteroscedasticity
in the input parameters. Since many of our parameters are proportions (bounded between 0 and 1)
we try a slight variation of the logit transformation. The slight variation is included to keep in the
sample zeros and ones. For this same latter reason, we also try two additional modifications of the
logarithmic transformation. The exact expression of these transformations can be read in the code
of the supplementary material; we refer to these transformations as logit, llogg and llog2. We also
introduce as potential explanatory variables the inverse of the previous values. In order to be able to
apply the inverse transformation, we replace the zeros by the lowest value of the parameter. Since some
of the variables do not require any transformation, and have units orders of magnitude higher than
the rest of explanatory variables, we normalise all of them.

Finally, we disregard all explanatory variables with empty values for one or more countries and
those for which no transformation is able to eliminate the outliers. A serious drawback of the needed
transformations is a loss of interpretability of the individual values [41]. All the steps followed can be
read and reproduced in the ‘R’ script of the supplementary material.

As a second step, and in order to discard multicollinearity problems, we disregard predictors
with pairwise absolute correlations higher than a certain threshold, 0.75. We follow the algorithm
suggested in [42] to accomplish this step. Moreover, when analysing the models we also check the
variance inflation factor [43].

The challenge of having more potential predictors than observations is commonly handled by the
latest developments in statistical learning methods. One of the main challenges when constructing
models when there are more predictors than observations, is to avoid overfitting the model. An overfitted
model has a high variance error (different sets of observations produce large errors in the estimation)
although it also has a minimised bias (the difference between the observed and the predicted values is
minimised). This paper uses the cross-validation error (estimated using the function “cv.glm” [44], see
the supplementary material) to find the right balance between both kind of errors.

In short, the cross-validation sets aside part of the population of values (called train data) to
construct a model, and checks the variance error with the values set aside (called test data). We use
6 folds in the k-fold validation. We also prove all possible models with two predictors and interactions
and tree predictors, cross-interactions and powers of second order.

The third model of Table 4 is the best one identified. Following the notation of the statistical
software R, the “:” indicates an interaction among regressors. Table 5 details the meaning of regressors
from B1 to B4. The second column of this latter table indicates the transformation applied to work
with the corresponding data. The third column of Table 5 indicates whether the regressor corresponds
to the average values or to the linear slopes of the time series between 1974 and 2011. Since we are
working with standardised values, the numerical values of the estimated regressors in Table 4 serve as
a sensitivity measure of the relevance of the predictors.
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Table 4. Best models for K obtained with the indicators of Table A1.

# of Model Model Adj R2 vif Cv_err

1 −0.2374 + 0.7888 B1:B2 0.35 0.68
2 −0.8195 + 0.7212 B32 + 0.5813 B42 + 0.8943 B3:B4 0.43 5.65 0.61
3 −0.8843 + 0.5918 B32 + 0.4924 B42 + 0.7197 B3:B4 + 0.6312 B1:B2 0.67 5.80 0.40

The first model of Table 4 is the best one of first degree obtained considering all possible
combinations of two indicators, including the interactions between them. The second model of
Table 4 is the best model of second degree that can be obtained among all possible combinations of
two indicators, including their cross-interactions.

Table 5. Description of the regressors incorporated into the models of Table 4.

Predictor Transf. Parameter of
the Time Series Series Code Indicator Name Unit

B1 llogg mean NY.GDP.DEFL.KD.ZG Inflation, GDP deflator (annual %)

B2 llog2 slope IP.PAT.NRES Patent applications,
non-residents Number of

B3 none slope FD.AST.PRVT.GD.ZS Domestic credit to
private sector by banks (% of GDP)

B4 inverse mean GC.TAX.TOTL.GD.ZS Tax revenue (% of GDP)

Since there is no relationship between model 1 and 2 of Table 4 (the regression of the predictors of
model 1 against model 2 has an adjusted R2 = −0.04) we can get the third model of Table 4 combining
both of them. This latter model (the third) is by far the best model of all of them. It manages to account
for two thirds of the variability of the output (parameter K). Moreover, it has a lower cross-validation
error, which guarantees that this more populated model (with more explanatory variables) is not
overfitted (the fact that the cross-validation error is lower than the in the two previous models means
that the third model achieves the best trade-off between the bias and the variance errors).

Although the predictors identified in the third model are not any surprise, one has to be wary
of the large number of models tried. The exhaustive quest carried out can mean that the significant
relationship found is more one of chance rather than causality. We could try to extract conclusions
about the rationality of the model analysing how the different combination of predictors contribute to
the lower or higher values of K. For that, first we recall from Section 2.2, that the higher the values
of K, the more prone the country is to react to favourable or dis-favourable conditions. That is, the
quicker the penetration or phasing out of the technology.

The upper panel of Figure 3 shows the estimated value of the K predicted by the third model of
Table 4 versus the observed K values. Recall that the observed K values, in Table 2, were obtained
minimising the Expresion (5). The lower panel of Figure 3 breaks down the contribution of the
interaction of B1 and B2 (B1:B2, last term of model 3) drawn in in blue, and the contribition of the other
terms of model 3 (the same terms that form model 2) drawn in red. The interaction B1:B2 (the only
term of model 1) is the interaction of the slope of the historical evolution of the number of patents by
non residents and the inflation (GDP deflator). The transformation and normalisation applyed to the
trend of the number of patents by non residents together with the interaction with the inflation makes
the intepretation of this term in the model difficult. For example, for the highest K observed (Iran) the
contribution of this term is one of the smallest, whereas for the second highest K observed (Bulgaria)
the contributions of the interaction of B1:B2 and the rest of the model are reversed. In general terms,
for the higher and the lower values of K, the contribution of the intearction B1:B2 has the same sign as
the rest of the model, and for some intermediary values of K both contributions (more or less) cancel
each other.
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Figure 3. Upper panel: observed vs estimated values of parameter K that summarises the effect of the
barriers. Lower panel: contribution of the terms of model 1 and 2 to the K estimated by model 3.

When we replace the regressor B2 (slope of the time series of the Number of Patent applications
by non-residents) by the slope of the number of patent applications by residents, the model is still able
to account for half of the variability of the observed variable (R2 of 0.48 and has a cross-validation error
of 0.6). The same holds when we replace regressor B1 (average value of the Inflation, GDP deflator) by
the slope of the same time series (with an R2 of 0.48 and a cross-validation error of 0.59). This drives us
to re-affirm that the values of K estimated are more fruit of causality than of randomness.

4. Discussion

In the ensuing discussion, we consider it convenient to recap how the research has been carried out
and its main findings. This paper presents in Section 2 an extensive use of the approach by Moya [8] to
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model the diffusion of a clean technology. However, its main originality lies in the analysis conducted
in Section 3 to relate a parameter that (in the new diffusion model) accounts for the combined effect of
barriers to potential barriers in the countries analysed. The novelty of this latter analysis is not due to
the use of some of the latest statistical tools developed in the context of statistical learning methods,
but to the possibility to relate an objective measure of the relevance of barriers, the K parameter
observed in the diffusion model, with potential barriers existing in the countries under study. In this
manner we are able to tell which of those potential barriers have been more influential in the diffusion
process without any additional intervention. Note that so far, the only source of information about the
relevance of any barriers were the surveys to decision makers about what prevents investments in
new technologies.

The results of Section 2 prove that the new approach to model the diffusion of a clean technology
is able to reproduce satisfactory the worldwide diffusion of the EAF technology. The list of 36 countries
analysed assure a good global coverage. This approach only requires adjustment of 5 parameters in
each country, and uses the same evolution of prices of steel, scrap and electricity for all countries as
a main driver of the adoption of innovations. Following this new approach, the only parameter not
related to the drivers of innovation accounts for the traits of the society that in each country favours or
hampers the take-up of innovations.

Section 3 of this paper explores whether or not we are able to find a relationship among the
observed parameter K and some other parameters that can serve as a proxy of the barriers to the
diffusion of innovations. Recall that the observed value of parameter K of the diffusion model measures
the traits of the society that influence the diffusion of the innovation. In this task, although we are able
to produce some interesting results, we faced some challenges. The first of them is that the dependent
variable (parameter K) is the result of an optimisation problem (Equation (5)), i.e., although it allows
some good adjustments between the diffusion of the technology and the observed values, it is not
exempt from uncertainties. The second, and more daunting challenge, is that the number of countries
(observations of parameter K or dependent variable) is much lower than the number of parameters
that could serve as a proxy for some barriers, a problem worsened if we also include the inverses
of those parameters and all potential interactions. Furthermore, we also have to deal with the fact
that our collection of countries produces many atypical and leverage observations in some of the
explanatory or independent variables. The outliers are not always in the same countries. The presence
of outliers can be mitigated by applying transformations, and when the transformation proves useless,
by disregarding the independent variable of the analysis. In order to avoid problems related to
multicollinearity, we also disregarded independent variables highly related to others. Thanks to recent
advances in statistical methods [41,45] (developed in the scope of machine learning and data mining)
there are ways (using the cross-validation error) to overcome the risk of overfitting the model when
there are more potential explanatory variables than observations.

All in all, the model that best reproduces the observed values of the parameter K includes
explanatory variables that are usually associated with barriers; such as the number of patents [15,46],
inflation [9], financing capacity [9,47] and taxes [15]. Indeed, the model containing a combination of
these variables is able to account for two thirds of the variability observed in the parameter K.

We refrain from extracting more conclusions from the results of Section 3, mainly acknowledging
that the results may be impaired by the burdensome statistical steps involved. However, a
comprehensive understanding of how the barriers to innovation affect the spread of those innovations
can offer huge rewards to policy-makers. This reward could come from the design of measures to
overcome the most relevant identified barriers, from indicators paying attention to the evolution of
those barriers and from the analysis of the effect of existing policies.

5. Conclusions

This new approach to model the global historical diffusion of a clean energy technology produces a
good fit between its estimations and the historical diffusion observed. This new approach is composed
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only by terms that accounts for the driver of innovations and an additional parameter that collects the
overall effect of the barriers to the take up of innovations in each country. The combination of both
kind of parameters (drivers and barriers) within a model able to describe quite closely the diffusion of
innovations is the main trait and advantage of this approach. According to its theoretical basis, this paper
also confirms the existence of a linear relationship between the overall parameter that summarises the
combined effect of all barriers in the diffusion model and some specific barriers (the number of patents per
capita, inflation, financing capacity and taxes). The variability and nature of the parameters that measure
the barriers in the countries analysed require the application of some statistical techniques in order to
be able to use linear regression models. This comes at the expense of the loss of interpretability of the
results. However, this paper shows how a linear model with only four barriers is able to account for two
thirds of the variability of the parameter that summarises their combined effect in the diffusion model.
The identified barriers are in line with some of those usually described in the literature. The approach
followed in this paper opens up new possibilities for identifing and quantifing the preventive role of
barriers in the diffusion of innovations, and therefore, has the potential to support policy makers in the
design of policies aimed to promote the spread of innovations.

Supplementary Materials: All the code and input information necessary to reproduce the findings of this paper
are accessible on line from: https://gitlab.jrc.nl/e3p-repository/global-diffusion-eaf. File S1: README.MD,
File S2: World_EAF.nb, File S3: barriers2innovation.R, File S4: World_EAF.txt, File S5: percent_newCountries.txt,
File S6:convolution.txt, File S7: barriers2innovation.R, File S8: WDI2.csv, File S9: transformaciones.csv, File S10:
Summary_Minimizations.csv, File S11: plots_and_hist2.pdf.
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Abbreviations

The following abbreviations are used in this manuscript:

BF-BOF Blast Furnace-Basic Oxygen Furnace
EAF Electric arc furnace
RMSE Root-mean-square error
MAE Mean absolute error
VIF Variance inflation factor
GDP Gross domestic product

Appendix A

In this appendix we provide in Table A1 the indicators from [40] used as potential predictors of the parameters
K that collects the overall effect of the barriers. A more detailed description of the indicators that form part of the
models of Table 4 is provided in Table A2.

Table A1. Indicators from [40] that can serve as potential predictors of the parameters K that collects
the overall effect of the barriers.

Indicator Code Indicator Name

1 FS.AST.DOMS.GD.ZS Domestic credit provided by financial sector (% of GDP)
2 FD.AST.PRVT.GD.ZS Domestic credit to private sector by banks (% of GDP)
3 SL.IND.EMPL.ZS Employment in industry (% of total employment)
4 IC.REG.COST.PC.ZS Cost of business start-up procedures (% of GNI per capita)
5 EG.IMP.CONS.ZS Energy imports, net (% of energy use)
6 BX.KLT.DINV.WD.GD.ZS Foreign direct investment, net inflows (% of GDP)
7 EG.USE.COMM.FO.ZS Fossil fuel energy consumption (% of total)
8 NY.GDP.MKTP.KD.ZG GDP growth (annual %)
9 NV.IND.TOTL.KD.ZG Industry, value added (annual % growth)
10 NY.GDP.DEFL.KD.ZG Inflation, GDP deflator (annual %)
11 CM.MKT.LCAP.GD.ZS Market capitalisation of listed companies (% of GDP)
12 CM.MKT.TRAD.GD.ZS Stocks traded, total value (% of GDP)
13 GC.TAX.TOTL.GD.ZS Tax revenue (% of GDP)
14 GC.TAX.GSRV.RV.ZS Taxes on goods and services (% of revenue)
15 GC.TAX.YPKG.RV.ZS Taxes on income, profits and capital gains (% of revenue)

https://gitlab.jrc.nl/e3p-repository/global-diffusion-eaf
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Table A1. Cont.

Indicator Code Indicator Name

16 GC.TAX.YPKG.ZS Taxes on income, profits and capital gains (% of total taxes)
17 IC.TAX.TOTL.CP.ZS Total tax rate (% of commercial profits)
18 NE.TRD.GNFS.ZS Trade (% of GDP)
19 SL.UEM.TOTL.ZS Unemployment, total (% of total labour force) (modeled ILO estimate)
20 SP.RUR.TOTL.ZS Rural population (% of total population)
21 IC.ELC.TIME Time required to get electricity (days)
22 IC.REG.DURS Time required to start a business (days)
23 IC.EXP.DURS Time to export (days)
24 IC.TAX.DURS Time to prepare and pay taxes (hours)
25 IC.LGL.PROC Procedures to enforce a contract (number)
26 IC.IMP.DOCS Documents to import (number)
27 IP.JRN.ARTC.SC Scientific and technical journal articles
28 EG.USE.PCAP.KG.OE Energy use (kg of oil equivalent per capita)
29 EG.USE.ELEC.KH.PC Electric power consumption (kWh per capita)
30 NY.GDP.PCAP.KD GDP per capita (constant 2005 US$)
31 IC.EXP.COST.CD Cost to export (US$ per container)
32 IC.IMP.COST.CD Cost to import (US$ per container)
33 BX.KLT.DINV.CD.WD Foreign direct investment, net inflows (BoP, current US$)
34 IP.PAT.NRES Patent applications, nonresidents
35 IP.PAT.RESD Patent applications, residents
36 NV.MNF.MTRN.ZS.UN Machinery and transport equipment (% of value added in manufacturing)
37 NV.IND.MANF.ZS Manufacturing, value added (% of GDP)
38 EN.POP.DNST Population density (people per sq. km of land area)
39 SP.POP.GROW Population growth (annual %)
40 CSPC kg Crude Steel per Capita
41 CS.GDP Crude Steel production (KG)/GDP (US constant 2005)
42 EG.ELC.ACCS.ZS Access to electricity (% of population)
43 FB.BNK.CAPA.ZS Bank capital to assets ratio (%)
44 IC.FRM.CMPU.ZS Firms competing against unregistered firms (% of firms)
45 IC.TAX.GIFT.ZS Firms expected to give gifts in meetings with tax officials (% of firms)
46 IC.FRM.FREG.ZS Firms formally registered when operations started (% of firms)
47 IC.FRM.TRNG.ZS Firms offering formal training (% of firms)
48 IC.FRM.INFM.ZS Firms that do not report all sales for tax purposes (% of firms)
49 IC.FRM.BNKS.ZS Firms using banks to finance investment (% of firms)
50 BM.KLT.DINV.GD.ZS Foreign direct investment, net outflows (% of GDP)
51 NE.GDI.FPRV.ZS Gross fixed capital formation, private sector (% of GDP)
52 FP.CPI.TOTL.ZG Inflation, consumer prices (annual %)
53 SL.TLF.TERT.ZS Labor force with tertiary education (% of total)
54 IC.TAX.LABR.CP.ZS Labor tax and contributions (% of commercial profits)
55 FR.INR.LEND Lending interest rate (%)
56 SL.UEM.LTRM.ZS Long-term unemployment (% of total unemployment)
57 IC.TAX.PRFT.CP.ZS Profit tax (% of commercial profits)
58 FR.INR.RINR Real interest rate (%)
59 GC.TAX.GSRV.VA.ZS Taxes on goods and services (% value added of industry and services)
60 GC.TAX.INTT.RV.ZS Taxes on international trade (% of revenue)
61 SL.EMP.WORK.ZS Wage and salaried workers, total (% of total employed)

62 IC.GOV.DURS.ZS Time spent dealing with the requirements of government regulations (% of senior
management time)

63 NY.GDP.DEFL.ZS GDP deflator (base year varies by country)
64 IC.ELC.DURS Delay in obtaining an electrical connection (days)
65 IC.CUS.DURS.EX Average time to clear exports through customs (days)
66 IC.LGL.DURS Time required to enforce a contract (days)
67 IC.FRM.DURS Time required to obtain an operating license (days)
68 IC.IMP.DURS Time to import (days)
69 IC.ELC.OUTG Power outages in firms in a typical month (number)
70 IC.EXP.DOCS Documents to export (number)
71 EG.USE.COMM.GD.PP.KD Energy use (kg of oil equivalent) per $1000 GDP (constant 2011 PPP)
73 FP.CPI.TOTL Consumer price index (2010 = 100)
74 EG.ELC.PROD.KH Electricity production (kWh)
75 EG.EGY.PROD.KT.OE Energy production (kt of oil equivalent)
76 EG.GDP.PUSE.KO.PP.KD GDP per unit of energy use (constant 2011 PPP $ per kg of oil equivalent)
77 NY.GDP.MKTP.KD GDP (constant 2005 US$)
78 NV.IND.TOTL.KD Industry, value added (constant 2005 US$)
79 SP.POP.TOTL Population, total
80 SP.POP.TECH.RD.P6 Technicians in R&D (per million people)
81 NV.IND.MANF.KD Manufacturing, value added (constant 2005 US$)
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Table A2. Longer description of the terms that for part of the models of Table 4.

Series Code Long Description

NY.GDP.DEFL.KD.ZG
Inflation as measured by the annual growth rate of the GDP implicit deflator shows the
rate of price change in the economy as a whole. The GDP implicit deflator is the ratio
of GDP in current local currency to GDP in constant local currency.

IP.PAT.NRES

Patent applications are worldwide patent applications filed through the Patent
Cooperation Treaty procedure or with a national patent office for exclusive rights for
an invention—a product or process that provides a new way of doing something or
offers a new technical solution to a problem. A patent provides protection for the
invention to the owner of the patent for a limited period, generally 20 years.

FD.AST.PRVT.GD.ZS

Domestic credit to private sector by banks refers to financial resources provided to the
private sector by other depository corporations (deposit taking corporations except
central banks), such as through loans, purchases of nonequity securities, and trade
credits and other accounts receivable, that establish a claim for repayment. For some
countries these claims include credit to public enterprises.

GC.TAX.TOTL.GD.ZS

Tax revenue refers to compulsory transfers to the central government for public
purposes. Certain compulsory transfers such as fines, penalties, and most social
security contributions are excluded. Refunds and corrections of erroneously collected
tax revenue are treated as negative revenue.

As mentioned in the main text, the blue curves of Figure A1 are the historical evolution of the penetration
share of the EAF technology (EAFobserved) in each of the 36 countries analysed. The green curves of Figure A1,
the EAFestimated, are the best fit of obtained for EAFobserved.
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