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Abstract: This paper offers a wide overview on the large-scale electrochemical energy projects
installed in the high voltage Italian grid. Detailed descriptions of energy (charge/discharge times
of about 8 h) and power intensive (charge/discharge times ranging from 0.5 h to 4 h) installations
are presented with some insights into the authorization procedures, safety features, and ancillary
services. These different charge/discharge times reflect the different operation uses inside the electric
grid. Energy intensive storage aims at decoupling generation and utilization since, in the southern
part of Italy, there has been a great growth of wind farms: these areas are characterized by a surplus of
generation with respect to load absorption and to the net transport capacity of the 150 kV high voltage
backbones. Power intensive storage aims at providing ancillary services inside the electric grid as
primary and secondary frequency regulation, synthetic rotational inertia, and further functionalities.
The return on experience of Italian installations will be able to play a key role also for other countries
and other transmission system operators.
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1. Introduction

This paper is an overview of the large scale electrochemical storage stationary installations in Italy.
Many previous papers [1–24], which are briefly reported in the following, highlighted the role of Italy
as a path-maker in the field of large scale electrochemical storage in the high voltage network. In [1–3],
a detailed description of the Italian energy intensive installations can be found, whereas papers [4–10]
offer some analyses of the main features of sodium-sulphur technology. Paper [15] thoroughly analyses
the authorization procedures of Italian energy storage systems. In the papers [11,12], the reader can find
scientific and technological details of the sodium nickel chloride batteries of the Italian installations
whereas papers [13,19] are devoted to a steady-state electric model of this technology; in [20,21]
this model has been enlarged to take transient behaviour into account. Safety tests performed on a
Na-NiCl2 battery are fully presented in [22,23]. Papers [16,17] consider the model of battery under
faulted condition and their arc flash respectively. Paper [18] is devoted to the computation of battery
efficiency including auxiliary equipment losses.

The main contribution of this paper is to thoroughly present all the features of these installations.
In particular, the paper describes how the Italian transmission system operator (TSO in the
following) has chosen two energy storage strategies in the high-voltage network. In the first one,
the electrochemical energy storage systems (EESS) is conceived to release renewable generation
from electric loads and to avoid overload conditions in the existing overhead lines. This use
implies longer charge/discharge intervals (about 8 h) and a kind of “energy service” more than
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a “power service”; therefore, these installations have been called “energy intensive” installations.
For Italian “energy intensive” installations [1–3], Terna was chosen because of its extensive history of
successful installations, the Sodium-Sulphur (Na-S) electrochemistry [4–10], supplied by the Japanese
NGK INSULATORS, LTD. There have been three installation sites located in the South of Italy
(around Benevento city): two installations of 12 MW and one of 10.8 MW (wholly 34.8 MW Na-S
storage has been installed). It is worth remembering that Na-S batteries belong to the Na-beta battery
family (as Na-NiCl2 [11–13]). The other direction has involved electrochemical technologies with short
charge/discharge intervals (from 0.5 to 4 h). The tested technologies are in the Li-ion family and
sodium-nickel chloride. The installation sites are Sardinia (9.15 MW installed power in Codrongianos)
and Sicily islands (6.8 MW installed power in Ciminna). Due to their high use flexibility allowed by
the Power Conversion System (PCS) [14], power intensive installations have been applied in the field
of grid ancillary services. Moreover, a brief cost comparison is also presented in Section 5.

2. Energy Intensive Projects

The three energy intensive installations are very similar. A unit makes use of module series and
parallel connection. A 12 MW installation extends over an area of 7000 m2, and involves the use of
medium (20 kV) and low (400 V) voltage levels, in detail (see Figure 1a):

â 10 units of 1.2 MW each;
â 10 Power Conversion Systems (PCS) of 1.2 MW (in other Italian installations, there are 2.4 MW

PCS instead of 2 PCS of 1.2 MW);
â 2 shelters for MV switchboards (QMT1, QMT2);
â 2 shelters for LV switchboards (QBT1, QBT2);
â 2 shelters for emergency generators (GE1, GE2);
â Shelter for the control system.

The connection of the power systems to the national grid is performed by means of a MV/HV
(20/150 kV) transformer. The HV level is 150 kV since all the energy driven installations are located
in South Italy (in North Italy, the HV level is 132 kV). The Italian unit, also called “assembly”, has a
rated power of 1.2 MW with 40 modules of 30 kW (see Figure 1b). The structure is composed of a
self-supporting latticed frame with shelves for module placement, a Battery Management System
(BMS) container part, ventilation, and a cooling system. Each module is protected by a BMS. The BMS
includes a disconnection relay that disconnects the battery from any load if the value of any battery
parameter is outside the predefined operating range.

The controlled parameters are the module temperature, the dc-side current and voltage.
The battery status is calculated from these basic parameters. Other BMS functions include: detection of
alarms, warnings and battery capacity limitation signals; Control interface with PCS and data logging.
The frame is of galvanized steel. The frame thickness is at least 2.3 mm both on lateral sides and on the
covering. The dimensions (in meters) are 9.410 length × 4.800 depth × 4.820 height. It is worth noting
that the standard NGK unit had five modules of 50 kW per rack (i.e., 250 kW per rack) whereas in the
Italian installations five modules of 30 kW (150 kW per rack) have been employed: this gives greater
spacing between modules. The Terna assembly is also equipped with a double redundant fire and gas
detection system: the first is based on SO2 detection (in extremely remote case of fire and cell breaking),
the second is based on ventilation system continuous air analysis that can detect the possible presence
of smoke. Figure 2 shows some photographs of the energy intensive installation in Ginestra.
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Figure 1. (a) 12 MW installation constituted of 10 units of 1.2 MW; (b) Frontal view of the 1.2 MW 
unit (the other four racks are back-to-back with the visible ones). 

 
Figure 2. Some photos of Italian Na-S “energy intensive” installation in Ginestra. 

2.1. Safety Features 

In order to have a general overview of safety features, Table 1 reports all the safety levels which 
have been implemented in Italy. An additional protection for SO2 confinement has been realized: it 
consists of an automatic system for ventilation block by means of ventilation grid shutting (based on 
SO2 detection) with the dual effect of avoiding the access of oxidizing agents and the SO2 spreading. 
It is worth noting that, once running, the heat produced by charging and discharging cycles is 
sufficient to maintain operating temperatures and no heaters are required. Heaters are in operation 
only when the battery is idle and the temperature falls below 305 °C. In any case, if the battery is not 
running and the heaters fail, the temperature tends to decrease. It is not an issue of safety but only a 
matter of battery performance degradation. The battery has a very good thermal insulation and the 
worst thing which can occur (if for a long time the heaters do not work) is that the molten substances 
solidify. The battery can withstand 10 cycles (the so-called freeze-thaw cycles) with temperature 
lower than 150 °C.  
  

Figure 1. (a) 12 MW installation constituted of 10 units of 1.2 MW; (b) Frontal view of the 1.2 MW unit
(the other four racks are back-to-back with the visible ones).
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2.1. Safety Features

In order to have a general overview of safety features, Table 1 reports all the safety levels which
have been implemented in Italy. An additional protection for SO2 confinement has been realized:
it consists of an automatic system for ventilation block by means of ventilation grid shutting (based on
SO2 detection) with the dual effect of avoiding the access of oxidizing agents and the SO2 spreading.
It is worth noting that, once running, the heat produced by charging and discharging cycles is sufficient
to maintain operating temperatures and no heaters are required. Heaters are in operation only when
the battery is idle and the temperature falls below 305 ◦C. In any case, if the battery is not running and
the heaters fail, the temperature tends to decrease. It is not an issue of safety but only a matter of battery
performance degradation. The battery has a very good thermal insulation and the worst thing which
can occur (if for a long time the heaters do not work) is that the molten substances solidify. The battery
can withstand 10 cycles (the so-called freeze-thaw cycles) with temperature lower than 150 ◦C.
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Table 1. Safety levels of the Na-S unit starting from the cell level.

Component Function

Cell Level

Safety tube

â Controls the quantities of sodium and sulphur which can
combine in case of β”-alumina failure

â Avoids the rupture of cell case
â Limits the short-circuit current (blocking the sodium flow)

Corrosion protection layer in aluminium alloy Fe-Cr Zeros the corrosion possibility due to sodium polysulphides during
the discharge phase

Further thermal insulation and fire-resistant layers
inside the cells Prevents fire inside one cell from propagating to the adjoining ones

Module Level

Fuses (equipped for each four-cell block) Interrupt over-current in case of a short-circuit

Cell connections Limit the over-voltages inside the module

Module dry sand filling â Absorbs the active material in case of a cell rupture
â Avoids the fire spreading generated by a cell

Insulated double-walled stainless steel enclosure with
thickness equal to 0.8 ÷ 1 mm

â Avoids the material spill in the environment
â Avoids cell contact with oxygen and stops combustion

Control and monitoring
â Controls charge-discharge
â Failure detection and alarming
â Puts the equipment out of service if it fails

Electrically Insulated compartment Prevents active material from leaking outside, hence short circuits
can be avoided

Fire resistance panels in the upper and lower part of
the module

Avoid the fire spreading between one module and the preceding or
successive one for a given time

Unit level

Galvanized steel cabinet walls with thickness ≥2.3 Good protection from direct lightning and to bullets due to
vandalism or stray hunting shots

2.2. Tests Performed by NGK on the New Italian Module

In recent years, a lot of tests have been performed on the most used module, i.e., on NGK E50.
As already mentioned, Terna has required a safety enhanced module with the same dimensions as
the previous one but with fewer cells inside, with more sand between cells and with fire resistant
carbon sheets inside the module. It is therefore inferable that all the results obtained in the tests on the
“old” module would give equal or better results than the new one. This has been confirmed by some
tests commissioned by Terna whose results are reported in Table 2. In particular, in order to verify the
effectiveness of sheets inside the cell a test has been performed: the cells adjoining to that fired are not
damaged so that no fire propagation has occurred inside the module. Another test has been performed
in order to verify the effectiveness of the sheets inside the module: the fire has not propagated outside
the module.

Table 2. Safety Tests performed by NGK on the new module.

Test Purpose Figures Results

External
short

circuit

Confirm safety against
external short circuit
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Table 2. Cont.

Test Purpose Figures Results

Exogenous
fire
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to demonstrate that up to a rated power of 12 MW the installation falls under article 6 prescriptions 
of Legislative Decree 334/99, which represents the Italian decree in force during the period when the 
evaluation of Terna projects was made by the competent authorities. These prescriptions foresaw to 
send a notification of the installation of the three sites to the competent authority for assessing the 
risk of major accidents (offices “relevant risks and integrated environmental authorization” of the 
Ministry of Environment, of the Region, of the Provinces and territorially competent Municipalities, 
Provincial Prefecture, the “Regional Technical Committee of the Fire Department”) at least 180 days 
before the start of construction, together with: 

 A detailed project information;
 A Risk Analysis Assessment (performed in collaboration with the Department of Industrial

Engineering of Padova University), which showed that, in case of occurrence of given events
(earthquake and vibration, flooding, mishandling, direct and indirect lightning strikes,
endogenous or exogenous fire, sabotage and hunting, and external impacts), the safety/mitigation
systems adopted in the plant would have reduced the risk of release of chemicals in the
environment to negligible values. The tools used in the risk assessment have been the FMEA
(Failure Modes and Effects Analysis) and the FMECA (Failure Modes and Effects and Criticality
Analysis). In a range between 1 and 25, the maximum computed risk priority number has been 9.
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2.3. The Authorization Procedure

The authorization procedures have been wholly presented in [15]. The most important European
regulation which can be applied to the stationary application of sodium batteries is the Directive
96/82/CE, also known as “Seveso II”, and the Directive of the European Parliament 2012/18/UE
also known as “Seveso III”, both concerning the major-accident hazards related to the presence of
hazardous substances. It is worth noting that each EU member state had to incorporate the provisions
of the “Seveso III” directive into national law by 31 May 2015. In order to evaluate the Seveso II
implications, the entire amount of chemical substances (during charge and discharge and consequently
sodium, sulphur, and polysulphides) in the energy storage installation project has to be determined.
By considering the toxic substance amounts as the most restrictive ones, it is possible to demonstrate
that up to a rated power of 12 MW the installation falls under article 6 prescriptions of Legislative
Decree 334/99, which represents the Italian decree in force during the period when the evaluation
of Terna projects was made by the competent authorities. These prescriptions foresaw to send a
notification of the installation of the three sites to the competent authority for assessing the risk of
major accidents (offices “relevant risks and integrated environmental authorization” of the Ministry of
Environment, of the Region, of the Provinces and territorially competent Municipalities, Provincial
Prefecture, the “Regional Technical Committee of the Fire Department”) at least 180 days before the
start of construction, together with:

â A detailed project information;
â A Risk Analysis Assessment (performed in collaboration with the Department of Industrial

Engineering of Padova University), which showed that, in case of occurrence of given
events (earthquake and vibration, flooding, mishandling, direct and indirect lightning strikes,
endogenous or exogenous fire, sabotage and hunting, and external impacts), the safety/mitigation
systems adopted in the plant would have reduced the risk of release of chemicals in the
environment to negligible values. The tools used in the risk assessment have been the FMEA
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(Failure Modes and Effects Analysis) and the FMECA (Failure Modes and Effects and Criticality
Analysis). In a range between 1 and 25, the maximum computed risk priority number has been 9.

Furthermore, Terna, in accordance with the EU Directive “Seveso”, has drafted an internal
document called “Prevention Policy for Major Accidents”, holding the management criteria to be
undertaken for the prevention of “significant” accidents.

3. Power Intensive Projects

In the following, a detailed description of the power intensive installations and of their uses inside
the high voltage network are presented. These installations have also been named “Storage Labs”.

3.1. Ciminna (Sicily) and Codrongianos (Sardinia) Power Intensive Installations

Since the power system architecture of the two installations is very similar, only Codrongianos
Storage Lab is described (see Figure 3). Its single-line diagram is shown in Figure 4. In Figure 5,
some photographs of the HV/MV transformer and battery unit racks are shown. The different
power ratings, and the different storage typologies are reported in Table 3 (in Table 4 for Ciminna).
There are 10 different EESS branches, subdivided in two groups of five (three branches are foreseen
for future storage technologies). Each EESS has its own PCS (composed by four 250 kVA rated power
inverters), step-up LV/MV transformer (1.25 MVA, 15 kV/0.55 kV, Yd connected) and a dedicated
MV cable line [16]. The 15 kV bus bar is then connected to the 150 kV HV ac sub-transmission grid
through a 40 MVA, 150 kV/15.6 kV transformer shown in Figure 5 (Yy connected). A grounding
transformer (GT) with a 385–770 Ω resistor (depending on the temperature) provides a ground path
for the otherwise ungrounded 1.7 km long MV system connected to the 15 kV bus bar. PCSs are
fully described in [14]: generally, PCS is constituted of a first stage made by a DC–DC converter and
of a second stage made by a DC–AC converter to maintain the inverter dc side voltage. Moreover,
this two-stage architecture avoids the PCS oversizing due to the EESS voltage variation during
the charge/discharge operations. In fact, a ∆u% percentage EESS voltage variation with respect
to the rated value requires an inverter component overrating of 1 + ∆u% for both the voltage and
the current (maximum current corresponding to minimum battery voltage), resulting in an inverter
power oversizing of about 1 + 2 ∆u%. For instance, by hypothesizing a maximum current and voltage
variation of 20% (∆Vmax and ∆Imax respectively), the inverter rated power must be oversized of 40% as
in the following:

P = ∆Vmax·∆Imax = Vn(1 + 20%)·In(1 + 20%) ≈ 1.40 Pn = Pn + ∆P
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Table 3. Different storage technologies installed in Codrongianos (Sardinia).

Codrongianos (Sardinia)

Power (MW) Energy (MWh) Electrochemistry

1 1.231 Lithium Iron Phosphate
1.2 0.928 Lithium Nickel Cobalt Aluminium
1 0.916 Lithium Manganese Oxide

1.08 0.540 Lithium Nickel Cobalt Manganese
1 1.016 Lithium Titanate

1.2 4.15 Sodium-Nickel Chloride
1 2 Sodium-Nickel Chloride

Table 4. Different storage technologies installed in Ciminna (Sicily).

Ciminna (Sicily)

Power (MW) Energy (MWh) Electrochemistry

1 1.231 Lithium Iron Phosphate
0.9 0.570 Lithium Nickel Cobalt Aluminium
1 0.916 Lithium Manganese Oxide
1 1.016 Lithium Titanate

1.2 4.15 Sodium-Nickel Chloride
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For these Storage Lab installations, some features have been studied and published; in particular:

â modelling of battery under faulted conditions and assessment of protection system behavior [16];
â the arc-flash in these energy storage systems [17];
â the efficiency calculations including auxiliary power losses [18];
â the steady-state and transient modelling of Na-NiCl2 [13,19–21], including safety tests [22,23].

3.2. Power Intensive Ancillary Services and Advanced Functionalities

3.2.1. Primary Frequency Control: Provision of Frequency Containment Reserve (FCR)

This service [24] is delivered in accordance with the Italian Grid Code (Annex 15 of [25]) and
requests EESS to modulate the active power output (∆P, in MW) proportionally (depending on the
droop parameter, σ, expressed in % and fully configurable) to the deviations of the grid frequency
(∆F, in Hz) around its nominal value of 50 Hz, as in (1):

∆PFCR = − 1
σ

100
· ∆F

50
· Prated (1)

Figure 6 shows the FCR service regulation patterns.
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Figure 6. FCR ancillary service regulation patterns.

EESS may shift the active power flow direction continuously and take less than 100 ms for a
complete inversion (full inversion from maximum discharge active power to maximum charge one) as
shown in Section 4. The value of the droop parameter σ may be set to a small value in order to allow
EESS to perform a greater active power contribution in case of wide frequency deviations. This service
will play a key role since in the European grid there is an ever-growing decreasing of power frequency
characteristic of primary control (also known as regulating energy) due to the increase of generation
by renewable resources [26].

3.2.2. Secondary Frequency Control: Provision of Frequency Restoration Reserve (FRR)

In accordance with the secondary frequency control [24], this service consists in performing active
power output variation ∆PFRP as requested by an external control signal (L%, whose percentage range
is 0–100%) fed to local control system from Terna Central Supervisory Control And Data Acquisition
(SCADA). It is worth remembering that FRR regulation is a power plant service. A reserved regulation
band (half-band, HB, expressed in MW) around the active power set-point (the actual balancing
program or the stand-by mode) is dedicated in accordance with:

∆PFRP = 2 · HB · (L% − 50%)

100%
(2)

As already mentioned, the percentage set-point control signal L% is forwarded by Terna to the
plant and it is defined in the range of 0–100%. Set-point signal is updated and forwarded every 8 s to
the plant with a maximum variation within the total regulation band of 4%.

3.2.3. Provision of Synthetic Rotational Inertia (SRI)

In addition to FCR, EESSs could be equipped with SRI (operated independently from FCR) [24]
in order to contribute in reducing the fastest frequency transient phenomena, since the beginning.
The EESS high rapidity of varying the generated or absorbed active power P has made feasible
several scenarios which were not possible with traditional power plants. In the specific, these EESS
characteristics may help mitigate the reduction of European grid rotational inertia: therefore, EESS may
be requested to deliver an active power proportionally to the measured derivative frequency, i.e.,
to the rate of change of frequency (df/dt). However, it is crucial to implement robust control blocks
for a reliable frequency rate of change sampling. This could be fulfilled by feeding the control
block numerical algorithm with a proper and adequate frequency sampling, insuring on one hand
computational accuracy and on the other hand fast solution times. The result must be available
within a time frame assessable in tens of milliseconds. The faster the P response, the more effective
the mitigation of frequency variation is. Such a P response should not be confused with a fast FCR
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regulation set with low droop value because its contribution depends linearly on the instantaneous
measured frequency deviation. By assuming both FCR and SRI committed together, each contribution
must be distinguished: EESS may be engaged in FCR with droop not sufficient to let the plant fill
the P capability though still guaranteeing fast response, and at the same time SRI may provide EESS
full P capability access just in case of sudden frequency deviation. EESS has to deliver ∆PSRI (in MW)
proportionally (depending on a parameter, KW, expressed in MW·s/Hz and fully configurable) to the
filtered derivative frequency measurement (∆f /∆t, in Hz/s), as in (3):

∆PSRI = −kw ·
(

∆ f
∆t

)
Butterworth− f iltered value

(3)

Figure 7 shows the SRI service regulation patterns.
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The necessity to implement such a service is to emulate the stabilizing contribution to frequency
deviations guaranteed by the rotating masses, in prevision of an ever-growing passage from
traditional power plants (with rotating synchronous generators) to static inverter-equipped power
generation. For a prompt SRI response, it has been crucial to implement a reliable, accurate, and fully
configurable digital filter of grid frequency for feeding the regulator: Infinite Impulse Response filters
(IIR—e.g., Butterworth filters) have been selected as the best compromise between speed and accuracy
of response. IIR filters are fully configurable in terms of filter order and cut-off frequency to adjust
filtering to the effective harmonic content inside grid frequency and to achieve an adaptive filtering by
means of high stopband attenuation and effective noise cancellation. In addition, IIR filters enable the
achievement of low-rate phase delays and may be designed as inherently stable.

3.2.4. Congestions Mitigation and Balancing Program

HV line congestion mitigation/active power balancing service [24] is used to set a specific active
power profile to EESS through XML file or with a manual set-point. As long as this service is activated,
other active power regulations (FCR and FRR regulations), whenever turned on, must provide their
contribution around this active power profile. In the case of active power balancing service deactivate,
reference power is zero MW and all other services (in P) are requested to deliver their own output
around this value.

3.2.5. Voltage Regulation

Two operating modes are available as mutually exclusive [24]:

(1) Local Bus Bar Voltage Regulator: the scope of this service is to adjust local substation voltage
(HV bus bar). Measured voltage error will lead to a reactive power contribution (Q) in accordance
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with a predetermined U-Q curve, fully configurable, so to reduce the deviation between actual
voltage and its set value;

(2) Regional Voltage Regulator (RVR): the scope of this regulation is to adjust relevant Terna
substation voltages (pilot substations with high fault levels) through a coordinated plant reactive
power regulation. In this case, the remote controller is in charge of computing the exact amount of
reactive power to be requested to the plant to reach Terna substation voltage set value. The remote
controller aims at nullifying voltage deviation between the measured value and set value of each
Terna HV pilot substation.

3.2.6. Further Functionalities

In addition, EESSs are equipped with advanced functionalities [24]. A functionality represents
the capability of EESS to perform a specific service, in addition to the aforementioned ones or in a
mutually exclusive way and it may be demanded through automatism or on request of the operator.

(1) Local Frequency Integrator (LFI): this functionality is operated in background and is automatically
activated (fully configurable) in emergency conditions (high frequency transient) for restoring
nominal frequency value through an integral control loop feedback. It is used when isolated grid
conditions are detected.

(2) Defense plan (switch opening and active power modulation): the task is handling the shedding of
load/production in order to keep the integrity of the grid, in case of abnormal conditions
resulting from occurrence of extreme contingencies. This may be obtained through the
following commands:

a. Switch opening;
b. Active power (P) modulation within 300 ms.

EESS rapidity of varying the active is also used for these additional commands:

• Instantaneous maximum P feeding into the grid;
• Instantaneous maximum P absorption from the grid;
• Instantaneous P exchange stop.

The extremely fast response recorded for active power modulation (less than 300 ms from
the request to the full activation) leads to considering, when including EESS in system defense
plan, the utilization of this command (maximum power feeding or maximum power absorption,
depending on the desired direction) instead of switch opening, traditionally used also for pump
storage. In this regard, in some operational conditions, the effectiveness of EESS as a defense plan
is doubled.

4. Some Returns on Operational Experience

In order to have some measures on the real behaviour of the Italian energy intensive installations,
Figure 8 shows the discharge/charge module power and current for a standard cycle. This involves:

â a discharge phase of 10 h where for 7 h the discharge constant power is 0.6 p.u. and for 3 h the
constant discharge power is 1 p.u.;

â a charge phase of 10 h where a constant charge power of 1 p.u. for 8 h after which a supplementary
charge (as already mentioned in Section 4) is needed in order to reach 100% of SoC.
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Figure 8. Current and DC power behaviour during a standard cycle in a module.

In Figure 9, the voltage and temperature inside a module are shown with reference to the standard
cycle shown in Figure 8. With regard to the transient conditions, Figure 10 shows the inversion of the
power flow from discharge to charge. It is worth noting that power inversion occurs in about 150 ms
which is fully suitable for energy intensive stationary installations in the HV grid. The inversion from
charge to discharge has a very similar behaviour.
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Figure 10. Rated discharge to rated charge power: active one (dark line) and instantaneous one
(azure line).

With reference to the Storage Lab installed in Sardinia, an operational data diagram focusing on
FCR regulation triggered by the occurrence of a deep frequency transient is shown (see Figure 11).
Tables 5 and 6 report the technical datasheet of the EESS devoted to FCR regulation and its
configuration, respectively.

Table 5. Technical datasheet of EESS devoted to FCR in Codrongianos (Sardinia).

Capability ±1.0 MW
Nominal storage capacity 1.0 MWh

Overload peak ±1.3 MW
Overload peak sustainability 60 s

Battery technology Li-ion -

The frequency profile has experienced an initial under frequency phase, reaching the transient
minimum value of 49.39 Hz, followed by an overshooting up to 50.17 Hz and consequent damped
oscillations around 50 Hz.

Table 6. FCR service configuration in the EESS of Table 5.

Merit order 1 -
Frequency set-point 50 Hz

Deadband 20 mHz
Hysteresis deadband 50% % of deadband

Droop 0.50% %
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Figure 11 clearly shows that the EESS can fully supply its rated power since the very beginning
of the network transient, without noticeable delays. Furthermore, during the subsequent frequency
variations, the EESS switches from discharge to charge according to the frequency error, contributing
to oscillation damping. Notably, the actual EESS FCR behavior perfectly matches the expected one,
confirming the efficacy of the control system.

5. A Brief Cost Comparison

In order to have a comparison between the different cost components of the battery
installations [27], Figures 12–14 present the cost pie charts of Li-ion, Na-NiCl2, and Na-S respectively.
The average total cost of Li-ion installations is 1.3 M€/MW and by considering an average discharge
time for this technology equal to 1 h, the cost per MWh is 1.3 M€/MWh. The average total cost
of Na-NiCl2 installations is 3.0 M€/MW and by considering the nominal discharge time for this
technology equal to 3 h, the cost per MWh is 1.0 M€/MWh. The average total cost of Na-S installations
is 3.3 M€/MW and by considering the nominal discharge time for this technology equal to 7.2 h,
the cost per MWh is 0.46 M€/MWh.
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6. Conclusions  

This paper gives a wide overview of the energy storage projects installed in the Italian high 
voltage network. Safety issues, authorization procedures, and use applications of the energy and 
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The percentage ratio between PCS-SCI and battery costs is higher for Li-ion installations since the
battery costs are lower.

6. Conclusions

This paper gives a wide overview of the energy storage projects installed in the Italian high
voltage network. Safety issues, authorization procedures, and use applications of the energy
and power intensive stationary electrochemical storage are throughout presented and developed.
Li-ion (of different families), sodium-sulphur, sodium-nickel chloride electrochemistries have been
tested with a total installed power of 50.75 MW.

In conclusion, it is possible to give some tendency lines: sodium-sulphur and sodium-nickel
chloride with their long discharge times seem more suitable for energy intensive applications whereas
Li-ion batteries seem more suitable for power intensive ones. Sodium-nickel chloride batteries show an
attitude to be employed also in power intensive applications due to their intermediate discharge times.

Italian installations and their return on experience will play a key role in completely understanding
the real battery behaviours in stationary applications including aging phenomena.
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installation data.
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