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Abstract: The impact of a stress scenario of default events on the loss distribution of a credit
portfolio can be assessed by determining the loss distribution conditional on these events. While
it is conceptually easy to estimate loss distributions conditional on default events by means of
Monte Carlo simulation, it becomes impractical for two or more simultaneous defaults as then the
conditioning event is extremely rare. We provide an analytical approach to the calculation of the
conditional loss distribution for the CreditRisk+ portfolio model with independent random loss
given default distributions. The analytical solution for this case can be used to check the accuracy
of an approximation to the conditional loss distribution whereby the unconditional model is run
with stressed input probabilities of default (PDs). It turns out that this approximation is unbiased.
Numerical examples, however, suggest that the approximation may be seriously inaccurate but
that the inaccuracy leads to overestimation of tail losses and, hence, the approach errs on the
conservative side.
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1. Introduction

Stress test scenarios for credit risk typically are stated in terms of economic factors but sometimes
involve defaults of larger counterparties or obligors (see e.g., Section 10.3.3 of [1]). Default of a large
obligor not only has a direct impact on the profit and loss of a bank and potentially also on its capital
basis. Due to mutual dependence of default events the default of one or more obligors can have
a significant impact on the loss distribution of the remaining portfolio, too. Determination of credit
portfolio loss distributions conditional on defaults, therefore, can be considered a special stress testing
technique. Such analysis, in particular, can help to decide whether a large exposure to a certain
obligor is just a risk concentration because of its size or, even worse, also significant part of a sector
or industry risk concentration. Loss distributions conditional on default of one or more obligors
therefore are promising means to identify vulnerabilities of banks.

Techniques for measuring the impact of macro-economic stress scenarios on credit portfolio
losses are well-established (see e.g., [2,3]). In particular, it is common and efficient to analyse such
stress scenarios by means of Monte Carlo simulation. In principle, it is easy to determine also the
impact of the default of one or more obligors via a Monte Carlo simulation approach: just eliminate
all simulation iterations from the sample in which the obligor(s) on whose default(s) conditioning is to
be conducted have not defaulted. This is feasible in practice for one default but becomes impracticable
for two or more defaults.

An obvious approach to try and work around this problem would be to deploy an unstressed
(i.e., unconditional) model for the analysis but to feed it with parameters like probabilities of default

J. Risk Financial Manag. 2016, 9, 1; doi:10.3390/jrfm9010001 www.mdpi.com/journal/jrfm



J. Risk Financial Manag. 2016, 9, 1 2 of 18

(PDs) and loss-given-default (LGD) that have been stressed in a separate exercise before. This
approach—which may be called the “stressed input parameters” approach—might fail, however,
to fully capture the dependence structure of the model and its changes under stress such that
misjudgement of the stress impact could be the consequence.

This paper seeks to assess how accurate the results calculated with the “stressed input
parameters” approach are when compared to results from a fully-fledged conditional loss distribution
approach. For that purpose we revisit the CreditRisk+ credit portfolio risk model [4] and derive a
representation of the loss distribution conditional on the default of two fixed obligors that allows for
the computation of the distribution without Monte Carlo simulation. Two numerical examples then
suggest that results from the stressed input parameters approach may be seriously inaccurate but
tend to be inaccurate in a conservative direction and to overestimate tail losses.

Tasche [5] (Equation (3.31)) showed how the loss distribution conditional on one default can
be calculated analytically in the CreditRisk+ model with random loss severities. In this paper,
the related formulas for the case of two defaults are provided. Formulas for the cases of three or
more defaults can be readily derived in the same way as the formula for the case of two defaults is
derived. As a consequence of the likely lack of practical relevance of cases of three or more defaults
scenarios, we do not provide the results for these cases here. Moreover, the paper is focused on the
theoretical derivation of the main result on the loss distribution conditional on two defaults and its
interpretation. The question of practical numerical implementation is only considered to such an
extent as needed for the numerical examples.

The plan of this paper is as follows:

• As background and for introducing the notation, Section 2 provides a description of the
CreditRisk+ model as presented in [4] or [6]. The CreditRisk+ model described here is enhanced
to allow for random loss severities. Schmock [7] describes a further generalisation of the model
to include connected groups of obligors.

• In Section 3, the results on the conditional loss distributions are presented and their application
is discussed. To derive the results, we revisit the approach used in [5] to develop analytical
representations of the Value-at-Risk and Expected Shortfall contributions of single obligors
in CreditRisk+.

• In Section 4, we present the technical particulars of the stressed input parameters approach and
prove that the first moments of the resulting loss distributions are the same as the first moments
of the proper loss distribution conditional on two defaults.

• Section 5 provides two numerical examples to shed light on the question of how close the results
from the stressed input parameters and conditional loss distribution approaches are in general.

• The paper concludes with summarising comments in Section 6.

2. An Analytical Credit Portfolio Model with Random Loss Severities

The modelling of the default events in the CreditRisk+ credit portfolio risk framework may
be described as a Poisson mixture model ([8], Section 8.4). Basically, there is a two-step random
mechanism which first generates potentially correlated default intensities for each of the obligors in
the portfolio and then realises independent Poisson variables with these intensities. If the realisation
of an obligor’s Poisson variable takes a value greater than or equal to 1, then the obligor defaults and
credit loss may be the consequence. If the realisation is 0, then the obligor remains solvent and no
loss is incurred.

The approach to the CreditRisk+ loss distribution as described in [4] or [6] is driven by analytical
considerations and—to some extent—hides the way in which the Poisson approximation is used
to smooth the loss distribution. While preserving the notation of [6], therefore, we review in this
section the steps that lead to the formula for the generating function of the loss distribution in [4,6].
When doing so, we slightly generalize the methodology to the case of stochastic exposures—thus
allowing for random loss severities—that are independent of the default events and the random
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factors expressing the dependence on sectors or industries. This generalization can be afforded at
no extra cost as the result is again a generating function in the shape as presented in Equation (2.19)
of [6], the only difference being that the sector polynomials are composed another way.

Write 1A for the default indicator of obligor A, i.e., 1A = 0 if A does not default in the observation
period and 1A = 1 if A defaults. In [4,6], an approximation is derived for the distribution of the
portfolio loss variable X = ∑A 1A νA with the νA denoting deterministic potential losses. A careful
inspection of the beginning of Section 5 of [6] reveals that the main step in the approximation
procedure is to replace the {0, 1}-valued indicators 1A by integer-valued random variables DA with
the same expected values. These variables DA are conditionally Poisson distributed given some
economic factors S1, . . . , SN .

Here, we want to study the distribution of the more general loss variable X = ∑A 1A EA,
where EA denotes the random outstanding exposure of obligor A. We assume that EA takes on
non-negative integer values and is independent of 1A. However, just replacing 1A by DA as in the case
of deterministic potential losses does not yield a nice generating function—“nice” in the sense that
the CreditRisk+ algorithms for extracting the loss distribution can be applied. We instead consider
the approximate loss variable

X = ∑
A

DA

∑
i=1
EA,i (1a)

where EA,1, EA,2, . . . are independent copies of EA. Thus, we approximate the terms 1A EA by
conditionally compound Poisson sums. For the sake of brevity, we write

YA =
DA

∑
i=1
EA,i (1b)

for the loss suffered due to obligor A. In order to make all these approximations work, we make the
following formal assumption.

Assumption 1. The distribution of the “loss” variable X as defined by Equation (1a) is specified by
the following three properties:

(i) The approximate default indicators DA are conditionally independent given a vector of
“economic” factors S = (S0, S1, . . . , SN). The conditional distribution of DA given S is Poisson
with intensity pS

A = pA ∑N
k=0 wA,k Sk where pA > 0 denotes the “probability of default” (PD) of

obligor A and 0 ≤ wA,k ≤ 1 are “factor loadings” such that ∑N
k=0 wA,k = 1 for each obligor A.

(ii) The idiosyncratic factor S0 is a constant and equals 1. The factors S1, . . . , SN are independent
and Gamma-distributed with unit expectations E[Sk] = 1 and parameters (αk, βk) = (αk, 1/αk)

for k = 1, . . . , N. We call a positive random variable Y Gamma-distributed if it has a density

fY(y) = yα−1

βα Γ(α) e−y/β, y > 0 for some parameters α > 0, β > 0. The function Γ denotes the
familiar Gamma function generalising the factorial. βk = 1/αk is implied by the assumption that
Sk has unit expectation.

(iii) The random variables EA,1, EA,2, . . . are independent copies of a non-negative integer-valued
random variable EA and, additionally, are also independent of the DA and S. The distribution of
EA is given by its generating function

HA(z) = E
[
zEA
]
, z ∈ C, |z| ≤ 1. (1c)

A careful inspection of the arguments presented to derive Equation (2.19) of [6] now yields the
following result on the generating function of the distribution of the loss variable X.



J. Risk Financial Manag. 2016, 9, 1 4 of 18

Theorem 2. Under Assumption 1, define for k = 0, 1, . . . , N the sector polynomial Qk by

Qk(z) =
1
µk

∑
A

wA,k pA HA(z) (2a)

where the sector default intensities µk are given by

µk = ∑
A

wA,k pA. (2b)

Then, the generating function GX(z) = E[zX ], z ∈ C, |z| ≤ 1, of the loss variable X can be represented as

GX(z) = eµ0 (Q0(z)−1)
N

∏
k=1

(
1− δk

1− δkQk(z)

)αk

, (2c)

where the constants δk are defined as δk = µk/(µk + αk).

Remark 1.

(i) The case of deterministic severities can be regained from Theorem 2 by choosing the exposures
constant, e.g. EA = νA. Then the generating functions of the exposures are just monomials,
namely HA(z) = zνA .

(ii) Representation Equation (2c) of the portfolio loss distribution implies that the portfolio loss
distribution can be interpreted as the distribution of a sum of N + 1 independent sector loss
distributions that correspond to the economic factors (S0, S1, . . . , SN).
The term eµ0 (Q0(z)−1) is the generating function of a random variable with a compound Poisson
distribution that can be realised as ∑T0

i=1 η0,i where T0, η0,1, η0,2, . . . are independent, T0 is Poisson
distributed with intensity µ0, and η0,1, η0,2, . . . are i.i.d. with generating function Q0(z). See,
e.g., [9] for background information on compound distributions and generating functions.

The terms
(

1−δk
1−δk Qk(z)

)αk
, k = 1, . . . , N, are the generating functions of random variables with

compound negative binomial distributions that can be realised as ∑Tk
i=1 ηk,i where Tk, ηk,1, ηk,2, . . .

are independent, Tk is negative binomially distributed with failure probability δk and size
parameter αk, and ηk,1, ηk,2, . . . are i.i.d. with generating function Qk(z). We call a random
variable Y with values in the non-negative integers negative binomially distributed with size
parameter a > 0 and failure probability 0 < p < 1 if P[Y = k] = Γ(a+k)

Γ(a) k! (1 − p)a pk for
k = 0, 1, 2, . . .. If the size parameter a of a negative binomial distribution is a positive integer
then the distribution can be interpreted as the distribution of the number of failures in a series of
independent identical experiments before the a-th success is observed.
With this representation of the portfolio loss distribution as the convolution of compound
Poisson and negative binomial distributions, the sector polynomials Qk can be interpreted as
the generating functions of typical loss severities in the respective sectors.

By means of Theorem 2, the loss distribution of the generalized model Equation (1a) can be
calculated in principle with the same algorithms as in the case of the original CreditRisk+ model.
Once the probabilities P[X = x], x non-negative integer, are known, it is an easy task to calculate the
loss quantiles qθ(X) as defined by

qθ(X) = min{x ≥ 0 : P[X ≤ x] ≥ θ} (3)

or related risk measures like Value-at-Risk or Expected Shortfall.
When working with Theorem 2, one has to decide whether random exposures shall be taken

into account, and in case of a decision in favour of doing so, how the exposure distributions are
to be modeled. [5] (in Example 1) and [7] present some possible choices of discrete exposure
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distributions. [10] discusses an approximate but similar approach to random severities with
continuous distributions.

Parametrisation of the factor model as described in Theorem 2 is non-trivial because the
assumption of independent economic factors is unrealistic in practice. [11] discusses how to
derive appropriate factor loadings from default observations and their correlations. [12] suggests
introducing a further factor to model dependence of the economic factors without violating the
assumptions of the framework. Their approach is generalised in [13]. Other authors (e.g. [14])
propose extensions of the CreditRisk+ model that allow for realistic modelling of the dependencies
between the economic factors but renounce the analytic tractability of the original model. [15] discusses
the impact on the loss distribution of choosing different factor dependence structures in extended
versions of the CreditRisk+ framework.

3. Loss Distributions Conditional on Defaults

The purpose of this section is to provide formulas for the portfolio loss distribution conditional
on defaults that can be represented in similar terms as the unconditional loss distribution and hence
be evaluated with the familiar CreditRisk+ algorithms. The following theorem—a modification of
Lemma 1 of [5]—yields the foundation of the results. Denote by I(E) the indicator variable of the
event E, i.e., I(E; m) = 1 if m ∈ E and I(E; m) = 0 if m /∈ E.

Theorem 3. Under Assumption 1, let A(1), . . . , A(r) be obligors such that A(i) 6= A(j) for i 6= j. It then
holds that

E
[

I(X = x)
r

∏
i=1

DA(i)

]
= E

[
I
(

X = x−
r

∑
j=1
EA(j)

) r

∏
i=1

pS
A(i)

]
(4)

for any non-negative integer x, where the random variables EA(1), . . . , EA(r) on the right-hand side of
Equation (4) are independent of the loss variable X and the default intensities pS

A(i).

Proof of Theorem 3. We provide the proof only for the case r = 2 as the proof for general r is not
much different, but the notation would be more cumbersome. Hence, assume that two obligors
A(1) 6= A(2) have been selected. The independence and conditional independence of Assumption 1
then imply

E
[
DA(1) DA(2) I(X = x)

]
=

∞

∑
k1=1

∞

∑
k2=1

k1 k2 P
[

DA(1) = k1, DA(2) = k2, ∑
B 6=A(1),
B 6=A(2)

YB +
k1

∑
i=1
EA(1),i +

k2

∑
j=1
EA(2),j = x

]

=
∞

∑
k1=1

∞

∑
k2=1

k1 k2 E

[ (pS
A(1))

k1

k1!
e−pS

A(1)
(pS

A(2))
k2

k2!
e−pS

A(2)

×P
[

∑
B 6=A(1),
B 6=A(2)

YB +
k1

∑
i=1
EA(1),i +

k2

∑
j=1
EA(2),j = x | S

]]

=
∞

∑
k1=0

∞

∑
k2=0

E

[
pS

A(1) pS
A(2)

×P
[

DA(1) = k1, DA(2) = k2, ∑
B 6=A(1),
B 6=A(2)

YB +
k1+1

∑
i=1
EA(1),i +

k2+1

∑
j=1
EA(2),j = x | S

]]

= E
[

I
(

X = x− EA(1) − EA(2)

)
pS

A(1) pS
A(2)

]
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as stated in Equation (4).

As the variable DA approximates obligor A’s default indicator the conditional expectation
E[DA |X = x] can be interpreted as an approximation of the conditional probability of obligor A’s
default given that the portfolio loss X assumes the value x. In Corollary 1, [5] observed the following
result for E[DA |X = x]. It can be readily derived from Theorem 3.

Notation. For any positive integers i ≤ n define the n-dimensional i-th unit vector e(n)i by

e(n)i = (0, . . . , 0︸ ︷︷ ︸
i−1 times

, 1, 0, . . . , 0︸ ︷︷ ︸
n−i times

)

where the dimension is known from the context we write ei = e(n)i for short.

Corollary 4 (Probability of default conditional on portfolio loss).
Adopt the setting and the notation of Assumption 1 and Theorem 2. Write Pα[X ∈ · ] for P[X ∈ · ] in
order to express the dependence of the portfolio loss distribution upon the exponents α = (α1, . . . , αN) in (2c).
Of course, the distribution also depends on µ0, Q0, . . . ,QN , and δ1, . . . , δN . However, these input parameters
here are considered constant. Assume that x is an integer such that Pα[X = x] > 0. Then, in the CreditRisk+

framework, the conditional probability of obligor A’s default given that the portfolio loss X assumes the value x
can be approximated by

E[DA |X = x] = pA
wA,0 Pα[X = x− ẼA] + ∑N

j=1 wA,j Pα+ej [X = x− ẼA]

Pα[X = x]
(5)

where ẼA stands for a random variable that has the same distribution as EA but is independent of X.

Intuitively, one might think that P[DA > 0 |X = x] would be a better approximation of the
conditional probability of default of obligor A than E[DA |X = x]. However, there is no such
relatively simple representation of P[DA > 0 |X = x] as Equation (5) is for E[DA |X = x]. Moreover,
by the assumption on the parametrisation of the conditional Poisson distribution of DA we have

E
[
P[DA > 0 |X]

]
= P[DA > 0] < pA = E

[
E[DA |X]

]
. (6)

Hence, the bias of P[DA > 0 |X = x] with respect to P[A defaults |X = x] is likely to be greater than
the bias of E[DA |X = x].

The probabilities in the numerator of the right-hand side of Equation (5) must be calculated by
convolution if the loss severities EA are non-deterministic. In any case, Corollary 4 can be used for
constructing the portfolio loss distribution conditional on the default of an obligor. Observe that,
by the very definition of conditional probabilities, it follows that

P[X = x | A defaults] = P[A defaults |X = x]
P[X = x]

pA
. (7)

Since, by Corollary 4, an approximation for P[A defaults |X = x] is provided, the term-wise
comparison of Equations (5) and (7) yields

Pα[X = x | A defaults] ≈ wA,0 Pα[X = x− ẼA] +
N

∑
j=1

wA,j Pα+ej [X = x− ẼA] (8)

Note that, according to Equation (8), the conditional distribution Pα[X = · | A defaults] of the
portfolio loss X given that A defaults may be computed as a weighted mean of stressed portfolio
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loss distributions. The stresses are expressed by the exponents αj + 1 in the generating functions
of Pα+ej [X = · ], j = 1, . . . , N. In actuarial terms, incrementing the size parameter of a negative
binomial claim number distribution (cf. Remark 1) means to give the claim number distribution a
heavier tail. Hence, this way the number of claims (sector-related defaults in CreditRisk+ terms)
tends to be larger after the stress was applied. No change due to stress, however, occurs to the sector
loss severity distributions as characterised by the sector polynomials Qj. This is no surprise, as the
loss severities in the setting of this paper are assumed to be independent of the economic factors that
drive the sector default frequencies.

Remark 2.

(i) By Equation (8), stressed portfolio loss distributions can be evaluated, conditional on the
scenarios that single obligors have defaulted. If, for instance, the portfolio Value-at-Risk changes
dramatically when obligor A’s default is assumed, then one may find that the portfolio depends
too strongly upon A’s condition.

(ii) Equation (8) reflects a write-off or special provision due to obligor A’s default. This is a
consequence of the fact that, on the right-hand side of the equation, loss distributions of the
shape X + ẼA appear, thus implying that losses X are added to a loss socket ẼA caused by
obligor A’s first default. However, usually in banks occurred losses are not taken into account
for the determination of risk metrics (like quantiles as defined by Equation (3)) but are deducted
from the banks available capital buffer. In that sense, Equation (8) does not appropriately reflect
banks’ practice.

(iii) To deal with the issue observed in (ii), note that Theorem 2 and Corollary 4 also can be applied
to the case EA = 0. In particular, dependencies within the portfolio are then still adequately
reflected by obligor A’s conditional default intensity pS

A. While EA = 0 in Theorem 2 effectively
eliminates any impact of obligor A on the unconditional portfolio loss distribution, Equation (8)
clearly demonstrates the impact of the dependence between A and the rest of the portfolio on
the conditional portfolio loss distribution.

While Theorem 3 can be used to study the portfolio loss distributions conditional on any number
of defaults, we confine ourselves in the following corollary and its consequences to considering only
the case of two defaults as we already did in the proof of Theorem 3. The formulas for conditioning
on three or more defaults can be derived in the same way as the formula for the case of two defaults.
The cases of three or more defaults, however, are notationally and computationally much more
inconvenient, presumably much less relevant for practice, and do not add much more theoretical
insight compared to the case of two defaults.

Corollary 5 (Joint probability of default conditional on portfolio loss).
Adopt the setting and the notation of Corollary 4. Let A(1) 6= A(2) denote two obligors who have been selected
in advance. Assume that x is an integer such that Pα[X = x] > 0. Then, in the CreditRisk+ framework,
the conditional joint probability of obligor A(1)’s and obligor A(2)’s default given that the portfolio loss X
assumes the value x may be approximated by
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E[DA(1) DA(2) |X = x] =
pA(1) pA(2)

Pα[X = x]

(
wA(1),0 wA(2),0 Pα[X = x− ẼA(1) − ẼA(2)] +

N

∑
j=1

(
wA(1),0 wA(2),j + wA(1),j wA(2),0

)
Pα+ej [X = x− ẼA(1) − ẼA(2)] +

N

∑
j=1

wA(1),j wA(2),j
αj + 1

αj
Pα+2ej [X = x− ẼA(1) − ẼA(2)] +

N

∑
i=1

N

∑
j=1,
j 6=i

wA(1),i wA(2),j Pα+ei+ej [X = x− ẼA(1) − ẼA(2)]
)

(9)

where ẼA for A = A(1) and A = A(2) stands for a random variable that has the same distribution as EA
but is independent of X.

While Equation (9) in general looks like a straight-forward extension of Equation (5), there is a
subtle difference in the terms involving Pα+2ej [X = x− ẼA(1) − ẼA(2)] which reflect double stress in

the same sector. This double stress is enforced by the additional factors
αj+1

αj
> 1.

Proof of Corollary 5. We derive Equation (9) by comparing the coefficients of two power series.
The first one is E[DA(1) DA(2) zX ] = ∑∞

k=0 E[DA(1) DA(2) I(X = k)] zk, the second one is an expression
that is equivalent to E[DA(1) DA(2) zX ] but involves generating functions similar to Equation (2c).

Recall that we denote the generating function of EA by HA(z). By means of Theorem 3 and the
independence of the random exposures, we can compute

E[DA(1) DA(2) zX ] =
∞

∑
k=0

E[pS
A(1) pS

A(2) I(X + EA(1) + EA(2) = k)] zk

= E[pS
A(1) pS

A(2) zX+EA(1)+EA(2) ]

= E[pS
A(1) pS

A(2) zX ]E[zEA(1) ]E[zEA(2) ]

= E[pS
A(1) pS

A(2) zX ] HA(1)(z) HA(2)(z) (10a)

Recall the definitions of the intensities pS
A, the sector default intensities µk and the sector

polynomials Qk from Theorem 2. By making use of the fact that the economic factors (S1, . . . , SN)

are Gamma-distributed with parameters (αk, 1/αk), k = 1, . . . , N, and that S0 = 1, we obtain for
E[pS

A(1) pS
A(2) zX ] (cf. the proof of (3.25c) in [5])

E[pS
A(1) pS

A(2) zX ] = E
[
pS

A(1) pS
A(2) E[zX | S]

]
(10b)

= pA(1) pA(2)

N

∑
i=0

N

∑
j=0

wA(1),i wA(2),j E
[
Si Sj

N

∏
k=0

exp
(
Sk µk (Qk(z)− 1)

)]
.

Denote by

G(α)
X (z) =

∞

∑
k=0

Pα[X = k] zk (11)
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the generating function of X according to Equation (2c) as a function of the exponents α = (α1, . . . , αN)

on the right-hand side of the equation as has been explained in Corollary 4. Observe then that

E
[
S2

0

N

∏
k=0

exp
(
Sk µk (Qk(z)− 1)

)]
= G(α)

X (z)

E
[
S0 Sj

N

∏
k=0

exp
(
Sk µk (Qk(z)− 1)

)]
= G

(α+ej)

X (z), j ≥ 1

E
[
Si Sj

N

∏
k=0

exp
(
Sk µk (Qk(z)− 1)

)]
= G

(α+ei+ej)

X (z), i 6= j

E
[
S2

j

N

∏
k=0

exp
(
Sk µk (Qk(z)− 1)

)]
=

αj + 1
αj

G
(α+2 ej)

X (z), j ≥ 1

(12)

Note that G(α)
X (z) HA(1)(z) HA(2)(z) is the generating function of the sequence

Pα[X + ẼA(1)+ ẼA(2) = 0], Pα[X + ẼA(1)+ ẼA(2) = 1], . . . (i.e., of the distribution of X + ẼA(1)+ ẼA(2)).
Combining this observation with Equations (10a), (10b), and (12) implies Equation (9) by power
series comparison.

As Corollary 4 can be used for constructing the portfolio loss distribution conditional on the
default of one obligor, Corollary 5 can be used for the portfolio loss distribution conditional on the
joint default of two obligors. Again by the definition of conditional probabilities, it follows that

P[X = x | A(1) and A(2) default] =

P[A(1) and A(2) default |X = x]
P[X = x]

P[A(1) and A(2) default]
. (13)

Since by Corollary 5 an approximation for P[A(1) and A(2) default |X = x] is provided,
the term-wise comparison of Equations (9) and (13) yields

Pα[X = x | A(1) and A(2) default] ≈
pA(1) pA(2)

P[A(1) and A(2) default]

(
wA(1),0 wA(2),0 Pα[X = x− ẼA(1) − ẼA(2)] +

N

∑
j=1

(wA(1),0 wA(2),j + wA(1),j wA(2),0)Pα+ej [X = x− ẼA(1) − ẼA(2)] +

N

∑
j=1

wA(1),j wA(2),j
αj + 1

αj
Pα+2ej [X = x− ẼA(1) − ẼA(2)] +

N

∑
i=1

N

∑
j=1,
j 6=i

wA(1),i wA(2),j Pα+ei+ej [X = x− ẼA(1) − ẼA(2)]
)

(14a)

Making use of the well-known result (see Section 2.3 of [6])

E[DA(1) DA(2)] = pA(1) pA(2)

(
1 +

N

∑
k=1

wA(1),k wA(2),k

αk

)
, A(1) 6= A(2), (14b)
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Equation (14a) can be slightly simplified to

Pα[X = x | A(1) and A(2) default]

≈ 1

1 + ∑N
k=1

wA(1),k wA(2),k
αk

(
wA(1),0 wA(2),0 Pα[X = x− ẼA(1) − ẼA(2)] +

N

∑
j=1

(
wA(1),0 wA(2),j + wA(1),j wA(2),0

)
Pα+ej [X = x− ẼA(1) − ẼA(2)] +

N

∑
j=1

wA(1),j wA(2),j
αj + 1

αj
Pα+2ej [X = x− ẼA(1) − ẼA(2)] +

N

∑
i=1

N

∑
j=1,
j 6=i

wA(1),i wA(2),j Pα+ei+ej [X = x− ẼA(1) − ẼA(2)]
)

. (14c)

Comments similar to the comments on Equation (8) also apply to Equation (14c). The conditional
distribution Pα[X = x | A(1) and A(2) default] of the portfolio loss X given that obligors A(1) and
A(2) default can be computed as a weighted mean of stressed or double-stressed portfolio loss
distributions. The stresses, however, are not only expressed by the exponents αj + 1 and αj + 2 in
the generating functions of Pα+ej [X = · ] and Pα+ei+ej [X = · ], i, j = 1, . . . , N, but also by the factors
αj+1

αj
> 1 appearing on the right-hand side of (14c). Obviously, as a consequence of the (N + 1)2 terms

on the right-hand side of Equation (14c) instead of the only N + 1 terms of the right-hand side of
Equation (8), it is much more expensive to calculate the loss distributions conditional on two defaults
than to calculate the loss distributions conditional on simple defaults.

Observe that Remark 2 also applies to Equation (14c). Hence it makes sense to do the calculations
for Equation (14c) with loss severities EA(1) = 0 and EA(2) = 0 to reflect the risk management attitude
not to take account of occurred losses for the determination of living portfolio risk metrics.

4. The “Stressed Probabilities of Default” Approach

Under the CreditRisk+ framework, Equation (14c) provides the algorithm needed for the
calculation of the portfolio loss distribution conditional on the default of two obligors. However,
if N denotes the number of economic factors in the model, formula (14c) requires the computation of
(N+1) (N+2)

2 slightly different loss distributions which could be tedious if N is large. In this section,
therefore, we look at the “cheaper” alternative approach where the loss distribution is calculated only
once according to Theorem 2 and all parameters but the unconditional probabilities of default pA
remain unchanged. Such stress testing procedures based on stressed input parameters are common
practice in the banking industry [16]. In the “stressed probabilities of default” approach the pA are
replaced by probabilities of default conditional on the default of the two obligors. The approach is
based on the following three-events version of Equation (14b).

Proposition 6. Under Assumption 1, let A(1), A(2), A(3) be obligors such that A(i) 6= A(j) for i 6= j.
Then it holds that

E[DA(1) DA(2) DA(3)] =

pA(1) pA(2) pA(3)

(
1 + 2

N

∑
k=1

wA(1),k wA(2),k wA(3),k

α2
k

+
N

∑
k=1

wA(1),k wA(2),k+wA(1),k wA(3),k+wA(2),k wA(3),k
αk

)
.

Proof of Proposition 6. The assumption on the Poisson distribution of the DA conditional on the
vector of economic factors S = (S0, S1, . . . , SN) implies E[DA | S] = pS

A with pS
A defined as in

Assumption 1 (i). By the conditional independence of A(1), A(2), A(3), therefore, it follows that
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E[DA(1) DA(2) DA(3)] = E[pS
A(1) pS

A(2) pS
A(3)]

= pA(1) pA(2) pA(3)

N

∑
j=0

N

∑
k=0

N

∑
`=0

wA(1),j wA(2),k wA(3),` E[Sj Sk S`].

Recall that by assumption we have E[Sk] = 1 for all k = 1, . . . , N and ∑N
k=0 wA,k = 1 for all obligors A.

This implies

E[DA(1) DA(2) DA(3)]

pA(1) pA(2) pA(3)
= 1 +

N

∑
k=0

N

∑
`=0,
` 6=k

wA(1),k wA(2),k wA(3),` var[Sk]

+
N

∑
k=0

N

∑
`=0,
` 6=k

wA(1),k wA(2),` wA(3),k var[Sk]

+
N

∑
k=0

N

∑
`=0,
` 6=k

wA(1),` wA(2),k wA(3),k var[Sk]

+
N

∑
k=0

wA(1),k wA(2),k wA(3),k
(
E[S3

k ]− 1
)

= 1 +
N

∑
k=0

wA(1),k wA(2),k (1− wA(3),k) var[Sk]

+
N

∑
k=0

wA(1),k (1− wA(2),k)wA(3),k var[Sk]

+
N

∑
k=0

(1− wA(1),k)wA(2),k wA(3),k var[Sk]

+
N

∑
k=0

wA(1),k wA(2),k wA(3),k
(
E[S3

k ]− 1
)

From the assumption that Sk is Gamma-distributed with parameter vector (αk, 1/αk), it follows that
var[Sk] = 1/αk and E[S3

k ]− 1 = 3 αk+2
α2

k
. This implies the assertion.

Since in the CreditRisk+ framework the default indicator for an obligor A is approximated by the
conditional Poisson variable DA, the joint probability of default P[A(1) and A(2) and A(3)default] of
three obligors is approximated by

P[A(1) and A(2) and A(3)default] ≈ E[DA(1) DA(2) DA(3)].

Hence, Proposition 6 and Equation (14b) provide us with a simple approximation formula for one
obligor’s probability of default conditional on two other obligors’ joint default:

P[B defaults | A(1) and A(2)default] ≈

pB

1 + ∑N
k=1

wA(1),k wA(2),k
αk

(
1 + 2

N

∑
k=1

wB,k wA(1),k wA(2),k

α2
k

+
N

∑
k=1

wB,k wA(1),k+wB,k wA(2),k+wA(1),k wA(2),k
αk

)
(15)

for any three different obligors B, A(1) and A(2). Thanks to Proposition 6 and Equation (15), we can
describe in precise technical terms the two above mentioned approaches to the calculation of the loss
distribution conditional on two defaults.
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Definition 7. Under Assumption 1, assume that there are two obligors A(1) and A(2) with exposures
EA(1) = EA(2) = 0. Call this setting the two defaults scenario. In addition, define the following
two distributions:

(i) The portfolio loss distribution defined by the right-hand-side of Equation (14c) is called the
“two defaults scenario” loss distribution.

(ii) Replace in (i) of Theorem 2 the probabilities of default pA by the conditional probabilities
of default P[A defaults | A(1) and A(2)default] as given by Equation (15) and keep all other
parameters in the theorem unchanged. The resulting portfolio loss distribution is called “stressed
probabilities of default” loss distribution.

Intuitively, it is clear that the expected value E[X] of the portfolio loss X should be the
same under both loss distributions from Definition 7. However, since the right-hand-sides
of both Equations (14c) and (15) are only approximations to the conditional probabilities on
the left-hand-sides of the equations, the fact that the two expected values are equal must be
formally proven.

Proposition 8. Under the ‘two defaults scenario’, denote by PTwo the distribution of Definition 7 (i) and by
PProb the distribution of Definition 7 (ii). Then it holds that ETwo[X] = EProb[X].

Proof of Proposition 8. For the sake of a clear notation, we denote all obligors but A(1) and A(2)
with the letter B. Under the independence assumptions of Assumption 1, by construction of PProb
Equation (1a) implies that

EProb[X] = ∑
B

EProb[DB]E[EB] = ∑
B

P[B defaults | A(1) and A(2)default]E[EB]

=
∑B pB E[EB]

(
1 + 2 ∑N

k=1
wB,k wA(1),k wA(2),k

α2
k

+ ∑N
k=1

wB,k wA(1),k+wB,k wA(2),k+wA(1),k wA(2),k
αk

)
1 + ∑N

k=1
wA(1),k wA(2),k

αk

(16)

For ETwo[X], we obtain from Equation (14c) that

ETwo[X] =

(
1 +

N

∑
k=1

wA(1),k wA(2),k

αk

)−1 (
wA(1),0 wA(2),0 Eα[X] +

N

∑
j=1

(
wA(1),0 wA(2),j + wA(1),j wA(2),0

)
Eα+ej [X] +

N

∑
j=1

wA(1),j wA(2),j
αj + 1

αj
Eα+2ej [X] +

N

∑
i=1

N

∑
j=1,
j 6=i

wA(1),i wA(2),j Eα+ei+ej [X]
)

(17)

The distributions of X referred to in the expected values on the right-hand-side of Equation (17)
are specified by the generating function Equation (2c). As explained in Remark 1 (ii), for instance,
the distribution of X under Pα+2ej is given by the convolution of a compound Poisson distribution
with expected value ∑B wB,0 pB E[EB] and N compound negative binomial distributions with
expected values
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αk δk
1− δk

∑B wB,k pB E[EB]

µk
= ∑

B
wB,k pB E[EB], k = 1, . . . , N, k 6= j,

(αj + 2) δj

1− δj

∑B wB,j pB E[EB]

µj
=

αj + 2
αj

∑
B

wB,j pB E[EB], k = j

Substituting all these expected values into Equation (17) and taking into account that
∑N

k=0 wB,k = 1 for all B gives(
1 +

N

∑
k=1

wA(1),k wA(2),k

αk

)
ETwo[X]

= wA(1),0 wA(2),0 ∑
B

pB E[EB] +

N

∑
j=1

(
wA(1),0 wA(2),j + wA(1),j wA(2),0

) (
∑
B

pB E[EB] +
1
αj ∑

B
pB wB,j E[EB]

)
+

N

∑
j=1

wA(1),j wA(2),j
αj+1

αj

(
∑
B

pB E[EB] +
2
αj ∑

B
pB wB,j E[EB]

)
+

N

∑
i=1

N

∑
j=1,
j 6=i

wA(1),i wA(2),j

(
∑
B

pB E[EB] +
1
αj ∑

B
pB wB,j E[EB] +

1
αi ∑

B
pB wB,i E[EB]

)

= ∑
B

pB E[EB] +
N

∑
j=1

(
wA(1),0 wA(2),j + wA(1),j wA(2),0

) 1
αj ∑

B
pB wB,j E[EB] +

N

∑
j=1

wA(1),j wA(2),j

(
1
αj ∑

B
pB E[EB] +

2 (αj+1)
α2

j
∑
B

pB wB,j E[EB]

)
+

N

∑
i=1

N

∑
j=1,
j 6=i

wA(1),i wA(2),j

(
1
αj ∑

B
pB wB,j E[EB] +

1
αi ∑

B
pB wB,i E[EB]

)

Some algebra shows that the sum of the terms after the last “=” sign divided by the factor
1 + ∑N

k=1
wA(1),k wA(2),k

αk
is equal to the right-hand-side of Equation (16).

Why are the two defaults scenario loss distribution PTwo and the stressed probabilities of default
loss distribution PProb of Definition 7 different despite the first order equality of the two demonstrated
in Proposition 8? They differ because PProb does not account for correct conditional joint probabilities
of default for two or more obligors. Nonetheless, it is not clear how much the two loss distribution
can differ, given that their first moments are equal. In the next section, we will consider two simple
numerical examples to compare the two loss distributions and assess how different they may be.

Another question refers to the nature of the input parameters pA in Theorem 2, i.e.,
the unconditional PDs of the obligors in the portfolio. In principle, these PDs should be
“through-the-cycle” (TTC) PDs in the CreditRisk+ framework. See [17] for a formal definition of TTC
PDs and a discussion of TTC v. PIT (point-in-time) PDs. Does is then make sense to use conditional
PDs as input parameters to the model as in the stressed PDs approach? Actually, this question
misses the point. For the stressed PDs approach only is meant to be a technical workaround for more
demanding approaches like Monte Carlo simulation and the calculation of the proper loss distribution
conditional on two defaults (the “two defaults scenario” distribution).
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5. Numerical Examples

The first example we consider is a homogeneous portfolio with a one-factor dependence
structure. For the factor, we choose a standard deviation of 0.8 which according to [18] is
in the centre of the range of observable default rate volatilities. Since the factor is assumed
to be Gamma-distributed with mean 1, a standard deviation of 0.8 implies that the factor is
Gamma-distributed with parameters (α, β) = (1/0.82, 0.82) = (1.5625, 0.64).

Example 1. We assume the setting of Assumption 1 with the following specifics:

• There are n obligors B1, . . . , Bn all with PD p = 1%. There is one economic factor S such that the
conditional Poisson distribution of the default indicator DBi is given by the intensity pS

Bi
= p S

for all i = 1, . . . , n.
• Two further obligors A1 and A2 with the same characteristics as the other obligors are known to

have defaulted.
• The factor S is Gamma-distributed with parameters (1.5625, 0.64) = (α, 1/α).
• The exposure to each of the obligors but the defaulters is 1. Hence, we have HBi (z) = z for the

generating functions of the exposures for all i. The exposures to the two defaulters A1 and A2

are 0.

Having all exposures equal to 1 means that in this case the portfolio “loss” distribution is actually the
distribution of the number of defaults in the portfolio, i.e., we have

X =
n

∑
i=1

DBi .

By Remark 1 (ii), it follows that in the CreditRisk+ framework the unconditional distribution of X is
negative binomial and as such given by

P[X = x] =
Γ(α + x)
Γ(α) x!

(
1− n p

n p + α

)α ( n p
n p + α

)x
, x = 0, 1, 2, . . . .

Equation (14c) implies that the distribution of X conditional on the default of A1 and A2 is
approximated by

P[X = x | A1 and A2 default] =

Γ(α + 2 + x)
Γ(α + 2) x!

(
1− n p

n p + α

)α+2 ( n p
n p + α

)x
, x = 0, 1, 2, . . . .

Again by Remark 1 (ii), it follows that the “stressed probabilities of default” distribution Q of X in the
sense of Definition 7 is given by q = p (α+2)

α and

Q[X = x] =
Γ(α + x)
Γ(α) x!

(
1− n q

n q + α

)α ( n q
n q + α

)x
, x = 0, 1, 2, . . . .

Figure 1 shows the three distributions from Example 1 for the case n = 100. It is no surprise that,
compared to the unconditional distribution, the masses of the other two distributions are significantly
shifted to the right. But the “stressed input PDs” distribution seems to have heavier tails than the
“two defaults scenario” distribution.
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Figure 1. Unconditional, conditional on two defaults and “stressed input PDs” distributions of the
number of defaults in portfolio of 100 obligors. All obligors have unconditional PD 1%. The model is
one-factor CreditRisk+ with factor standard deviation 0.8.

Table 1 affirms this observation. The results from the table suggest that the difference between
the “two defaults scenario” and “stressed input PDs” distributions increases with growing portfolio
size. The “stressed input PDs” distribution becomes markedly more widespread and heavier-tailed
than the “two defaults scenario” distribution. A possible explanation could be that the “two defaults
scenario” more appropriately takes account of diversification effects in the higher order joint
probabilities of default that strongly impact the tail of the distribution because “two defaults” is
constructed as a proper conditional distribution.

With the following example, we study a more heterogenous portfolio, with a range of different
PDs, different exposures and dependence created by two economic factors. We choose standard
deviations of 0.4 and 1.2 respectively for the two factors. According to [18], this choice reflects the
lower and upper bounds of the range of observable default rate volatilities.

Table 1. Characteristics of unconditional, conditional on two defaults and “stressed input probabilities
of default (PDs)” distributions of numbers of defaults in portfolios of n = 10, n = 100 and n = 1000
obligors. All obligors have unconditional PD 1%. The model is one-factor CreditRisk+ with factor
standard deviation 0.8.

Unconditional “Two Defaults Scenario” “Stressed Input PDs”

n = 10
Probability of no default 0.9076 0.8017 0.8083
Mean 0.1000 0.2280 0.2280
Standard deviation 0.3262 0.4925 0.5111
99%-quantile 1 2 2

n = 100
Probability of no default 0.4616 0.1716 0.2451
Mean 1.0000 2.2800 2.2800
Standard deviation 1.2806 1.9337 2.3679
99%-quantile 5 8 10

n = 1000
Probability of no default 0.0438 0.0008 0.0137
Mean 10.0000 22.8000 22.8000
Standard deviation 8.6023 12.9892 18.8546
99%-quantile 39 63 87
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Example 2. We assume the setting of Assumption 1, this time with the following specifics:

• There are 60 obligors B1, . . . , B60 all with PD pi = 2.5%, 30 obligors B61, . . . , B90 all with
PD pi = 1% and 10 obligors B91, . . . , B100 all with PD pi = 0.5%. There are two economic factors
S1 and S2 such that the conditional Poisson distribution of the default indicator DBi is given by
the intensity pS

Bi
= pi (wi S1 + (1− wi) S2) with wi = 0.75 for all i = 1, . . . , 100.

• Two further obligors A1 and A2 are known to have defaulted. We assume they had PDs qi = 1%,
i = 1, 2 and that their default intensities were given by qS

Ai
= qi (vi S1 + (1− vi) S2). We assume

v1 = v2. Results are calculated for two different values of v1, namely v1 = 0.75 and v1 = 0.25.
• The factor S1 is Gamma-distributed with parameters (1/1.22, 1.22) = (α1, 1/α1), S2 is

Gamma-distributed with parameters (1/0.42, 0.42) = (α2, 1/α2).

Due to the heterogeneity of the portfolio in Example 2, it is not possible to represent the loss
distribution of the loss variable X in closed form. In order to calculate the unconditional, conditional
on the two defaults and “stressed probabilities of default” distributions of X as in Example 1;
therefore, we take recourse to numerically inverting the respective characteristic functions by Fast
Fourier Transform (FFT). Alternatively, we could have made use of refined versions of the Panjer
algorithm as described in [19] or Section 5.5 of [20]. In all three cases, the shape of the characteristic
function of the distribution is given by (2c) with z = ei t, t ∈ R. The algorithm we apply for the
calculations is described in Section 4.7 of [9]. The moderate size of the portfolio and the relatively
small total exposure of the portfolio allow us to choose the total exposure plus 1 as the truncation
point for the discrete Fourier transform. Indeed, the probabilities of the high losses close to the total
exposure are so small that there is no need for any refinements of the algorithm to control the aliasing
error (Section 2.2 of [21]).

Table 2 shows the results of the calculations for Example 2. Results are reported for two different
scenarios of dependence between the defaults and the rest of the portfolio:

• “Weak dependence of defaults and portfolio” scenario. By construction, the obligors Bi in
the portfolio depend stronger on the economic factor S1 (weight 0.75) than on the factor S2

(weight 0.25). In the “weak dependence” scenario, the defaulters A1 and A2 depend weakly
on S1 (weight 0.25) and stronger on S2 (weight 0.75).

• “Strong dependence of defaults and portfolio” scenario. Here, the defaulters have the same
dependence on the economic factors as the obligors in the portfolio.

In both dependence scenarios, the impact of conditioning on defaults on the tails of the loss
distributions is strong, but it is much stronger in the case of strong dependence. In the weak
dependence scenario, the shapes of the conditional “two defaults scenario” loss distribution and the
“stressed input PDs” distribution seem to be almost equal. In contrast, in the strong dependence
scenario, the tail of the “stressed input PDs” distribution appears to be much heavier than the tail of
the “two defaults scenario” distribution. Note that, as stated in Proposition 8, in both Tables 1 and 2,
the means of the “two defaults scenario” and the “stressed input PDs” distributions always are equal.
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Table 2. Characteristics of unconditional, conditional on two defaults and “stressed input PDs” loss
distributions of the portfolio described in Example 2. The model is two-factors CreditRisk+.

Weak Dependence of Defaults and Portfolio

Unconditional “Two defaults scenario” “Stressed input PDs”
Probability of no default 0.2986 0.1769 0.1731
Mean 4.0000 6.7173 6.7173
Standard deviation 6.4900 9.0172 9.2574
99%-quantile 30 41 43

Strong Dependence of Defaults and Portfolio

Unconditional “Two defaults scenario” “Stressed input PDs”
Probability of no default 0.2986 0.0545 0.0801
Mean 4.0000 11.4514 11.4514
Standard deviation 6.4900 11.5349 13.8041
99%-quantile 30 52 64

6. Conclusions

We have studied the way in which defaults impact a credit portfolio loss distribution in the
CreditRisk+ framework, by looking at the loss distribution conditional on some—one or two in this
paper—of defaults. While the derived formulas are not necessarily easy to implement, they provide
nonetheless insight into the details of how the default scenarios impact the conditional portfolio
loss distribution.

The results of this paper can be used for specific stress scenario analyses that are intended to
identify whether large credit exposures besides having an obvious size impact additionally contribute
to sector risk concentrations. Another more indirect application of the results would be to use them
to check the accuracy of alternative approaches to such default scenario analyses. One potential
alternative approach is Monte Carlo portfolio simulation which would suffer from rare event effects
when deployed for estimating loss distributions conditional on two or more defaults.

Another alternative could be to calculate for each obligor the probability of default conditional
on the joint default of a fixed set of obligors and then to use these conditional probabilities of
default as input parameters to a portfolio model. This “stressed probabilities of default” approach
is unbiased but ignores the exact dependence between the default events of the obligors considered
defaulted under the scenario and the economic factors commonly used for modeling dependence
in credit portfolio models. Therefore, the approach is principally inaccurate. Numerical examples
suggest that the inaccuracy may be significant but tends to overestimate tail losses and hence to
err on the conservative side. However, we have not provided a formal proof of such conservatism.
Consequently, to be on the safe side, the true conditional portfolio loss distribution should be
computed whenever possible.

Conflicts of Interest: The author currently works at the Prudential Regulation Authority (a directorate of the
Bank of England). He is also a visiting professor at Imperial College, London. The opinions expressed in this
paper are those of the author and do not necessarily reflect views of the Bank of England.
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