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Abstract: Certain exotic options cannot be valued using closed-form solutions or even by
numerical methods assuming constant volatility. Many exotics are priced in a local volatility
framework. Pricing under local volatility has become a field of extensive research in finance,
and various models are proposed in order to overcome the shortcomings of the Black-Scholes
model that assumes a constant volatility. The Johannesburg Stock Exchange (JSE) lists
exotic options on its Can-Do platform. Most exotic options listed on the JSE’s derivative
exchanges are valued by local volatility models. These models needs a local volatility
surface. Dupire derived a mapping from implied volatilities to local volatilities. The JSE
uses this mapping in generating the relevant local volatility surfaces and further uses Monte
Carlo and Finite Difference methods when pricing exotic options. In this document we
discuss various practical issues that influence the successful construction of implied and
local volatility surfaces such that pricing engines can be implemented successfully. We focus
on arbitrage-free conditions and the choice of calibrating functionals. We illustrate our
methodologies by studying the implied and local volatility surfaces of South African equity
index and foreign exchange options.
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1. Introduction

One of the central ideas of economic thought is that, in properly functioning markets, prices of traded
goods contain valuable information that can be used to make a wide variety of economic decisions.
In financial derivative markets, implied volatility is one such traded quantity. The expected future value
of traded volatility plays a central role in finance theory. It is thus crucial to estimate this parameter
accurately enabling meaningful financial decision making.

In finance, the volatility is defined as a variational measure of changes in price of a given financial
instrument over time. There exist many types of volatilities classified using different standards.
For instance, the historical or realized volatility is a type of volatility derived from time series based
on the past market prices. Implied volatility, however, is a type of volatility derived from the
market—obtained from traded derivatives like options—while local or instantaneous volatility is not
directly measurable from the market nor from historical data. Black and Scholes assumed volatility to
be constant over the life of an option which was helpful in deriving the seminal Black-Scholes formula
for option prices—there were other important assumptions as well (see [1–3]).

Practitioners and quants know that the assumption of constant volatility is wrong. The evidence for
this is the long-observed pattern of implied volatilities, where at-the-money and in-the-money options
tend to have lower implied volatilities than out-of-the-money options for equities. This pattern is called
the volatility skew. Implied volatility for currency options, on the other hand, has a smile pattern where
in-the-money and out-the-money options have higher implied volatilities than at-the-money options.
The EUR/USD currency pair has a near perfect smile. However, even in the foreign exchange markets
there is the possibility of skew favoring one currency pair. The USD/ZAR currency pair can be skewed
positively because investors tend to fear more the weakening of the South African Rand and hence buy
protection against that.

One explanation for the skew phenomenon is that, in reality, the assumed random nature of asset
prices is plainly wrong. Asset prices thus do not diffuse through time in a random manner implying
the probability distribution of asset prices is not log-normal. Market practitioners rectify (or modify)
the Black-Scholes assumption of geometric Brownian motion by trading options with different strikes
at different volatilities. The fact that volatility is not constant has ramifications when path-dependent
options are priced. These products do not just depend on the variability of the underlying asset price,
but also on the variability of the volatility. The choice of pricing model depends on the different risks
involved in the option [4]. Path-dependent options thus have skew dependence or they are skew-sensitive.
We need to use pricing models that capture this effect. That prompted the development of various
volatility models as an alternative to the Black-Scholes model. In particular, stochastic volatility
models [5,6], local volatility models [7–9], jump-diffusion models [10,11] and Lévy models [12]
amongst others were developed.
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Local volatility models have been in use since the 1980s although these were not known by the name
“local volatility”. Local volatility pricing engines need a local volatility surface. However, local volatility
is not a market observable quantity while implied volatility is. Derman and Kani [8] and Rubinstein [13]
solved this problem numerically by implementing binomial trees. They showed that the local volatility
can be extracted from vanilla options, priced using the implied volatility surface. These methods have
subsequently been improved by many other researchers [14,15]. The mathematical framework for local
volatility was first formulated by Dupire [9]. He derived an analytic mapping between implied and
local volatilities. It has since been realized that Dupire’s framework is an extension of research done by
Gyöngy [16].

Dupire’s analytic approach to local volatility became popular with practitioners, because of its
simplicity and the fact that it conveniently retains the market completeness1 of the Black-Scholes model
and it is consistent2. Due to completeness and consistency, the Black-Scholes model is a convenient
translation mechanism—it is universally used by traders to “talk” to one another; it gives unambiguous
answers. Dupire’s local volatility is a function of strike and time only, similar to the Black-Scholes
implied volatility. Local volatility is non-stochastic as well. Moreover, Dupire [9] showed that the
existence of a forward equation that describes the evolution of call option prices as functions of maturity
time and strike price makes it possible to express the unknown volatility function directly in terms
of known option prices. It thus captures the implied volatility skew without introducing additional
sources of risk. This is different to stochastic volatility models which assume the volatility follows a
random process.

The Johannesburg Stock Exchange (JSE) started listing exotic option on 8 January 2007. The product
range is called Can-Do options3. Most of these exotics are priced using Monte Carlo and Finite
Difference techniques in a local volatility world. Kotzé and Oosthuizen [17] discuss and explain the
local volatility pricing of exotic Can-Do options like Barrier options, as well as the methodologies used
to determine their initial margins.

In order to obtain the local volatility surface, the JSE first constructs the implied volatility surface.
Kotzé et al. [18] discussed the current method employed by the JSE to determine implied volatility
surfaces. This method is based on trade data and a linear deterministic approach. Tompkins [19] studied
the implied volatility surfaces of 4 equity option markets and 4 FX option markets: S&P 500 futures,
FTSE 100 futures, Nikkei futures, DAX futures, Deutsche Mark/US Dollar, British Pound/US Dollar,
Japanese Yen/US Dollar and Swiss Franc/US Dollar. He showed that a simple deterministic linear
functional can be fitted to trade data. Deterministic volatility functions (DVF) are also discussed by
Romo [20] and Itkin [21]. Dumas et al. [22] showed that the local volatility surface of S&P 500 options
can also be modeled by a deterministic parabolic function of asset price and time.

In this document we discuss the implementation of the Dupire mappings when a DVF exists and
when the implied volatility surface is given as a set of discrete data points only. The JSE fits a parabolic

1 It allows hedging based on the underlying asset alone.
2 It has no contradictions i.e., the price is the price. If two traders use the same input values, the answers will be the same,

exactly—principle of no arbitrage
3 http://www.jse.co.za/Products/Equity-Derivatives-Market/Equity-Derivatives-Product-Detail/Can-Do_Futures_and_

Options.aspx

http://www.jse.co.za/Products/Equity-Derivatives-Market/Equity-Derivatives-Product-Detail/Can-Do_Futures_and_Options.aspx
http://www.jse.co.za/Products/Equity-Derivatives-Market/Equity-Derivatives-Product-Detail/Can-Do_Futures_and_Options.aspx
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function with an exponential time decay to ALSI4 futures implied volatility trade data — the ALSI is
the liquid future on the tradable FTSE/JSE Top 40 equity index5. This means that the ALSI implied
volatility surface can be represented by an algebraic equation and implementing the Dupire mapping is
straightforward. However, DVFs do not exist for another tradable index, the DTOP6, nor for the Rand/US
Dollar exchange rate (USDZAR). We point to important practical issues that have to be considered when
generating these local volatility surfaces.

The rest of this paper is organized as follows. In Section 2, we describe the formulation of the
Black-Scholes partial differential equation and show how it incorporates the implied volatility skew.
This leads us to the concept of local volatility. Section 3 reviews local volatility and explains it from a
practical perspective. We show practically how it is linked to the instantaneous volatility. We introduce
the Dupire formulation using Dupire’s mapping between implied and local volatility and discuss the
numerical implementation thereof. Section 4 introduces the functional DVF implementation for the
ALSI implied volatility surface and we show how the Dupire framework can be used to obtain the
corresponding local volatility surface algebraically. We highlight various practical problems and show
how to circumvent them. In Section 5 we show how the local volatility surface can be obtained
numerically for the DTOP index and USDZAR exchange rate. We further show how unstable the Dupire
mapping can be if implemented using call prices. We conclude in Section 6.

2. The Black-Scholes-Merton Partial Differential Equation

We want to determine the price of a security that guarantees a payment h(·) contingent on the sample
path of the process S at maturity date T . For a call option h(S) = max[S −K, 0] where K is called the
strike price.

In the Black-Scholes framework, we start by assuming that the security price S evolves log-normally,
according to the following stochastic differential Equation [23]

dS

S
= µdt+ σdW (2.1)

where µ is the expected continuously compounded rate of return earned by an investor in a short period
of time dt—the instantaneous expected return. Further, σ is the instantaneous volatility or standard
deviation of return from the security price S in the short time period [t, t + dt], and W is a standard
Brownian motion (one-dimensional Wiener process) where W0 = 0 and the increment Wt+dt −Wt has
mean zero and variance equal to 1. A geometric Brownian motion is a natural two-parameter model
of a security-price process because of the simple interpretations of µ and σ [24]. Note that W , and

4 The ALSI is the most liquid future listed on the JSE and traded by institutional investors mostly. The corresponding retail
contract is called the ALMI or “mini ALSI”.

5 This index consists of the largest 40 companies ranked by full market value.
6 The DTOP is also known as the SWIX 40 Index or Shareholder Weighted Top 40 index. Its construction follows that of

the FTSE/JSE Top 40 Index. However, the free float is different. The DTOP’s free float reflects locally held shares only
and thus excludes foreign shareholding.
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consequently its infinitesimal increment dW , represents the only source of uncertainty in the price history
of the security.

2.1. Assuming Constant Volatility

Black, Scholes and Merton made some assumptions in order to facilitate a better understanding of the
dynamics of the security price S. One of the main assumptions is the absence of arbitrage leading to the
concept of risk neutrality. In its simplest form, this infers that all risk-free portfolios can be assumed to
earn the same risk-free rate. They further assumed that the volatility in Equation (2.1) is deterministic
(constant) and the discount rate is the constant risk-free rate r. Under these assumptions, the risk-neutral
dynamic of the asset is [2]

dSt = (r − d)Stdt+ σ(K,T )StdWt (2.2)

where Wt is a standard Brownian motion or Wiener process, St denotes a risky underlying asset price
process at time t and d is the constant dividend rate. Equation (2.2) describes a simple one-factor asset
price process where σ(K,T ) is called the implied volatility and it is a function of the fixed strike K and
expiry time T only.

Let the scalar function Vbs(S, t) be the value of a contingent claim like an option at any time t
conditional on the price of the underlying being S at that time. Using Ito’s lemma, Equation (2.2)
can be transformed to the Black-Scholes stochastic partial differential Equation (PDE)

∂Vbs
∂t

+
1

2
σ2(K,T )S2∂

2Vbs
∂S2

+ (r − d)S
∂Vbs
∂S
− rVbs = 0 (2.3)

Equation (2.3) basically describes how the value of a derivative contract, at a continuum of potential
future scenarios, diffuses backwards in time towards today. This means we start at the expiry time T
and change the time until we end up at the current time t. This equation is a backward parabolic partial
differential equation also known as the backward Kolmogorov equation. Stewart calls this equation the
Midas Equation [25]. It is one his proposed 17 equations that changed the world. Some of the others are
Pythagoras’s theorem, the Navier-Stokes equation, Maxwell’s equation and Schrödinger’s equations.

Under the assumption of a constant volatility σ(K,T ), this PDE can be solved analytically by
applying the Feynman-Kac theorem and resulting formula [26]. This formula establishes a link between
parabolic partial differential equations and stochastic processes. It offers a method of solving certain
PDEs by simulating random paths of a stochastic process [27,28]. The solution of Equation (2.3) with
the terminal condition Vbs(ST , T ) = max[ST −K, 0] where ST is the underlying price at time T , gives
the seminal Black-Scholes formula.

Please note that Equation (2.3) is solved backwards in time—the terminal conditions are specified
and the solution today is sought [27]. Even though the Black-Scholes formula is the solution to a very
specific and simple PDE, it is still very relevant.

One crucial point one has to understand is that the implied volatility, σ(K,T ) in Equation (2.3)
is not linked in any simple way to the volatility, σ, of the true stock price process described in
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Equation (2.1). The implied volatility is not the standard deviation of S. This led to the famous statement
by Rebonato [29]:

“Implied volatility is the wrong number to put into the wrong formula to get the right price
of plain-vanilla options.”

Implied volatilities are simply a short-hand notation to quote a price! This implies that

σ(K,T )2T 6=
∫ T

0

σ(Su, u)2du (2.4)

where σ(Su, u) is the instantaneous volatility of the stochastic process Su over a short time period
[u, u + du]—see Equations (2.1) and (2.4) thus states that implied volatilities are not volatilities after
all (neither instantaneous nor average)! Note that instantaneous volatility is further discusses in §3.3.1.

2.2. Consistency with the Volatility Skew

Although satisfactory for European options, the Black-Scholes model comes up short for more
complex options, such as Asian options (whose payoff depends on the average price of the underlying
asset over time), barrier options (whose value depends on whether a specific boundary value has been
attained by the underlying asset before its maturity) or even common American options.

Practitioners thus started looking for a simple way of pricing more complex options. The prerequisite
was that the methodology should be consistent with the volatility skew. If we now generalize
Equation (2.2) and assume that volatility is dependent on the asset price and time (it’s not constant
anymore) but we still assume it to be deterministic, we get

dSt = (r − d)Stdt+ σ(St, t)StdWt (2.5)

Here, the function σ(S, t) is called the local volatility function because it is dependent on both S
and t. Note that σ(t) is sometimes referred to as the instantaneous volatility—it is a function of time
only.

Using Ito’s lemma and the scalar function Vl(S, t) (the value of an option), Equation (2.5) can be
transformed to the generalized Black-Scholes PDE

∂Vl(S, t)

∂t
+

1

2
σ2(S, t)S2∂

2Vl
∂S2

+ (r − d)S
∂Vl
∂S
− rtVl = 0 (2.6)

If Vl(S, t) is twice differentiable and Vl(ST , T ) is the terminal condition, the Feynman-Kac theorem
states that the solution to this backward parabolic partial differential equation shown in Equation (2.6) is
given by

Vl(S, t) = EQ
[
e−

∫ T
t ruduVl(ST , T )|St = S

]
(2.7)

where S ∈ R and St is described by the stochastic differential Equation (2.5) and ru is the instantaneous
discount rate applicable for a very short period [u, u + du] [24,30]. Note that the expectation is taken
under the risk-neutral probability measure Q where the stochastic term in Equation (2.5) is governed by
Brownian motion or it is a Wiener process.
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Black, Scholes and Merton had to assume a constant or fixed volatility to be able to obtain an analytic
solution from Equation (2.7). When the volatility is a function of both the spot price S and time t (even
if assumed to be deterministic, not stochastic), Equation (2.7) has no analytic or closed-form solution
and Equation (2.6) can be solved numerically only.

The big question is, what is this local volatility σ(S, t)? Can it be measured or estimated? Implied
volatility σ(K,T ) is a tradable quantity and thus measurable. Local volatility is not. Equation (2.6)
will only be useful if we can understand the local volatility function σ(S, t) and if we can measure it
somehow or link it to measurable quantities.

3. Local Volatility

Local volatility models are widely used in the finance industry [31]. Whereas stochastic volatility and
jump-diffusion models introduce new risks into the modeling process, local volatility models stay close
to the Black-Scholes theoretical framework and only introduce more flexibility to the volatility. This is
one of the main reasons of fierce criticism of local volatility models [32]. Thus, it is a mistake to interpret
local volatility as a complete representation of the true stochastic process driving the underlying asset
price. Local volatility is merely a simplification that is practically useful for describing a price process
with non-constant volatility. A local volatility model is a special case of the more general stochastic
volatility models. That is why these models are also known as “restricted stochastic volatility models”.

The local volatility function σ(S, t) is assumed to be deterministic—it is a deterministic function of a
stochastic quantity St and time. So there is still just one source of randomness, ensuring the completeness
of the Black-Scholes model is preserved. Completeness is important, because it guarantees unique prices,
thus no-arbitrage pricing and hedging [34].

Dupire was the first to show algebraically that, given prices of European call or put options across
all strikes and maturities, we may deduce the volatility function σ(S, t), which produces those prices
via the full Black-Scholes Equation [9,27]. Dupire’s insight was that if the spot price follows a
risk-neutral random walk and if no-arbitrage market prices for European vanilla options are available
for all strikes and expiries, then the local volatility σ(S, t) in Equation (2.5) can be extracted analytically
from European option prices [34]. He, unknowingly, applied Gyöngy’s theorem [16].

3.1. Rubinstein’s Thoughts

The question was how could we obtain the local volatility σ(S, t) if we only have the traded
implied volatilities σ(K,T ) at hand? What is the relationship between these two volatilities?
While Dupire [34] realized that the local volatilities should be compatible with the observed smiles
at all maturities, Rubinstein [13] reiterated that one of the central ideas of economic thought is that,
in properly functioning markets, prices contain valuable information that can be used to make a wide
variety of economic decisions. These decisions are highly dependent on the availability of a satisfactory
model that relates prices to the desired information. He further pointed out that such a model should
be implemented by timely and low-cost methods and that the exogenous inputs should be measured
correctly. Lastly, we should have efficient markets.
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This thought process led Rubinstein [13] and Derman and Kani [8] to develop numerical schemes
where they were able to relate the local volatility to the stock price, implied volatilities and time. Both of
these methods use the so-called implied trees. The basic idea of these tree schemes is to price options in
a standard Cox, Ross and Rubinstein (CRR) tree with a constant volatility, and then adjust the volatility
at the nodes in the tree by using the given implied volatility skew, to obtain the correct market prices for
the relevant options. The disadvantages of these methods are that they are slow and notoriously unstable
while convergence seems to be a problem [29]. That is why the analytic solution of Dupire is preferred
over the numerical schemes.

3.2. Unique Diffusions and Gyöngy

What significance does volatility have to an option trader. Remember, historical volatility is calculated
from the time series of the stock prices. This volatility is thus “backward looking”. On the other hand,
implied or market volatility is “forward looking” i.e., it is an estimate of the future volatility or the
volatility that should prevail from today until the expiry of the option.

Rational market makers base option prices on these estimates of future volatility. To them, the
Black-Scholes implied volatility σ(K,T ) is, to some extent, “the estimated average future volatility” of
the underlier over the lifetime of the option. In this sense, σ(K,T ) is a global measure of volatility.
But, remember Rebonato’s statement that implied volatility is not a statistical measure, it is just a
price [29].

On the other hand, the local volatility σ(S, t), represents “some kind of average” over all possible
instantaneous volatilities, at a certain point in time, in a stochastic volatility world [33]. Unlike the naive
implied volatility σ(K,T ) produced by applying the Black-Scholes formula to market prices, the local
volatility is the volatility implied by option values produced by the one factor Black-Scholes PDE given
in Equation (2.6).

Similarly, in the option market, each standard option with a particular strike and expiry time has its
own implied volatility, which is the implied constant future local volatility that equates the Black-Scholes
value of an option to its current market price. Further insights led Dupire [34] and Derman and Kani [8]
to realize that, knowing all European option prices merely amounts to knowing the probability densities
of the underlying stock price at different times, conditional on its current value. This led them to state
that under risk neutrality, there was a unique diffusion process consistent with the risk neutral probability
densities derived from the prices of European options. This diffusion is unique for any particular stock
price and holds for all options on that stock, irrespective of their strike level or time to expiration. This is
in contrast to the general Black-Scholes theory supposing that the implied volatility skew infers that one
stock should have many different diffusion processes: one for every strike and time to expiry. This, of
course, cannot be the case.

Kani et al. [35] further showed that the local variance, σ2(K,T ) is the conditional risk-neutral
expectation of the instantaneous future variance of the stock returns, given that the stock level at the
future time T is K. We can also interpret this measure as a K-level, T -maturity forward-risk-adjusted
measure. This is analogous to the known relationship between the forward and future spot interest rates
where the forward rate is the forward-risk-adjusted expectation of the instantaneous future spot rate [36].
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Dupire, Derman, Kani and Kamal rediscovered a known (but lost) theorem stated and proved a decade
earlier. They proved it independently from a practitioner’s point of view. This was a proposition
by Krylov but proven by Gyöngy [16]. Gyöngy’s theorem is an important theoretical result that
links local volatility models to other diffusion models that are also capable of generating the implied
volatility surface.

Alexander and Nogueira [37] pointed out that the basic idea is that, a given stochastic differential
equation (SDE) with stochastic drift and diffusion coefficients, can be mimicked by another constructed
process. However, this mimicking SDE can be constructed such that it has deterministic coefficients
such that the solutions of the two equations have the same marginal probability distributions. In essence,
Gyöngy’s theorem states that the local volatility SDE given in Equation (2.5) is just a special case of a
more general stochastic differential equation with stochastic drift and volatility.

With Gyöngy one can map a multi-dimensional Ito process to a one-dimensional Markov process
with the same marginal distributions as the original process. It is used by practitioners to construct
simpler SDEs by, for instance, reducing the number of stochastic processes in models that incorporate
stochastic volatility and stochastic interest rates and/or dividends. Read more on this important theorem
in Appendix A.

3.3. What Does It Mean in Practice?

We know that every option volatility that is traded in the market, is linked to a strike and a time as
depicted by the implied volatility surface—we say traded volatility is state and space dependent.

3.3.1. Implied and Instantaneous Volatility

In order to understand what is meant by “local” volatility, we need to refresh our memory on historical,
implied and instantaneous volatilities. Gatheral [33] stated that the local volatility is representing “some
kind of average over all possible instantaneous volatilities” in a stochastic volatility world. What does
this mean? How can we obtain more than one instantaneous volatility in order to calculate an average?

If market volatilities are not known, many traders will look at historical volatilities (also known as
realized volatility). Let us assume we have a stock price that diffuses through time. The prices are
given by S1, S2, S3, . . . Si, . . . Sn and Si is the stock price at the end of the i-th time interval where
i = 1, 2, 3, . . . n. The logarithmic (per period) returns are defined as

xi = ln

(
Si+1

Si

)
(3.8)

The standard deviation is then given by

σ̂(T ) =

√∑n
i=1 (xi − x̄)2

n
(3.9)

where x̄ is the mean of all xi. σ̂(T ) in Equation (3.9) is defined as the historical volatility over the time
interval [0, T ]. Note, this is the average volatility for our n discrete time intervals.
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An example is shown in Table 1 for some stock with 11 prices and n = 10 time intervals.

Table 1. Prices and volatilities for some stock.

Steps (n)/Time Price (Si) Logarithmic Returns (xi) Forward Instantaneous Volatility (σinst)

1 100 9.9751%
2 101 0.0099503 9.9259%
3 102 0.0098523 9.9259%
4 101 –0.0098523 20.1021%
5 97 –0.0404095 10.1274%
6 98 0.0102565 10.0759%
7 99 0.0101524 17.2780%
8 102 0.0298530 9.8773%
9 103 0.0097562 14.0030%

10 101 –0.0196085 9.9751%
11 100 –0.0099503

Standard
Deviation 2.00%

Annualized
Historical
Volatility 31.77%

If the time interval for our example was one day, then Table 1 shows that the annualized volatility
(or realized volatility) for this discrete time series is 31.77%. This is just the average of the per period
volatility of 2% annualized by

√
252. This might not make sense if we have daily or even monthly data.

However, these time intervals can be made as small as possible by increasing the number of time steps n
and in the limit as n→∞, we arrive at the true instantaneous volatility.

In Figure 1 we plot the prices shown in Table 1. Also shown in the table are the instantaneous
volatilities. Inside Figure 1 is the definition of the instantaneous volatility which is just the square root
of the logarithmic return per period as given by Equation (3.8) or

σinst(ti) =
√
xi (3.10)

In the market the smallest time interval might be one second and if we have access to high frequency
data we can calculate a “market instantaneous volatility” from one second to the next.

As shown in Figure 1, to obtain the instantaneous volatility at the fourth interval where i = 4 we have

σinstant(i = 4) =
√
x4 =

√
ln(S5/S4)

To calculate σinstant(i = 4) we need the stock price at time t = 4 and the stock price one instant
ahead at t = 5. Due to this, the definition for the instantaneous volatility is actually the definition for the
forward instantaneous volatility because we look forward in time—this is similar to the definition for the
instantaneous forward interest rate [36].

Furthermore, if we have a real historic time series of stock prices, we can only obtain one
instantaneous volatility at each time step. In Table 1 we list the 10 forward instantaneous volatilities
for the 11 given stock prices.
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Figure 1. Price path of some stock showing the standard deviation, annualized volatility and
instantaneous volatilities.

3.3.2. Local Volatility by Example

If we understand the concept of instantaneous volatility, we are much closer to understanding the
statement by Gatheral [33]: local volatility is representing some kind of average over all possible
instantaneous volatilities in a stochastic volatility world.

In Figure 1 we plotted one price path and from the previous section we now know we can estimate the
forward instantaneous volatilities at each time step. However, instantaneous volatility is time dependent
only, but we know that local volatility is state and space dependent. Instantaneous volatility alone does
not, unfortunately, bring us much closer to an explanation of local volatility. Local volatility can never
be obtained from market or historical stock prices. It can only be obtained through simulation or from
option prices in the market.

Let us try to understand local volatility through simulation. In Figure 2 we show a typical price path
of a stock as it starts at a price of 100 on 10 February 2014 and it diffuses discretely through time—this is
similar to our example in Figure 1. However, these prices are simulated through a Monte Carlo process,
they are not real market values. This process should be governed by the correct stochastic volatility
PDE. We can obtain the forward instantaneous volatilities for each time step as explained in the previous
section. From this simulation we estimate the implied/realized volatility over the 6 month period to be
about 30%.



J. Risk Financial Manag. 2015, 8 54

Let us now run another simulation and add this price path to Figure 2. This is shown in Figure 3.
We can now zoom in on 26 May 2014 where the stock price level is R95. We note that for this particular
example, the two simulated price paths cross and both arrived at the same stock price at the same time.
On this date, we have two price paths and we can thus calculate two forward instantaneous volatilities.

Figure 2. One simulated price path of some stock with a 30% volatility over a six
month period

Figure 3. Two simulated price paths of some stock with a 30% volatility over a six
month period
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The local volatility is then defined, à la Gatheral, as the average of these two instantaneous volatilities.
Why? Remember, we know that local volatility is state and space dependent, thus the specific level of
the stock price has to come into play as well. Crucial is the fact that we are at an instant of time at a
certain stock price.

We can generalize the simulation by generating a great number of price paths through simulation7.
Through the law of large numbers, we expect to have a large number of paths that will pass through the
R95 level [24]. We can then calculate the local volatility as follows

σ(R95, 26May2014) =

√√√√ 1

m

m∑
j=1

xj

where we have m (m → ∞) price paths running through R95 meaning we will have m instantaneous
volatilities. In other words, the “local volatility is representing some kind of average over all possible
instantaneous volatilities”.

We can now generalize this further if we realize that if we run a great number of simulations we
will have many paths passing through every conceivable stock price S on 26 May 2014 where S ∈ R+

0 .
We will actually end up with many, many price paths passing through every stock price at every time
interval. In practice we only have discrete time intervals and also discrete stock prices. Sticking to our
definition of local volatility to be the average over all instantaneous volatilities at a point in time, we
define local volatility mathematically as follows

σ(Sk(ti), ti) =

√√√√ 1

m

m∑
j=1

xj(Sk(ti), ti) (3.11)

where ti is the i-th time interval (i = 1, 2, 3, . . . , n) and Sk is the k-th price at time ti

where k = 1, 2, 3, . . . , l such that we have l stock prices at each time interval.
If we do this numerically for a discrete number of stock prices and a discrete number of time intervals,

we end up with a matrix where we have a local volatility for every stock price at every time interval.
In Figure 3 counter i runs from left to right across time and k from bottom to top across different stock
prices. In the limits as n,m, l→∞, we will end up with the continuous version.

In our example shown in Figure 3, we can do this for every possible future time from 10 February
2014 till 10 August 2014 and every possible price at each time. If we do this we obtain the whole local
volatility surface. In practice we can only do it discretely and thus we do it for every day, week or month.
We can for instance divide the time to expiry into monthly buckets and choose stock levels from R10
to R200 in increments of R10. We then determine the local volatility for every price and every bucket
giving us a grid of volatilities. Such a grid (matrix) is shown in Figure 4 and it represents the local
volatility surface. From Figure 4 we deduce that, although local volatilities are not “real”, they look
similar to the market or implied volatilities.

7 We actually want to generate an infinite number of price paths which is, of course, not possible in practice. Dependent on
the speed of the computer’s central processing unit one might try to generate 100,000 or even 1,000,000 paths.
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Figure 4. A grid or matrix showing possible local volatilities per time bucket and price level.

3.3.3. Sticky Local Volatility

We now know that local volatility is the name given for the instantaneous volatility of an underlying
(i.e., the exact volatility), at a certain point in time at a specific stock level St. The volatility is “stuck”
to the price of the underlying at that point in time and we call such a surface a “sticky local volatility
surface.” This can be compared to a sticky strike or a sticky delta implied volatility surface [38,39].

From Sections 3.2 and 3.3.1, we know that the Black-Scholes implied volatility of an option with
strike K is equal to the average (across time) local (or instantaneous) volatility of all possible paths of
the underlying from spot at S0 to strikeK. This can be approximated by the average of the local volatility
at spot and the local volatility at strike K. Bennett and Gil [40] show that this approximation leads to
three results:

• The at-the-money Black-Scholes volatility is equal to the at-the-money local volatility.
• The Black-Scholes skew is half the local volatility skew (due to averaging). Skew here is similar

to the slope of the curve. In the market it is usually taken as, simply, the difference between the
90% strike volatility and 100% strike volatility.
• A sticky local volatility surface implies a negative correlation between spot and implied

volatility—the local volatility framework is thus very realistic.

The second point is understood through the following example: Let us assume the local volatility
for the 90% strike is 22% and the ATM local volatility is 20%. The 90%–100% local volatility skew is
therefore 2%. As the Black-Scholes 90% strike option will have an implied volatility of 21% (the average
of 22% and 20%), it has a 90%–100% skew of 1% (as the ATM Black-Scholes volatility is equal to the
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20% ATM local volatility). This is half the local volatility skew. The dynamics of the sticky local
volatility surface is depicted in Figure 5.

Figure 5. Dynamics of a local volatility surface (Taken from [40]).

3.4. Local Volatility by a Deterministic Volatility Function

Local volatility is not traded and thus is not a measurable quantity like implied volatility.
Local volatility must be calculated somehow. This was a conundrum for a long time. Practitioners and
quants knew from the start that there should be some link between the implied and local volatility.
This makes sense because the implied volatility, σ(K,T ) is just a special case of the local volatility
σ(S, t) such that

σ(K,T ) ∝ σ(S, t).

Remember that K,S ∈ R+
0 and t ∈ [0, T ]

Before a derivative can be priced using the local volatility, we need to obtain the local volatility
function. Before the mid-1990s, quants calculated the local volatility surface by pricing a vanilla option
using the general Black-Scholes equation and the implied volatility from the traded skew. The local
volatility could then (and still can) be found by setting

Vl(σ(S, t))− Vbs(σ(K,T )) = 0

and then finding σ(S, t) by solving Equation (2.6) numerically by Monte Carlo or finite difference
methods. Optimization is usually done by nonlinear least squares (NLS).

The local volatility surface obtained in this manner is in general not smooth. Dumas et al. [22]
realized that if volatility is a deterministic function of asset price and/or time, option valuation based
on the Black-Scholes partial differential Equation in (2.6) remains possible, although not by means of
the Black-Scholes formula itself. They stated this is a special case and termed it the “deterministic
volatility function” (DVF) hypothesis. They further stated that the reliability of this hypothesis depends
critically on how well one can estimate the dynamics of the underlying asset price from a cross section
of option prices.
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Carr et al. [41] recently proved that a quadratic analytic functional form for the local volatility is
tractable in accordance to the local volatility SDE in Equation (2.5). This was previously empirically
proven by [22].

3.5. Dupire Local Volatility

Let us recap what we know: From Equation (2.5) we know that the general Black-Scholes differential
equation is obtained from the SDE

dSt = (r − d)Stdt+ σ(St, t)StdWt (3.12)

In its most general form, the function σ(S, t) is called the instantaneous volatility for an option
with time to expiry T and its dynamics are stochastic. Furthermore, similar to the definition of the
instantaneous forward interest rate [36], we define the square of the at-the-money implied volatility
as follows

σ2(T ) =
1

T

∫ T

0

σ2(t)dt (3.13)

by additivity of variance [27]. This shows that the implied volatility is a fair average, across time, over
all instantaneous variances.

Readers might be confused due to the last paragraph in Section 2.1 and Equation (2.4) where we stated
that the implied volatility is not a volatility after all. The instantaneous variance in Equation (3.13) is not
the true variance of the stochastic process St. It is something different as explained by Rebonato [29]
and in §2.1.

We further know that the Black-Scholes backward parabolic equation in variables S and t, given in
Equation (2.6), is the Feynman-Kac representation of the discounted expected value of the final option
value as given in Equation (2.7) [42].

Dupire [34] attempted to answer the question of whether it was possible to construct a
state-dependent instantaneous volatility that, when fed into the one-dimensional diffusion equation given
in Equation (3.12), will recover the entire implied volatility surface σ(K,T )? This suggests he wanted
to know whether a deterministic volatility function exists that satisfies Equation (3.12). The answer to
this question is negative, however, it becomes true if we apply Gyöngy’s theorem where the stochastic
differential Equation in (3.12) is transformed to another SDE with a non-random volatility function.
This is ultimately what Dupire proved.

According to standard financial theory, the price at time t of a call option with strike priceK, maturity
time T is the discounted expectation of its payoff, under the risk-neutral measure. Dupire assumed that
the probability density of the underlying asset St at the time t has to satisfy the forward Fokker-Planck
Equation (also known as the forward Kolmogorov equation) given by [9]

∂

∂t
ϕ =

1

2

∂2

∂S2
T

(σ2(ST , T )S2
Tϕ)− St

∂

∂ST
((r − d)STϕ) (3.14)
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where ϕ ≡ ϕ(ST , T ) is the forward transition probability density of the random variable ST (final S
at expiry time T ) in the SDE shown in Equation (3.12) [27]. However, using the Breeden-Litzenberger
formula [43]

∂2C

∂K2
= ϕ(K,T ), (3.15)

and doing a bit of calculus (see [27,33]), we can rewrite this and obtain the Dupire forward equation in
terms of call option prices C(K,T )[

∂

∂T
+ (r − d)K

∂

∂K
− 1

2
σ2(K,T )K2 ∂2

∂K2
+ d

]
C(K,T ) = 0 (3.16)

where σ(K,T ) is continuous, twice-differentiable in strike and once in time, and local volatility is
uniquely determined by the surface of call option prices. Note how, when moving from the backward
Kolmogorov Equation (the Black-Scholes PDE given in Equation (2.3)) to the forward Fokker-Planck
equation, the time to maturity T has replaced the calendar time t and the strike K has replaced the stock
level S. The Fokker-Planck equation describes how a price propagates forward in time. This equation is
usually used when one knows the distribution density at an earlier time, and one wants to discover how
this density spreads out as time progresses, given the drift and volatility of the process [29]. Dupire’s
forward equation also provides useful insights into the inverse problem of calibrating diffusion models
to observed call and put option prices.

This forward PDE is very useful because it holds in a more general context than the backward PDE:
even if the (risk-neutral) dynamics of the underlying asset is not necessarily Markovian, but described
by a continuous Brownian martingale

dSt = StσdWt

then call options still satisfy a forward PDE where the diffusion coefficient is given by the local
(or effective) volatility function σ(S, t) given by

σ(S, t) =
√
E[σ2|St = S]

and σ is the instantaneous or stochastic volatility of the process St. This method is linked to the
Markovian projection problem: the construction of a Markov process which mimics the marginal
distributions of a martingale. Such mimicking processes provide a method to extend the Dupire equation
to non-Markovian settings (see Appendix A).

Dupire [9] used the strike/dual Gamma (∂2C/∂K2) of a call option, that gives the marginal probability
distribution function [43], and thought of this as timeslices of the forward transition probabilities. Now,
since the forward Fokker-Planck equation in Equation (3.14) describes the time evolution of forward
transition probabilities, we can isolate the volatility coefficients that recover the prices of tradable call
options for all strikes and all times in Equation (3.16).

Dupire actually proved that it is possible to find the same option price solving a dual problem, namely
a forward parabolic equation in the variables K and T known as the dual Black-Scholes equation or
Dupire’s equation. This equation is actually the Fokker-Planck equation for the probability density
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function of the underlying asset integrated twice. This solution allows us to calculate the price of an
European call option for every strike and maturity, given the present spot value S and time t.

Dupire solved for the volatility and got [9]

σ2
loc(K, τ) = 2


∂C(K, τ)

∂τ
+ C(K, τ)d+ (r − d)K

∂C(K, τ)

∂K

K2∂
2C(K, τ)
∂K2

 (3.17)

Thus, given prices for all plain-vanilla call options C(K, τ) today, σloc(K, τ) is the local volatility
that will prevail at time τ when the future stock price is equal to K (Sτ = K). Note that we introduced
a new time variable τ = T ′− t and T ′ where t ≤= T ′ ≤ T—call this an interim expiry date. The reason
is that it facilitates the calculation and plotting of the whole surface from t to the expiry date T . We now
have that t and S0 are respectively the market date, on which the volatility smile is observed, and the
asset price on that date. To calculate the local volatility at each time point from t to the expiry time T ,
we let T ′ move forward in time while we keep t constant. To plot the 3D surface, start at the valuation
date t, move forward in time by a small amount to a new T ′; for example a day or a week. Calculate τ
and vary the strikes to calculate σloc(K, τ). Move forward to a new T ′ and do the same until one ends at
T ′ = T .

Note that r is a fixed interest rate and d a fixed dividend yield, both in continuous format. See the
number 2 on the right hand side of Equation (3.17). This backs our statement in Section 3.3.3 up where
we stated that the implied volatility is half the local volatility skew. Note that Equation (3.17) ensures
the existence and uniqueness of a local volatility surface which reproduces the market prices exactly.

We further note that for Equation (3.17) to make sense, the right hand side must be positive. How can
we be sure that volatilities are not imaginary? This is guaranteed by no-arbitrage arguments. We have
from the denominator

σ2
loc(K,T ) ∝

(
K2 × ∂2C

∂K2

)−1
K2 is positive always and, the dual gamma or risk-neutral price density must be positive in the
absence of arbitrage (butterfly spread). To ensure the positivity of the numerator, we note that
no-arbitrage arguments state that calendar spreads should have positive values. Kotzé and Joseph [44]
and Kotzé et al. [18] discusses no-arbitrage arguments in detail. We can turn these statements around:
An implied volatility surface is arbitrage free if the local volatility is a positive real number (not
imaginary) where σloc(K,T ) ∈ R+

0 .
Dupire’s Equation (3.17) is not analytically solvable. The option price function (and the derivatives) in

this equation have to be approximated numerically. The derivatives are easily obtained in using Newton’s
difference quotient. To obtain the dual delta, ∂C/∂K, we therefore use

∂C(K,T )

∂K
=
C(K + ∆K, σ(K + ∆K,T ))− C(K, σ(K,T ))

∆K
(3.18)

where we note that all calls should be priced with the implied volatility smile. Here, C(K+ ∆K, σ(K+

∆K,T )) denotes a call price at a strike ofK+∆K where the implied volatility is found from the implied
volatility skew for this option expiring at T with a strike of K + ∆K. To find an optimal size of the
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bump, ∆K, it should be tested for. For an index like the Top 40, one or ten index points works very well
but some people prefer it to be a percentage of the strike price. Be careful not to make it too big—1%
might seem small but it is in general too big. One or ten basis points works rather well for the change in
time interval.

Further note that one cannot use the closed-form Black-Scholes derivatives for the dual delta. We call
the numeric dual delta in Equation (3.18), the impact/modified dual delta. Traders call the ordinary
delta calculated this way, i.e., with the skew, the impact/modified delta due to the fact that it gives a
truer reflection (or impact) of the dynamic hedging process—it takes some of the nonlinear effects of the
Black-Scholes equation, together with the shape of the volatility skew, into account. The dual gamma is
numerically obtained by

∂2C(K,T )

∂K2
=
C(K + ∆K, σ(K + ∆K)) + C(K −∆K, σ(K −∆K))− 2C(K, σ(K))

∆K2

where we dropped the T for clarity’s sake [29].
Unfortunately there are practical issues with Equation (3.17). Problems can arise when the values to

be approximated are very small and small absolute errors in the approximation can lead to big relative
errors, perturbing the estimated quantity heavily. Determining the density ∂2C/∂K2 is numerically
delicate. It is very small for options that are far in- or out-of-the-money (the effect is particularly large
for options with short maturities). Small errors in the approximation of this derivative will get multiplied
by the strike value squared resulting in big errors at these values, sometimes even giving negative values,
resulting in negative variances and complex local volatilities. The local volatility will remain finite and
well-behaved only if the numerator approaches zero at the right speed for these cases.

Further to the numerical issues, the continuity assumption of option prices is, of course, not very
realistic. In practice option prices are known for certain discrete points and at limited number of
maturities (quarterly for instance like most Safex options). The result of this is that in practice the
inversion problem is ill-posed i.e., the solution is not unique and is unstable—the positivity of the second
derivative in the strike direction is not guaranteed.

3.6. Local Volatility in terms of Implied Volatility

The instability of Equation (3.17) forces us to consider alternatives. We know options are traded in
the market on implied volatility and not price. Can we thus not transform this equation such that we
supply the implied volatilities instead of option prices?

This can be done if a change of variables is made in Equation (3.17) by rewriting the Black-Scholes
equation for a call C in terms of the log-strike y where y = log(strike/forward). This leads to [23,27]

σ2
loc(K, τ) =

σ2
imp + 2τσimp

∂σimp
∂τ

+ 2(r − d)Kτσimp
∂σimp
∂K(

1 +Kd1
√
τ
∂σimp
∂K

)2

+K2τσimp

(
∂2σimp
∂K2 − d1

√
τ

(
∂σimp
∂K

)2
) (3.19)
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where

d1 =
ln (S0/K) +

(
(r − d) + σ2

imp/2
)
τ

σimp
√
τ

and σimp ≡ σimp(K, τ) where τ = T−t such that t and S0 are respectively the market date, on which the
volatility smile is observed, and the asset price on that date. Note that Equation (3.19) gives the variance,
i.e., σ2. See the explanation following Equation (3.17) on how the new variable τ facilitates the plotting
of the whole local volatility surface.

When comparing Equations (3.17) and (3.19) it is clear that the problem of numerical large errors
no longer exists. The transformation of Dupire’s formula into one which depends on the implied
volatility ensures that the dual Gamma is no longer alone in the denominator as it was in Equation (3.17).
The second derivative of the implied volatility is now one term of a sum, so small errors in it will not
necessarily lead to large errors in the local volatility function. However, small differences in the input
volatility surface can produce a big difference in the estimated local volatility.

The main problem is that the implied or traded volatilities are only known at discrete strikes K and
expiries T . This is why the parameterisation chosen for the implied volatility surface is very important.
If implied volatilities are used directly from the market, the derivatives in Equation (3.19) need to be
obtained numerically using finite difference or other well-known techniques. This can still lead to an
unstable local volatility surface. Furthermore we will have to interpolate and extrapolate the given data
points unto a surface. Since obtaining the local volatility from the data involves taking derivatives, the
extrapolated implied volatility surface cannot be too uneven. If it is, this unevenness will be exacerbated
in the local volatility surface showing that it is not arbitrage free in these areas.

In the foreign exchange market, options are traded on the Delta—effectively a measure of the
moneyness—as opposed to the absolute level of the strike. See Clark [27] for the FX version of
Equation (3.19).

4. The ALSI: Exact Implementation of the DVF

4.1. The Deterministic Implied Volatility Function

The issues relating to determining the derivatives in Equation (3.19) are circumvented in two ways.
One can either choose a particular functional form for the implied volatility surface and fit this function
to the market volatility data, or one can choose a particular functional form for the local volatility surface
and find it using non-linear optimization techniques.

Safex chose the first way for the liquid ALSI options and uses the following Three-parameter
deterministic quadratic function as a good model of fit for the ALSI implied volatility data on every
expiry date (for a full discussion see [18,44])

σmodel(β0, β1, β2, Tk) = βk0 + βk1 M + βk2 M
2 (4.20)

Tk are the times to expiry for all listed expiry dates such that k = 1, 2, . . . , n and n is the total number of
listed expiries. Note that the ALSI options traded on Safex are options on a futures contract—the ALSI
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is the liquid futures contract on the FTSE/JSE Top 40 tradable index. In all of the analysis below we
assume that the spot price of the ALSI is the futures level F .

This equation, of course, describes a parabola (for each expiry) and this conic section has the
following properties (dropping the superscript k)

• M = K/F is the strike price in moneyness format (Strike/Future),
• β0 is the constant volatility (shift or trend or level) parameter, β0 > 0. Note that

σ → β0
M→0

This means that β0 is similar to the Y -intercept for a parabola. We have, in the Cartesian plane,
the Y -axis being σmodel and the X-axis being the moneyness.
• β1 is the correlation (slope) term. This parameter accounts for the negative correlation between

the underlying index and volatility. The no-spread-arbitrage condition requires that −1 < β1 < 0.
• β2 is the volatility of volatility (“vol of vol” or curvature/convexity) parameter.

The no-calendar-spread arbitrage convexity condition requires that β2 > 0.

Note that Equation (4.20) is linear in the wings8 if M → ±∞ and it holds for discrete expiry time T .
The linearity of the skew in the wings is a well-known empirical fact and it was proven mathematically
by Lee [46] and extended by Benaim and Friz [45]. Lee proved that the implied variance is linear in
strike for very small en very large strikes. These properties and constraints are the factors describing
the shape of the skews—they are not the no-arbitrage constraints. They are, however, related to the
no-arbitrage conditions imposed on a volatility skew and surface—these are discussed in [18].

The n parabolas described by Equation (4.20) can now be fitted to the relevant option data (obtained
per expiry date) independently to give us n discrete skews. In order to incorporate the time dependence
and generate a continuous smooth implied volatility surface we also need a specification or functional
form for the at-the-money (ATM) volatility term structure. It is, however, important to remember that the
ATM volatility is intricately part of the skew. This infers that the two optimizations (one for the skews
and the other for the ATM volatilities) cannot be done strictly separate from one another. Taking the
ATM term structure together with each skew will give us the 3D implied volatility surface.

It is well-known that volatility is mean reverting; when volatility is high (low) the volatility term
structure is downward (upward) sloping [33]. Safex uses the following exponential functional form for
the ATM volatility term structure

σatm(M, t) =
θ

tλ
(4.21)

Here we have (See [44] for full details)

• t is the time to expiry,
• λ controls the overall slope of the ATM term structure; λ > 0 implies a downward sloping

ATM volatility term structure, whilst a λ < 0 implies an upward sloping ATM volatility term
structure, and

8 The wings are the sections of the skew that is far away from the mid-point or at-the-money strike.
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• θ controls the short term ATM curvature.

We now assume that each of the parameters β in Equation (4.20) must satisfy Equation (4.21)
such that

βi(t) =
θi
tλi

; i = 0, 1, 2 (4.22)

To ensure the surface is continuous we dropped the superscript k and changed the discrete expiry
times Tk to a continuous time t where Tk ∈ t; t ∈ R+

0 . Combining Equations (4.20) and (4.22) leads to

σimp(M, t) =
θ0
tλ0

+
θ1
tλ1
M +

θ2
tλ2
M2 (4.23)

Equation (4.23) fully describes the 3D implied volatility surface. We have to find 6 parameters by
fitting this function to the market volatility skews using optimization techniques. From Equation (4.21)
we know that λ controls the slope of the curves (we also call this the scaling parameters) while θ controls
the curvature. From Equation (4.20) we thus have

• β0 and λ0 are called the level or shift or trend parameters and they control the level of the volatility.
• β1 and λ1 are called the rho or tilt parameters and they control the overall slope of the curves.
• β2 and λ2 are the volatility of volatility parameters and they control the curvature.

Kotzé and Joseph [44] mention they use a floating surface such that MATM = 1 i.e., the ATM strike is
one. A floating surface is defined such that

σimp(M, t) = σATM(t) + σfloatimp (M, t) (4.24)

where σATM(t) is the market at-the-money volatility.
Now, from Equation (4.23) we have

σATM
imp (t) =

θ0
tλ0

+
θ1
tλ1

+
θ2
tλ2

(4.25)

Thus, combining Equations (4.23)–(4.25) leads us to the final 3 dimensional market volatility surface
given by (transforming back from moneyness to the real world i.e., substituting M = K/F )

σimp(F,K, t) = σATM(t) +
θ1
tλ1

(
K

F
− 1

)
+
θ2
tλ2

((
K

F

)2

− 1

)
(4.26)

Safex obtains the ATM volatilities from the market meaning σATM(t) is a constant for every t.
Safex publishes two other parameters: θA and λA. These parameters are the at-the-money parameters

from Equation (4.21) and gives the theoretical ATM term structure of volatility. They are obtained
by fitting Equation (4.21) to the market (or mark-to-market (MtM)) term structure of ATM volatilities
σATM
MtM (t) such that

σATM
model(t) =

θA
tλA
' σATM

MtM (t) (4.27)

Using them in calculating the ATM volatilities will give slightly different values if compared to the
at-the-money volatilities calculated using Equation (4.25). The reason is that θA and λA are obtained
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by fitting Equation (4.21) to the raw ATM volatility data while the other θ’s and λ’s are obtained by
optimizing the whole surface and by taking the no-arbitrage conditions into account (see [44]).

We need to mention a practical implementation point here. The term structure of ATM volatilities
as obtained from the model in Equation (4.27) will not coincide with all the traded or mark-to-market
ATM volatilities due to the numerical fitting procedure. We must, however, ensure that if we price an
option expiring on a particular date, that σATM(t) in Equation (4.26) equates the market ATM volatility
for that date. As an example, if we price a 9 month option (T = 0.75) and we have the 9 month
mark-to-market ATM volatility σATM

MtM (0.75), we need to ensure that σATM(0.75)) in Equation (4.26) is
equal to this volatility. This is achieved by floating σATM

model(t) up or down by a constant amount such that
σATM(0.75) = σATM

MtM (0.75) = σATM
model(0.75). This will in general have the effect that σATM(t) is not equal

to the mark-to-market volatilities for t 6= 0.75.
The whole volatility surface is now described by a functional form given in Equation (4.26).

The derivatives in Dupire’s local volatility function in Equation (3.19) can now be obtained analytically
such that we have from Equation (4.26)

∂σimp(F,K, t)

∂K
=

1

F

θ1
tλ1

+ 2
K

F 2

θ2
tλ2

∂2σimp(F,K, t)

∂K2
= 2

1

F 2

θ2
tλ2

(4.28)

∂σimp(F,K, t)

∂t
= −λ1θ1t−(λ1+1)

(
K

F
− 1

)
− λ2θ2t−(λ2+1)

((
K

F

)2

− 1

)

Using Equations (4.28) will lead to a smooth Dupire local volatility function for σloc(K,T )) in
Equation (3.19). Further, if the implied volatility surface in Equation (4.26) is arbitrage-free, the
corresponding Dupire local volatility surface should be arbitrage-free as well.

Equations (4.26) and (4.28) can now be substituted into Dupire’s equation in Equation (3.19) such
that we calculate the local volatility surface algebraically across time and strike.

4.2. The ALSI Implied and Local Volatilities

It is now pretty straight forward to obtain the local volatility surface for ALSI options. We need the
four parameters, θ1, θ2, λ1 and λ2 and the published ATM volatilities. These parameters are published
every two weeks when Safex updates its volatility surfaces.

In Table 2 we show the parameter values, θi and λi, (i = 1, 2, 3, ATM) as published by Safex on
28 May 2014. Also shown are the values for θi/tλi , i = 0, 1, 2, 3. Table 3 lists σATM

imp , the model ATM
volatilities and official Safex ATM volatilities for all expiry dates. In Figure 6 we show the ALSI implied
and corresponding local volatility surfaces.
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Table 2. Optimized parameters for the ALSI deterministic implied volatility function on
28 May 2014 (see Equations (4.24)–(4.26)).

Curvature

Rho(θ1) VolVol (θ2) Level (θ0) Atm (θATM)

In Months –0.8488985 0.1945430 0.9139862 0.1350075
In Years –0.4337514 0.1069264 0.4753064 0.1595808

Decay

Rho (λ1) VolVol (λ2) Level (λ0) Atm (λATM)

0.2702186 0.2408592 0.2631310 –0.0672942

Date T θ1/t
λ1 θ2/t

λ2 θ0/t
λ1

19 June 2014 0.06027397 –92.655786% 21.033029% 99.531201%
18 September 2014 0.30958904 –59.544292% 14.181881% 64.708854%
18 December 2014 0.55890411 –50.759237% 12.301016% 55.393271%

19 March 2015 0.80821918 –45.943944% 11.255306% 50.269616%
18 June 2015 1.05753425 –42.724414% 10.549535% 46.836131%

17 September 2015 1.30684932 –40.349172% 10.025150% 44.298712%
15 December 2016 2.55342466 –33.668883% 8.531503% 37.140432%
21 December 2017 3.56986301 –30.754183% 7.869980% 34.005870%

Table 3. Model and official Safex at-the-money (ATM) volatilities on 28 May 2014.

Expiry Date Expiry Time T Model ATM σATM
model(t) Safex ATM σATM

MtM(t)

19 June 2014 0.06027397 13.209622% 14.25
18 September 2014 0.30958904 14.747329% 14.00
18 December 2014 0.55890411 15.345386% 14.50

19 March 2015 0.80821918 15.731053% 15.00
18 June 2015 1.05753425 16.018262% 15.75

17 September 2015 1.30684932 16.248072% 16.75
15 December 2016 2.55342466 16.997206% 18.50
21 December 2017 3.56986301 17.384842% 21.00

Continuing with our example in the previous section: if we want to price an 18 Dec 2014 ALSI option,
we will have to float the model ATMs down by 0.15345386-0.145=0.00845386.

From Figure 6 we notice that the implied volatility surface does not have a lot of curvature—it is
skewed but flat. However, we also see from the local volatility surface that it has more curvature.
This shows that the local volatility skew is twice that of the implied volatility as stated in Section 3.3.3.
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Figure 6. ALSI implied and local volatility surfaces on 28 May 2014.

5. Numerical Implementation of Dupire

In Section 4.1 we described the methodology implemented for obtaining the ALSI volatility surface
and how the Dupire local volatility surface can be calculated algebraically. Unfortunately, such
deterministic functions for the implied volatility surfaces for some of the other instruments like the DTOP
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and USDZAR (US Dollar and South African Rand exchange rate), do not exist. The implied volatility
surfaces are, however, available, albeit in a discrete form. All derivatives in Equation (3.19) have to be
computed numerically. The procedures and methodologies implemented at the JSE are discussed in this
section.

5.1. Volatility Interpolation and Extrapolation

In practice, we are often confronted with situations where only limited amounts of data are accessible
and it is necessary to estimate values between two consecutive given data points. We can construct new
points between known data points by interpolation or smoothing techniques.

All implied volatility surfaces used by the JSE are available online9. The volatility surface (first 4
expiries) for the DTOP10 as published on 28 May 2014 is shown in Figure 7. Only a handful of discrete
points are given.

Figure 7. DTOP Please define if necessary volatility surface as published by the
Johannesburg Stock Exchange (JSE) on 28 May 2014.

Inter- and extrapolation is thus necessary. At the JSE, we take the volatilities, square them and do
linear inter- and extrapolation on the variance. However, it is a two-dimensional problem. We have to do
this across strike and across time. If you just need to interpolate across strike prices use the following

σ2(K) = σ2
1 + (σ2

2 − σ2
1)
K −K1

K2 −K1

Here we want to find the variance for a certain strike given by K where K1 ≤ K ≤ K2 and the
volatility at K1 is σ1 and that at K2 is σ2. Further, σ2

1 ≤ σ2 ≤ σ2
2 .

When we interpolate across time only, we use what is known as flat forward interpolation. Volatility is
time dependent. Suppose that N time points t0 = 0, t1, t2, . . . , tN are given, and the implied volatilities

9 http://www.jse.co.za
10 https://www.jse.co.za/downloadable-files?RequestNode=/Safex/mtmdata/VolSkewIndices

http://www.jse.co.za
https://www.jse.co.za/downloadable-files?RequestNode=/Safex/mtmdata/Vol Skew Indices
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for each of these time points are σ1, σ2, . . . , σN . We now define a general interpolation scheme to find
the volatility at any time point t where t ∈ R+

0 such that [27]

σ(t) =


σ1, t < t1√

1

t

[
σ2
i ti + σ2

i,i+1(t− ti)
]
, ti ≤ t < ti+1 for i < N

σN , t ≥ tN

(5.29)

where

σ2
i,i+1 =

σ2
i+1ti+1 − σ2

i ti
ti+1 − ti

5.2. Safex’s Implementation

We use the following 3 steps when we want to implement Dupire’s equation in Equation (3.19) for all
instruments except the ALSI

1. Read in the implied volatility surface as published by the JSE and convert it to a floating and
moneyness format;

2. Regularize the surface, meaning we interpolate and plot it with more than the given 9 strikes
per expiry;

3. Use this regularized implied volatility surface when we transform it to the local volatility surface.

The first step encompasses the format of how the skew is read into our model. All volatility surfaces
are given in the format as shown in Figure 7. This is converted to a floating surface where the strikes
are given in terms of moneyness. Moneyness is (K/S) and is just the percentage of how far the strike is
in- or out-the-money. This is shown in Table 4.

Table 4. Floating DTOP skews for 3 expiry times on 28 May 2014.

DTOM4 19 June 2014 DTOU4 18 September 2014 DTOZ4 18 December 2014

70.2600% 16.4700% 69.9000% 10.4200% 70.2000% 8.6500%
80.0000% 10.6700% 80.1000% 6.6000% 80.3000% 5.4700%
90.2600% 4.9900% 90.3100% 3.0800% 89.9000% 2.6900%
95.3800% 2.3100% 95.4100% 1.4200% 94.9500% 1.3100%
100.0000% 0.0000% 100.0000% 0.0000% 100.0000% 0.0000%
105.1300% –2.4700% 105.1000% –1.5100% 105.0500% –1.2500%
110.2600% –4.8300% 110.2000% –2.9500% 110.1000% –2.4400%
120.0000% –9.0000% 120.4100% –5.6000% 120.2000% –4.6200%
130.2600% –12.9700% 130.1000% –7.8500% 130.3000% –6.5600%

In Table 4 the first row contains the contract codes and skew dates. The first column gives the strikes in
moneyness format. The second columns give the floating or relative volatilities. These are the volatilities
relative to the at-the-money (ATM) volatilities. As an example, if the future level was 9898 (we call this
the at-the-money level) for the 18 December 2014 expiry, we would describe the ATM volatility as the
fair volatility to trade an option with a strike of 9898. We would then expect the 10,898 (9898×110.1%)
strike to trade at a volatility of –2.44% relative to the ATM volatility or 2.44% below the ATM volatility.
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If the ATM volatility was 14.5%, the fair value volatility for this option with a strike of 10,898 would
be 12.06%.

Crucial: we need the ATM volatilities. These are published by Safex daily. We show the data for the
DTOP as published on 28 May 2014 in Table 5. The second last column is empty because none of the
ATM volatilities changed from the previous day.

Table 5. DTOP mark-to-market (MtM) data on 28 May 2014.

VOL. PREV.

DTOP SPOT BID OFFER M-T-M CHANGES VOLS.

19 June 2014 9727 9757 9757 9757 13.00
18 September 2014 9727 9807 9807 9807 14.00
18 December 2014 9727 9898 9898 9898 14.50

19 March 2015 9727 10015 10015 10015 14.50
18 June 2015 9727 10059 10059 10059 14.50

17 December 2015 9727 10249 10249 10249 14.50

The reason for using floating skews is the fact that the SAFEX systems, Nutron and Nuclears, use
them in this way. Equity skews are updated every second week only. Between updates, the skews “float”
up and down stuck to the ATM volatility at the 100% strike. The ATM volatilities are published, and
these might change, on a daily basis. Changes are shown in the column “Changes” (second last) in
Table 5. If this is empty, use the last column as the current ATM volatilities.

Important note:

• When we price an exotic option, we use the theoretical forward levels and not the published futures
level. The reason being that barriers, for instance, are always on the cash level and not the futures
level. We thus use

F = Se(r−d)T

when calculating the forward. We thus need the following inputs.

– Spot or cash level S: this is the current spot price of the underlying shown in column two in
Table 5.

– The current valuation date and expiry date. We then have

T =
Expiry Date− Valuation Date

365

which is the annual time to expiry11.
– ATM volatility for each expiry date. This is given in the last column of Table 5.
– EndDate: The Date that the ATM volatility is applicable for. More specifically the expiry

date of the option.

11 South Africa’s day count convention is actual/365.



J. Risk Financial Manag. 2015, 8 71

– The current continuous compounding interest rate r. Obtained from the official JSE zero
coupon swap yield curve.

– The current continuous compounding dividend rate d. Obtained from Bloomberg.

Let us do an exercise on how to convert the floating skews back into absolute values—these are after
all the values we are going to use. On 22 May 2014 we have the following for the DTOP (see Table 5):
Spot/cash level = 9727, Forward level = 9898, Valuation date = 28 May 2014, ATM volatility = 14.50%,
Expiry Date = 18 December 2014, r = 6.11% and d = 2.98%. Using these values lead us to the volatility
skews shown in Table 6.

Table 6. DTOP implied volatility skews in absolute terms, using inputs as shown.

DTOM4 19 June 14 DTOU4 18 September 14 DTOZ4 18 December 14

6847 30.9700% 6865 24.9200% 6949 23.1500%
7796 25.1700% 7867 21.1000% 7948 19.9700%
8796 19.4900% 8870 17.5800% 8899 17.1900%
9295 16.8100% 9371 15.9200% 9399 15.8100%
9745 14.5000% 9822 14.5000% 9898 14.5000%

10245 12.0300% 10322 12.9900% 10398 13.2500%
10745 9.6700% 10823 11.5500% 10898 12.0600%
11694 5.5000% 11826 8.9000% 11898 9.8800%
12694 1.5300% 12778 6.6500% 12898 7.9400%

Remember, we need the variance or volatility squared. This is shown in Table 7 for our example.

Table 7. DTOP variance skews. Volatilities from Table 6 converted.

DTOM4 19 June 14 DTOU4 18 September 14 DTOZ4 18 December 14

6847 9.5914% 6865 6.2101% 6949 5.3592%
7796 6.3353% 7867 4.4521% 7948 3.9880%
8796 3.7986% 8870 3.0906% 8899 2.9550%
9295 2.8258% 9371 2.5345% 9399 2.4996%
9745 2.1025% 9822 2.1025% 9898 2.1025%

10245 1.4472% 10322 1.6874% 10398 1.7556%
10745 0.9351% 10823 1.3340% 10898 1.4544%
11694 0.3025% 11826 0.7921% 11898 0.9761%
12694 0.0234% 12778 0.4422% 12898 0.6304%

This is the end of step 1.
In step 2, we regularize our skews. This is necessary because, as shown in Tables 4, 6 and 7, we

have nine strikes only (per expiry) and these are not equidistant. To create a finer grid of strikes, with
a regularized or equidistant spacing, we take the distance between the minimum and maximum strikes
(as given) and divide that up into 30 intervals per expiry. This will give a grid with 31 points per expiry
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on the Y -axis. In our example shown in Table 7, we see the maximum strike is 12,898 and the minimum
is 6847. The grid intervals are then given by

((12898− 6847)/30) = 201.7

The grid will then start at 6847 in the top left hand corner (on 19 June 2014) and end at 12,898 at the
bottom right hand corner (on 18 December 2014) with increments of 201.7. On the X-axis of our grid,
we have the times to expiry—this remains as is.

Next, we need the corresponding volatilities at each grid point. This is obtained through inter- and
extrapolation. In practice we use Matlab’s standard “interp1” function to interpolate and extrapolate
the variance linearly for each respective time. The standard formula for this method is given in
Equation (5.1).

As a final precaution we test all data points to ensure we never have volatilities above 100% or
below 1%—we clamp our volatilities to lie between these points. This grid forms the base for all
further calculations. Finally, to enable us to do temporal interpolation we convert the relative variance
(being relative to time) into a total variance, simply by multiplying the variance by the relevant time in
years from start date. Why do we do this? Remember from the Black-Scholes equation that the volatility
is scaled by time through the factors σ

√
T and σ2T . This is the end of step 2.

The third and final step entails the implementation of Dupire’s formula in Equation (3.19). At this
point we note that the given strike and expiry time might still not fall on any given grid point. This is
especially the case when we calculate the partial derivatives numerically. For such cases we make use
of bilinear interpolation [47] on the grid to arrive at a total variance for the given strike and time. This
method first interpolates linearly on the Y -axis (strike) using Equation (5.1) and then uses the same
formula to interpolate on the X-axis (time). All values are then converted from a total variance (scaled
by time) to an unscaled variance by dividing by the time. These numbers are tested for our allowable
variance range where 0.01 ≤ σ2 ≤ 1, and are then converted back to volatility.

When the derivatives in Equation (3.19) need to be calculated numerically, we use Newton’s
difference quotient or finite difference formula. Differentiation with respect to time is implemented
where we bump the time up by 1 basis point. We thus use

∂σ

∂t
≈ f(t× (1− h))− f(t)

t× h

When we differentiate with strike (dual Delta) we use a two-sided estimation where

∂σ

∂K
≈ f(K × (1 + h))− f(K × (1− h))

K × (2h)

and the dual Gamma is given by

∂2σ

∂K2
≈ f(K × (1 + h))− 2f(K) + f(K × (1− h))

(K × h)2
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The optimal h is found by using different h values and looking for stability. h is usually 1, 10, 25, 50
or 100 basis points. We use the above in our VBA implementations. However, we use Matlab’s gradient
function in our Matlab implementations.

5.3. Comparing the Implied and Local Volatilities for DTOP and USDZAR

Let us be practical and look at the volatility surfaces for the DTOP and USDZAR on 28 May 2014.
The ATM volatilities and future levels are all shown in Table 5. The volatility surfaces for the DTOP is
shown in Figure 8.

Figure 8. DTOP implied and local volatility surfaces on 28 May 2014.
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From Figure 8 we notice that the implied volatility surface is smooth while the local volatility surface
is a bit uneven. Compare this to the smooth local volatility surface for the ALSI shown in Figure 6.
The DTOP’s local volatility surface is not smooth purely due to numerical differentiation. However, in
Figure 9, the USDZAR implied volatility surface shows the currency market’s all familiar smile. Here we
also show the local volatility surface. It is still a smile but with steeper sides.

Figure 9. USDZAR implied and local volatility surfaces on 28 May 2014.
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5.4. Dupire in Terms of Call Prices

We can now show the instability in Dupire’s local volatilities calculated when using call prices as
described in Equation (3.17). We implemented this equation for the ALSI local volatility surface on
28 May 2014. We did this in two ways. We first used the algebraic fitted implied volatility surface or
DVF using the parabola implementation in Equation (4.26) where the parameters are given in Table 2.
We also used the discrete ALSI volatility surface as published by Safex on this date. The two obtained
local volatility surfaces are shown in Figure 10. The instabilities are clearly seen when we are far in-
and out-the-money. We have to force the volatilities to be zero when these become extremely large—this
happens when the density (dual gamma) is extremely small.

Figure 10. ALSI local volatility surfaces using call prices on 28 May 2014.
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These plots also show that using the algebraic implementation of the implied volatility surface leads
to a bit more stability, but only just! However, if these plots are compared to the ALSI’s local volatility
surface in Figure 6, it is clear that using Dupire’s local volatility function in terms of implied volatility,
Equation (3.19), leads to a much more stable, practical and usable surface. Figure 8 even shows
that Equation (3.19) with the discrete implied volatility surface is still much more stable than using
call prices.

6. Conclusions

During 2007 the JSE introduced a new class of listed derivatives. They call it Can-Do options and
most of these listed options are exotic in nature. Exotic options cannot be priced using the published
closed-form formulae (if available). Many exotic options can, however, be priced in a local volatility
framework. In this paper we discussed the local volatility framework and how the JSE implemented it
ensuring correct pricing of many of its listed exotic options.

We started by introducing the general Black-Scholes-Merton stochastic differential equation.
We mentioned that it can be solved analytically by using the Feynman-Kac theorem if and only if one
assumes a constant volatility, interest rate and dividend yield. We further stated that this equation is also
known as the Kolmogorov backward SDE because it is solved backwards in time.

We explained that implied volatility is not actually a “real” volatility because it is dependent on
both time and strike. Everything was then set to introduce the concept of local volatility and explained
it at hand of forward interest rates. We then gave an explanation from a practitioner’s point of view
to get an intuitive feel for this mysterious concept showing how local volatilities can be obtained by
simulation. Following on from this we introduced Dupire’s framework of constructing a state-dependent
instantaneous volatility function that recovers the whole implied volatility surface. We discussed the
forward Kolmogorov SDE and showed how to obtain the Dupire equation in terms of call prices and
implied volatilities.

Safex uses a deterministic volatility functional for the implied volatility surface for ALSI options.
We discussed this functional and showed how it can be implemented in the Dupire framework.
We discussed the difference between the ALSI implied and local volatility surfaces. We went further
by looking at the local and implied volatility surfaces for the DTOP index and USDZAR foreign
exchange rate. There are no functional forms for their implied volatility surfaces so we showed how
to implement Dupire numerically where we discussed how to efficiently calculate the derivatives in the
Dupire equations numerically. It is shown that the DTOP implied and local surfaces look very similar to
the ALSI’s (as expected). However, the USDZAR implied volatility surface has the familiar smile shape
and the local volatility surface looks quite different if compared to the equity surfaces.

In the last section we showed how unstable the Dupire equation is if implemented using call option
prices. This is purely due to the numerical errors when finding the derivatives numerically.

The implementation steps of Safex’s approach to implementing the local volatility surface has been
set out in detail. We showed that the proposed approach proves to be simple to implement and performs
well on real market data.
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Appendices

A. Gyöngy’s Theorem and Markov Projection

Krylov and Gyöngy [16] were interested in the construction of stochastic differential equations
whose solutions mimic certain features of the solutions of Itô processes. Gyöngy showed that one can
build a time-inhomogeneous Markovian process solution of an SDE that has the same one-dimensional
marginals as the complicated non-Markovian Itô process itself [48]. Alexander and Nogueira [37] stated
this differently in that the mimicking SDE is another SDE with deterministic coefficients such that the
solutions of the two equations have the same marginal probability distributions.

Gyöngy’s Theorem is an important theoretical result because it links local volatility models to other
diffusion models that are also capable of generating the implied volatility surface [50]. Instead of
considering local volatility as a different and alternative model to stochastic volatility, it is possible
to show that the first kind of model is actually a particular case of the second one—local volatility is a
special case of the more general stochastic volatility.

Dupire [9] studied the the local volatility surface that is implied, not by market prices of options,
but by prices generated from a stochastic volatility model. Using infinitesimal calendar and butterfly
spreads, he presents a financial argument that the square of the local volatility function is the expected
value of the instantaneous squared stochastic volatility conditioned on the level of the underlying asset
price. Gatheral [33] stated this more clearly: if we suppose that the underlying asset follows a diffusion
process with a stochastic instantaneous variance, then we can think of local volatility as the conditional
expectation of this instantaneous volatility.

Dupire [34] basically found that the local volatility model mimics the European option prices
of some more complicated market process, and this is equivalent to matching the one-dimensional
marginal distributions of that process under the equivalent martingale probability measure (also called
the risk-neutral measure) used for pricing. This is exactly what Gyöngy [16] stated and Dupire essentially
recovered Gyöngy’s result, albeit in a non-rigorous fashion.

We can now state Gyöngy’s theorem [37]: Suppose that Xt is a real-valued one-dimensional Itô
process starting at X0 = 0 with dynamics

dXt = α(t, ω)dt+ β(t, ω)dWt (A.30)
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where Wt is a k-dimensional Wiener process on the probability space (Ω,=, P ), the possibly random
coefficients α(t, ω) and β(t, ω) satisfy the regularity condition of an Itô process and ω ∈ Ω denotes the
dependence on some arbitrary variables. In particular, if βT is the transpose of β and we suppose that
β · βT is positive, then there exist another, but one-dimensional, stochastic process X̃t that is a solution
of the stochastic differential equation

dX̃t = a(t, X̃t)dt+ b(t, X̃t)dW̃t, X̃0 = 0 (A.31)

with non-random coefficients a and b defined by

a(t, x) = E [α(t, ω)|Xt = x]

b(t, x) =
(
E
[
β · βT (t, ω)|Xt = x

]) 1
2 (A.32)

These deterministic coefficients then admit the same marginal probability distribution as that of Xt

for every t > 0 and x ∈ R+
0 . That is, for every Itô process of the type in Equation (A.30) there is

a deterministic process shown in Equation (A.31) that “mimics” the marginal distribution of Xt for
every t.

Brunick and Shreve [49] extended Gyöngy in two ways:

• They removed the conditions of nondegeneracy and boundedness on the covariance of the Itô
process to be mimicked, requiring only integrability of this process and thereby extending the
result to cover popular stochastic volatility models such as the one due to Heston [50].
• They showed that the mimicking process can preserve the joint distribution of certain functionals

of the Itô process (e.g., running maximum and running average) at each fixed time.

Gyöngy’s theorem leads us to the important concept of Markov Projection. When the stochastic
differential equation for X̃t in Equation (A.31) has a unique solution, this solution is Markov. We thus
call X̃t the Markov projection of Xt.

Markov Projection is a very general and powerful approach in deriving accurate approximations of
European-style option prices, that is, to estimate E[(S(T ) − K)+] when the stock price S(t) follows a
complicated SDE. Pitarberg [51] summarises it in four steps

1. For the underlying of interest, its SDE, driven by a single Brownian motion, is written down by
calculating its quadratic variance (and combining all dt terms that exist).

2. In this SDE, the diffusion and drift coefficients (if they exist) are replaced by their expected values
conditional on the underlying. This does not affect the values of European-style options.

3. The conditional expected values from Step 2 are calculated or, more commonly, approximated.
Methods based on, or related to, Gaussian approximations are often used for this step.

4. Parameter averaging techniques are used to relate the time-dependent coefficients of the SDE
obtained in Step 3 to time-independent ones. This, typically, allows for a quick and direct
calculation of European-style option values.
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Let us go through these 4 steps and establish the link between Gyöngy’s result and local volatility.
Suppose k = 1 in Equation (A.30) and define Xt = ln (St/S0), α(t, ω) = µ − 1/2σ2(t, ω) and
β(t, ω) = σ(t, ω). Then Equation (A.30) becomes

d(lnSt) =

(
µ− 1

2
σ2(t, ω)

)
dt+ σ(t, ω)dWt (A.33)

and by Itô’s lemma
dSt
St

= µdt+ σ(t, ω)dWt (A.34)

which is the stochastic differential equation for a financial asset St with possibly stochastic volatility.
Denote by S an arbitrary realisation of St for some t ≥ 0 and put x = ln(S/S0). Using Equations (A.32)
we have

b2(t, x) = b2 (t, ln(S/S0)) = E
[
σ2(t, ω)|St = S

]
= σLV (t, S)

a(t, x) = a (t, ln(S/S0)) = E
[
µ− 1

2
σ2(t, ω)|St = S

]
= µ− 1

2
σ2
LV (t, S)

Replacing these into Equation (A.31) with X̃t = ln
(
S̃t/S̃0

)
and S̃0 = S0 and using Itô’s lemma,

we obtain
dS̃t

S̃t
= µdt+ σ(t, ω)dW̃t (A.35)

which is a SDE of S̃t with deterministic local volatility σLV (t, S). Thus S̃t in the local volatility model
shown in Equation (A.35) has the same marginal distribution as St in ε Equation (A.34) for every t.
Besides, as there is a one-to-one relationship between risk-neutral marginal probabilities and the prices
of standard European options, both models in Equations (A.34) and (A.35) produce the same prices for
simple calls and puts after a measure change from P to the risk-neutral measure.

Using Bayes relationship, the local variance becomes

v2(t, S) =
E (σ2(t, ω)δ(St − S))

E [δ(St − S)]
(A.36)

with δ(•) the Dirac delta function.
Moreover Gyöngy’s Theorem therefore implies that the local volatility model of Equation (2.2)

is in some sense the simplest diffusion model capable of doing this, i.e., reproducing the implied
volatility surface.

Alexander and Nogueira [37] state that it would be a mistake to interpret local volatility as a complete
representation of the true stochastic process driving the underlying asset price. Local volatility is merely
a simplification that is practically useful for describing a price process with non-constant volatility.
More precisely, although the marginal distributions are the same at the time when the local volatility
is calibrated, clearly St and S̃t do not follow the same dynamics, hence option prices will have different
dynamics under each model, and hedge ratios can differ substantially.
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