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Abstract:

 In this paper we investigate portfolio optimization under Value at Risk, Average Value at Risk and Limited Expected Loss constraints in a continuous time framework, where stocks follow a geometric Brownian motion. Analytic expressions for Value at Risk, Average Value at Risk and Limited Expected Loss are derived. We solve the problem of minimizing risk measures applied to portfolios. Moreover, the portfolio’s expected return is maximized subject to the aforementioned risk measures. We illustrate the effect of these risk measures on portfolio optimization by using numerical experiments.
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1. Introduction

A rational investor’s intent is to maximize return while minimizing risk. Under this concept, portfolio theory was developed by Markowitz [1]. Portfolio theory can be simply defined as, the use of decision-making tools to solve the problem of managing risky investment portfolio (see Nawrocki [2]). Some of the basic building blocks of modern portfolio theory is the mean-variance efficiency frontier of Markowitz [3] and the reward-to-variability ratio of Sharpe [4]. Using these major concepts various papers have been developed in continuous time models. Let us mention only a few. Duffie et al. [5] provides a closed form solution for the optimal continuous-time future hedging policy under various mean-variance and quadratic objectives, in an incomplete market. Zhou et al. [6] considers the continuous-time mean-variance model modulated by Markov chain representing the regime switch. Xie et al. [7] investigates portfolio selection with liability in an incomplete financial market. Jewel et al. [8] invokes the delta-gamma approximation to reduce a well-posed quadratic programming problem under a mean-variance framework.

Risk measures in a continuous model are generally difficult to compute due to the myriads of distributions for the gains/losses. There are two main approaches to measuring risk in this setting. The first approach is to use static risk measures (see Emmer et al. [9] and Basak et al. [10]). The second approach is to employ dynamic risk measures (see Cuoco et al. [11], Pirvu et al. [12], Pirvu et al. [13] and Pirvu et al. [14]).

In measuring risk, one observation is that investor’s view of risk is asymmetric about the mean. Hence downside risk measures were introduced. Some common downside risk measures are value at risk, average value at risk and limited expected loss. Value at Risk (VaR) estimates the loss of a portfolio over a given time period with a particular confidence interval. One advantage of VaR is that it is simple to estimate, however “there is a risk in the value at risk itself”, according to Jorion [15]. To address the shortcomings of VaR coherent risk measure were introduced; an example is Average Value at Risk (AVaR) (see Artzner et al. [16]). The AVaR at tail probability α is defined as the average of the VaR’s which are larger than the VaR at tail probability α. It captures what VaR ignores, which is the information on how much one can loose on average if the one goes beyond the VaR confidence level (see Rachev [17]). Limited Expected Loss (LEL) was proposed by Basak and Shapiro [10] and is a variant of AVaR computed under a risk neutral probability measure.

The approach pioneered by Emmer et al. [9] and Basak et al. [10] was considered by many papers. One example is Dmitra[image: there is no content]inovi[image: there is no content]-Vidovi[image: there is no content]et al. [18], where the risk measure used are Value at Risk (VaR), Relative Value at Risk (RVaR) and Capital at Risk (CaR). The corresponding maximal expected return is derived and compared.

In this paper, we follow the approach of Dmitra[image: there is no content]inovi[image: there is no content]-Vidovi[image: there is no content]et al. [18] and Dmitra[image: there is no content]inovi[image: there is no content]-Vidovi[image: there is no content]et al. [19]. The stocks follow a geometric Brownian motion (GBM) process. Risk-reward criterion is utilized with various risk measures. Model parameters are deterministic throughout the paper. Borrowing of the bond is allowed and unconstrained.

Our contribution is to provide explicit formulas for Average Value at Risk (AVaR) and Limited Expected Loss (LEL) risk measures in a geometric Brownian motion model for the risky assets. We further implement and analyse portfolio optimization based on the risk measures aforementioned. Our paper considers a model with continuous distribution hence AVaR and Conditional Value at Risk (CVaR) are the same (see Follmer et al. [20]). The portfolio optimization problem involves the risk-reward criterion. We apply a dimension reduction technique to transform the m-dimensional optimization problem into a 1-dimensional problem which is solved in closed form or numerically. Our paper contains the formulas for VaR, AVaR, LEL and expected wealth. Secondly, we drive expressions for the minimal VaR, AVaR and LEL. We prove that minimizing VaR, AVaR and LEL under an expected return constraint produces the same optimal strategy. We maximize expected wealth with VaR, AVaR, and LEL constraints. For each optimization problem considered the optimal strategy obtained is unique. Numerical experiments show that the most conservative risk constraint is LEL, followed by AVaR and VaR. However, on the critical side LEL is computed under a risk neutral measure thus underestimating stocks returns, and VaR ignores the losses beyond the confidence threshold α. AVaR on the other hand captures all the attributes that the aforementioned risk measures ignore, hence considered to be the best risk measure. The results further show the effect of diversification. The intuitive knowledge that the volatility of the stock is inversely related to the attractiveness of the stock is confirmed. Furthermore, the result exhibit that the confidence threshold has a strong effect on downside risk measures. Various efficient frontiers are illustrated and confirm that the more risk one takes the higher the expected return.

The outline of this paper is as follows: Section 2 contains the model; optimization problems are in Section 3 with the numerical results in Section 4. The appendix contains all the mathematical proofs.

Notations: The following notations apply throughout this paper.


	The m-dimensional column vectors with each component equal to 1 is denoted by [image: there is no content].


	The Euclidean norm of a matrix or vector is denoted by [image: there is no content]. The [image: there is no content] denotes the set of [image: there is no content]-valued, square-integrable functions defined on [image: there is no content], with its natural inner product [image: there is no content] Here [image: there is no content] is the corresponding norm.


	[image: there is no content] denotes the area of a circle with radius 1.






2. The Model

Consider a probability space [image: there is no content] which accommodates a standard multidimensional Brownian motion. Moreover, consider a financial market model with the following specification:


	One asset is invested in the money market. The money market is represented by [image: there is no content],



dS0(t)[image: there is no content]=r(t)dtandR(t)=exp∫0tr(s)ds



(1)




The interest rate denoted by [image: there is no content] is deterministic.


	Assets are traded continuously over a finite time horizon [image: there is no content] in a frictionless market.


	m assets are traded in the stock which follow a geometric Brownian motion, i.e.,



[image: there is no content]








[image: there is no content] is deterministic and denotes an invertible volatility matrix; [image: there is no content] is deterministic and denotes the drift of the stock, [image: there is no content]. [image: there is no content] is a m-dimensional Brownian motion and [image: there is no content]. Drift and volatility functions are square-integrable.


	Number of shares of asset i held in the portfolio is denoted by [image: there is no content]. The fraction of wealth [image: there is no content] invested in the risky stock i is denoted by πi(t)=Ni(t)Si(t)[image: there is no content].[image: there is no content] is deterministic.


	[image: there is no content], denotes the confidence level.




Under the risk neutral probability measure denoted [image: there is no content] the stock dynamics is



[image: there is no content]



(2)




Here [image: there is no content] denotes the Brownian motion under Q.
The investor invests [image: there is no content] in the risky stock and [image: there is no content] in the bond. The initial wealth [image: there is no content] is positive. The wealth follows a self-financing strategy, hence



[image: there is no content]



(3)




where B(t):=b(t)−r(t)[image: there is no content]. Thus


[image: there is no content]



(4)






3. Portfolio Optimization with Risk Constraints

In this section various optimization problems are considered.


3.1. Risk Measures

The various risk measures are considered in this section. They are applied to a loss process defined by



[image: there is no content]









3.1.1. Value at Risk (VaR)

Let us begin with a formal definition.

Definition 3.1.1.1 Value at Risk is the maximum amount of wealth one can likely lose over a period at a specific confidence level α.



[image: there is no content]








This means that with [image: there is no content] there is a [image: there is no content] probability that the loss will not exceed [image: there is no content]. In other words there is a [image: there is no content] probability that the loss can exceed [image: there is no content].
Proposition 3.1.1.1 It follows from direct computations that



[image: there is no content]=X(0)(1−R(t)exp(∫0t(B(s)′π(s)−12||σ(s)′π(s)||2)ds(5)+(N−1(α))∫0t||σ(s)′π(s)||2ds))








Proof of Proposition 3.1.1.1: See appendix A.1.



3.1.2. Average Value at Risk-(AVaR)

Let us begin with a formal definition (see Follmer et al. [20]).

Definition 3.1.2.1 The Average Value at Risk is



[image: there is no content]








Proposition 3.1.2.1 It follows from direct computations that



AVaRα(Loss(t))=X(0)(1−R(t)α(exp∫0tB(s)′π(s)ds(6)+lnNN−1(α)−∫0t||σ(s)′π(s)||2ds)








Proof of Proposition 3.1.2.1: See appendix A.2



3.1.3. Limited expected loss measure

Let us begin with a formal definition.

Definition 3.1.3.1 The LEL is defined by



[image: there is no content]








where [image: there is no content] is the VaR evaluated under the risk neutral probability measure [image: there is no content]
Proposition 3.1.3.1 It follows from direct computations that



[image: there is no content]



(7)




Proof of Proposition 3.1.3.1 See appendix A.3




3.2. Portfolio Optimization by Minimizing Risk Measures

We restrict to the class of admissible portfolio [image: there is no content] which are Borel measurable, deterministic and bounded over [image: there is no content]. We denote by Q the set of admissible portfolio. The market price of risk is denoted by



[image: there is no content]



(8)




In this section the optimization problem considered is



(A1)minπ∈QRM(Loss(T)),whereRM∈{VaR,AVaR,LEL}








Theorem 3.2.1 Set



[image: there is no content]



(9)




The optimal strategy for (A1) is


π[image: there is no content](t)=[image: there is no content]||Θ||T(σ(t)σ(t)′)−1B(t),t∈[image: there is no content]



(10)




Here [image: there is no content] is a positive constant and it depends on the risk measure under consideration (see appendix A.4).


3.3. Portfolio Optimization by Minimizing Risk subject to Expected Return Constraint

In this section we minimize risk subject to expected return constraint.



(A2)minπ∈QRM(Loss(T))subjecttoE(X(T))=M








Here [image: there is no content] and M is a constant. It is further assumed that [image: there is no content].
Theorem 3.3.1 Let



[image: there is no content]



(11)




The optimal strategy for (A2) is


[image: there is no content]



(12)




Thus, the optimal strategy is the same for all the risk measures in (A2). See appendix A.5.


3.4. Portfolio Optimization by Maximizing Expected Wealth with Risk Constraints

In this section the expected wealth is maximized while constraining the risk measures.



(A3)maxπ∈Q[E(X(T))]subjectto










[image: there is no content]








Here [image: there is no content] and C is a constant. We assume that [image: there is no content]
Theorem 3.4.1 The optimal strategy for (A3) is



[image: there is no content]



(13)




Here [image: there is no content] is a positive constant and depends on the risk measure under consideration (see appendix A.6).
Remark: The two fund separation theorem states that investors who must allocate their wealth between a number of risky assets and the money market should have the same mutual fund of risky assets (see Pirvu et al. [21], Schmedders [22], Merton [23] and Tobin [24]). We can conclude that, the optimal portfolios follow a two fund separation. The optimal investment is attained by investing in the money market and in a market portfolio which is a fixed mixture of the m risky stocks Dmitra[image: there is no content]inovi[image: there is no content]-Vidovi[image: there is no content]et al. [18]. The market portfolio [image: there is no content] is defined as



[image: there is no content]








We have shown that every optimal strategy can be expressed as


[image: there is no content]











4. Numerical Analysis

Here we follow Dmitra[image: there is no content]inovi[image: there is no content]-Vidovi[image: there is no content]et al. [18] and [19]. To keep the exposition simple, the interest rate and the volatility matrix are assumed constant. Three stocks are considered. The drift of the stock i is denoted by [image: there is no content], where



[image: there is no content]



(14)




Here [image: there is no content] denotes the economic cycle, [image: there is no content] denotes the average rate of return and [image: there is no content] denotes the deviation around [image: there is no content]. The variance covariance matrix is denoted by [image: there is no content] and


[image: there is no content]



(15)




where the diagonal matrix [image: there is no content] denotes the standard deviation and [image: there is no content] denotes the correlation matrix. We take


[image: there is no content]



(16)




and


[image: there is no content]








The time horizon considered is 8 years and time granularity for the parameters below are yearly. We have [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content]. Let [image: there is no content], [image: there is no content] and [image: there is no content]. Take [image: there is no content]

4.1. Optimal Strategy with Risk Constraints

In this section, the optimal strategies for the maximal expected wealth with VaR, AVaR and LEL constraints are considered and illustrated in Figure 1 (b,c,d). The highest portfolio weight is in stock 1 as it is the least volatile. The optimal strategy for stock 1 in P1 is higher than that of P2, followed by P3. See from the footnote that, LEL is the most conservative risk measure, followed by AVaR and VaR. LEL operates under the assumption that the investor is risk neutral. VaR ignores the losses beyond the α threshold. AVaR deals with the disadvantages associated with LEL and VaR, hence is considered to be the best risk measure. Although, stock 3 is more volatile than stock 2, the portfolio weight in stock 3 is higher in stock 2 due to diversification effect introduced by the correlation matrix. The following notation apply: P1 = Maximizing expected return with VaR constraint; P2 = Maximizing expected return with AVaR constraint and P3 = Maximizing expected return with LEL constraint.

Figure 1. (a) Optimal portfolio strategy in the money market (upper left); (b) stock 1 (upper right); (c) stock 2 (lower left) and (d) stock 3 (lower right).



[image: Jrfm 07 00113 g001 1024]









4.2. Expected Return with Risk Constraints

As illustrated in Figure 2 (a) the maximal expected return occurs in the order P3 followed by P2 and P1. This is intuitive since LEL is the most conservative risk measure compared to AVaR and VaR. The expected return is plotted where [image: there is no content].

Figure 2. (a) Expected return (upper left); (b) Optimal strategy with various confidence levels (upper right).



[image: Jrfm 07 00113 g002 1024]











4.3. Optimal Strategy with Different Confidence Interval

In Figure 2(b) the plot shows the optimal strategy in stock 1 for P1, P2 and P3 for the confidence level, [image: there is no content]. As α increases the portfolio weight increases for P1, P2 and P3.



4.4. Efficient Frontier

In Figure 3, we take [image: there is no content]. The plot shows that as C increases, the portfolio weights also increase for P1, P2 and P3. The reason being that the higher the risk threshold, the higher the risk appetite of the investor. Hence, the amount invested in the stock increases.

Figure 3. Efficient frontier.



[image: Jrfm 07 00113 g003 1024]








5. Conclusions

In a multiple stock model following a geometric Brownian motion, the VaR, AVaR and LEL risk measures are considered. Furthermore, we maximize expected wealth with VaR, AVaR and LEL constraints, then we find the portfolios which minimizes these risk measure. Using numerical experiments we notice that LEL is the most conservative risk measure, followed by AVaR and VaR.
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Appendix

This section contains all the necessary mathematical proofs.


A.1. Proof of Proposition 3.1.1.1

The [image: there is no content] equation can be further written as



1−α=P(−(X(0)exp(∫0t(r(s)+B(s)′π(s)−12||σ(s)′π(s)||2)ds(17)+∫0t||σ(s)′π(s)||2dsξ−X(0)))≤VaR).








Let


[image: there is no content]



(18)




and


[image: there is no content]



(19)




Then


1−α=Pexp(Γ+Ψξ)≥1−VaR[image: there is no content]=Pξ≥ln(1−VaR[image: there is no content])−ΓΨ



(20)






α=Pξ≤ln(1−VaR[image: there is no content])−ΓΨ=Nln(1−VaR[image: there is no content])−ΓΨ.



(21)




Solving for [image: there is no content] in the equation above, it follows that


[image: there is no content]



(22)




Hence


[image: there is no content]=X(0)(1−exp(∫0t(r(s)+B(s)′π(s)−12||σ(s)′π(s)||2)ds(23)+N−1(α)∫0t||σ(s)′π(s)||2ds))










A.2. Proof of Proposition 3.1.2.1

From the definition of AVaR we have



[image: there is no content]



(24)






AVaRα(Loss(t))=1α∫0αX(0)(1−R(t)exp(∫0t(B(s)′π(s)−12||σ(s)′π(s)||2)ds(25)+(N−1(u))∫0t||σ(s)′π(s)||2ds))du








Let


[image: there is no content]



(26)




It follows that


(27)AVaRα(Loss(t))=X(0)−R(t)X(0)α∫0αexp∫0tB′(s)π(s)ds−12κ2+(N−1(u))κdu=X(0)−R(t)X(0)αexp∫0tB(s)′π(s)ds−12κ2∫0αexpN−1(u))κdu








Let [image: there is no content] and [image: there is no content]. Therefore, du=12[image: there is no content]exp−y22dy. Hence


AVaRα(Loss(t))=X(0)−R(t)X(0)αexp∫0tB(s)′π(s)ds−12κ2(28)12[image: there is no content]∫−∞N−1(α)expyκ−y22dy










=X(0)−R(t)X(0)αexp∫0tB(s)′π(s)ds(29)12[image: there is no content]∫−∞N−1(α)exp−(y−κ)22dy








Let us perform the change of variable [image: there is no content], hence


AVaRα(Loss(t))=X(0)−R(t)X(0)α2[image: there is no content]exp∫0tB(s)′π(s)ds∫−∞N−1(α)−κexp−z22dz



(30)






=X(0)1−R(t)αexp∫0tB(s)′π(s)ds(N(N−1(α)−κ))



(31)




Finally,


AVaRα(Loss(t))=X(0)(1−R(t)α(exp∫0tB(s)′π(s)ds(32)+lnNN−1(α)−∫0t||σ(s)′π(s)||2ds)








♦



A.3. Proof of Proposition 3.1.3.1 Using the same approach as in the proof of section 3.1.1.1 and 3.1.2.1

we prove that



VaRαQ(Loss(t))=X(0)(1−R(t)exp(−12||σ(s)′π(s)||2)ds(33)+(N−1(α))∫0t||σ(s)′π(s)||2ds))








Thus,


[image: there is no content]



(34)






A.4. Proof of the theorem 3.2.1

The portfolio optimization problems are projected onto the family of surfaces, where [image: there is no content].



Qε={π(·):∫0T||σ(t)′π(t)||2dt=ε2},Q=⋃[image: there is no content]Qε








The optimization problem considered is


[image: there is no content]








where


RM(Loss(T)):=G∫0TB(t)′π(t)dt,∫0T||σ′(t)π(t)||2dt



(35)




Here


VaR(Loss(T))→G(x,y):=x−12y+N−1(α)y



(36)






AVaR(Loss(T))→G(x,y):=x+ln(N(N−1(α)−y))



(37)






LEL(Loss(T))→G(x,y):=N(N−1(α)−y)



(38)




where [image: there is no content] is increasing and [image: there is no content] is decreasing. The problem is written as


max[image: there is no content]max[image: there is no content]G∫0TB(t)′π(t)dt,ε2








subject to


[image: there is no content]



(39)




Since [image: there is no content] is increasing, in a first step we optimize for a fixed ε, i.e.,


[image: there is no content]max[image: there is no content]∫0TB′(t)π(t)dtsubjectto










[image: there is no content]








We claim that the optimal strategy for [image: there is no content] is


π^ε(t)=−12λ^(σ(t)σ(t)′)−1B(t)t∈[image: there is no content]



(40)




with


[image: there is no content]



(41)




To prove the claim we first check that [image: there is no content] satisfies the constraint, i.e.,


[image: there is no content]



(42)




Thus, the constraint is satisfied. Let [image: there is no content] be an adapted strategy which satisfies Equation (39). Then the optimality of [image: there is no content] is equivalent to:


[image: there is no content]



(43)




Let


L(π,λ^)=∫0TB(t)′π(t)dt+λ^∫0T||σ(t)′π(t)||2dt−ε2=λ^∫0T||σ(s)′π(s)||2+1λ^B(t)′π(t)dt−λ^ε2(44)=λ^∫0Tπ(t)′(σ(t)σ(t)′)π(t)+1λ^B(t)′π(t)dt−λ^ε2








By completing the squares


L(π,λ^)=λ^∫0Tπ(t)+12λ^(σ(t)σ(t)′)−1B(t)′(σ(t)σ(t)′)π(t)+12λ^(σ(t)σ(t)′)−1B(t)dt−∫0T14λ^B(t)′(σ(t)σ(t)′)−1B(t)dt−λ^ε2=λ^∫0T||σ(t)π(t)+12λ^(σ(t)σ(t)′)−1B(t)||2dt−∫0T14λ^B(t)′(σ(t)σ(t)′)−1B(t)dt(45)−λ^ε2








Let


[image: there is no content]








Solving [image: there is no content], we obtain


[image: there is no content]



(46)




Hence [image: there is no content] which proves Equation (43). Next, we optimize over [image: there is no content]i.e.,


[image: there is no content]max[image: there is no content]f(ε)








where


[image: there is no content]








[image: there is no content] is concave and bounded above. It follows that by first order conditions, [image: there is no content] has a unique solution denoted by [image: there is no content].
♦



A.5. Proof of Theorem 3.3.1

The optimization considered is



minπ∈Q[RM(Loss(T))]subjecttoE[X(T)]=M








Here [image: there is no content] is defined by Equation (35). Since


Q=⋃[image: there is no content]Qε








the optimization problem becomes


min[image: there is no content]min[image: there is no content]∫0T||σ′(t)π(t)||2dt



(47)






subjecttoX(0)R(T)exp∫0TB(t)′π(t)dt=M



(48)




Since [image: there is no content] is decreasing, the optimization problem is reduced to


[image: there is no content]min[image: there is no content]Gζ,∫0T||σ(t)′π(t)||2dtsubjectto∫0TB(t)′π(t)dt=ζ








where [image: there is no content]. We claim that the optimal strategy for [image: there is no content] is


π^(t)=ζ||Θ||T2(σ(t)σ(t)′)−1B(t)t∈[image: there is no content]



(49)




To prove this claim, let us introduce the Lagrangian


L(π,λ^)=∫0T||σ(t)′π(t)||2dt+λ^∫0TB(t)′π(t)dt−ζ=λ^∫0T1λ^||σ(s)′π(s)||2+B(t)′π(t)dt−ζ(50)=λ^∫0T1λ^π(t)′(σ(t)σ(t)′)π(t)+B(t)′π(t)dt−λ^ζ








By completing the squares


L(π,λ^)=λ^[∫0Tπ(t)+λ^2(σ(t)σ(t)′)−1B(t)′1λ^(σ(t)σ(t)′)π(t)+λ^2(σ(t)σ(t)′)−1B(t)dt−∫0T14B(t)′λ^(σ(t)σ(t)′)−1B(t)dt]−λ^ζ=∫0T||σ(t)π(t)+λ^2(σ(t)σ(t)′)−1B(t)||2dt−∫0Tλ^4B(t)′λ^(σ(t)σ(t)′)−1B(t)dt(51)−λ^ζ








Let


[image: there is no content]








To minimize the optimization problem we solve the equation [image: there is no content] and obtain


[image: there is no content]



(52)




Substituting Equation (52) into the constraint we obtain


[image: there is no content]



(53)




Solving Equation (53) we obtain


[image: there is no content]



(54)




where [image: there is no content] It follows that the optimal strategy is


[image: there is no content]



(55)




Thus, the optimal strategy is the same for all the risk measures in (A2).


A.6. Proof of Theorem 3.4.1

The first optimization consider is



maxπ∈Q[E(X(T))]subjecttoRM(Loss(T))≤C








where [image: there is no content] is defined by Equation (35). Since


Q=⋃[image: there is no content]Qε








the optimization problem is tackled as


max[image: there is no content]max[image: there is no content]X(0)R(T)exp∫0TB(t)′π(t)dtsubjectto



(56)






G∫0TB(t)′π(t)dt,∫0T||σ′(t)π(t)||2dt≤C



(57)






[image: there is no content]



(58)




The strategy [image: there is no content] if


[image: there is no content]



(59)




Here [image: there is no content] is a function:


g(x):=lnX(0)−CR(T)X(0)+12x2−N−1(α)xforVaR










g(x):=lnα(X(0)−C)R(T)X(0)−ln(N(N−1(α)−x))forAVaR.








In a first step we optimize over [image: there is no content] given a fixed ε. Let


[image: there is no content]max[image: there is no content]∫0TB(t)′π(t)dtsubjectto










[image: there is no content]








We claim that the optimal strategy for [image: there is no content] is


π^ε(t)=−12λ^(σ(t)σ(t)′)−1B(t)t∈[image: there is no content]



(60)




with


[image: there is no content]



(61)




see theorem 3.2.1 for proof of the claim. If [image: there is no content] satisfies


[image: there is no content]








and


[image: there is no content]








then we claim that [image: there is no content] must also be admissible. Since [image: there is no content] is optimal for [image: there is no content], it follows that


[image: there is no content]








Next we optimize over [image: there is no content], i.e.,


max[image: there is no content]ε||Θ||Tsubjecttoh(ε)≥0








Where


h(ε):=ε||Θ||T−lnX(0)−CR(T)X(0)−12ε2+N−1(α)εforVaRAVaR(Loss(T))→h(ε):=ε||Θ||T−lnα(X(0)−C)R(T)X(0)+ln(N(N−1(α)−ε))forAVaR(62)LEL(Loss(T))→h(ε):=N−1(α)−N−1α(X(0)−C)R(T)X(0)+ε,forLEL








Here [image: there is no content] is a concave function and is bounded above, so it has a unique maximimum solution denoted by [image: there is no content].
♦
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