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Abstract: The Ethereum blockchain network enables transaction processing and smart-contract

execution through levies of transaction fees, commonly known as gas fees. This framework mediates

economic participation via a market-based mechanism for gas fees, permitting users to offer higher

gas fees to expedite processing. Historically, the ensuing gas fee volatility led to critical disequilibria

between supply and demand for block space, presenting stakeholder challenges. This study examines

the dynamic causal interplay between transaction fees and economic subsystems leveraging the

network. By utilizing data related to unique active wallets and transaction volume of each subsystem

and applying time-varying Granger causality analysis, we reveal temporal heterogeneity in causal

relationships between economic activity and transaction fees across all subsystems. This includes

(a) a bidirectional causal feedback loop between cross-blockchain bridge user activity and transaction

fees, which diminishes over time, potentially signaling user migration; (b) a bidirectional relationship

between centralized cryptocurrency exchange deposit and withdrawal transaction volume and fees,

indicative of increased competition for block space; (c) decentralized exchange volumes causally

influence fees, while fees causally influence user activity, although this relationship is weakening,

Er;)edc:t?sr potentially due to the diminished significance of decentralized finance; (d) intermittent causal
relationships with maximal extractable value bots; (e) fees causally influence non-fungible token
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transaction volumes; and (f) a highly significant and growing causal influence of transaction fees on
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Bidirectional Causal Relationships stablecoin activity and transaction volumes highlight its prominence. These results inform strategic

. considerations for stakeholders to more effectively plan, utilize, and advocate for economic activities
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The Ethereum network is a sophisticated fee market that facilitates economic partici-
pation by mediating transaction fees. Firstly, transaction fees incentivize users to employ
the network efficiently by ensuring network utilization costs scale with transaction com-
plexity. This approach mitigates the risks of network overload by discouraging users from

submitting unnecessary transactions that could impede network performance and increase
costs for other users. Secondly, transaction fees contribute to the economic sustainability of
the Ethereum network by compensating miners (prior to 15 September 2022) or validators
(after 15 September 2022) for their network operation services. This incentivization model
This article is an open access article ~ f€wards their contribution to the network’s security and stability, strengthening overall
distributed under the terms and  Network performance and resilience. Thirdly, transaction fees foster decentralization of the
conditions of the Creative Commons ~ Ethereum network by leveling the playing field for all users, thereby removing barriers to
Attribution (CC BY) license (https://  entry for new users or developers.
creativecommons.org/ licenses /by / As a decentralized platform, the Ethereum network enables users to create and deploy
40/). smart contracts, which are programmatic transaction protocols that automatically execute
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the terms of an agreement between buyers and sellers. These stipulations are directly
inscribed into the code, making them more transparent and secure. To compensate for the
computational resources consumed by the network during transaction execution, users
pay transaction fees (Szabo 1994). Since its genesis in 2015, the Ethereum network has
engendered the emergence of an array of decentralized economic systems, each reliant
upon the underlying transaction costs and network scalability in unique ways. Transactions
on the Ethereum network are processed by validating new blocks, on average, every 12 s.
Each block consolidates a variable number of initiated transactions, which are subsequently
confirmed by the network.! In 2022, the network processed an average of approximately
1.2 million transactions daily (Etherscan 2022). However, network scalability is inher-
ently constrained, as only a specific number of transactions can be validated within each
12-s interval. Historically, this constraint has caused critical disequilibria between supply
and demand.

The rapid adoption of high-profile blockchain-based applications has given rise to nu-
merous challenges, including network congestion and increased transaction costs. A salient
example is the late 2017 phenomenon of CryptoKitties, a game employing blockchain
technology to enable the buying, collecting, breeding, and selling of digital cats in the form
of non-fungible tokens (NFTs). The unprecedented demand for these digital collectibles
culminated in a record-high volume of transactions on the network, consequently inducing
severe congestion and a surge in transaction costs (BBC 2017; Ante 2022). Another manifes-
tation of this phenomenon can be observed in digital token sales, conducted by blockchain
enterprises, which encountered extraordinary investor demand, leading to the so-called
gas wars (Spain et al. 2020). The term gas refers to the internal metering variable of the
Ethereum network, which necessitates the payment of gas for every transaction execution.”
Heightened demand for digital token sales in 2017 and 2018 prompted a spike in gas
prices, rendering transactions on the Ethereum network increasingly costly. Furthermore,
instances of fundamentally high network utilization also had a detrimental impact on the
efficiency of individual applications. In 2021, users faced abnormally high transaction
fees when exchanging Ethereum-based tokens on decentralized exchanges (DEXs) such as
Uniswap. These fees occasionally surpassed several hundred dollars, rendering transac-
tions prohibitively costly (Etherscan 2021). Such high transaction costs, coupled with the
limitations imposed by network congestion, rendered the Ethereum network less accessible
and efficient, prompting individual users, protocols, and applications to suspend their
activity or migrate to other blockchains (Axie 2021).

Numerous studies have explored the Ethereum fee market from technical or model-
ing perspectives (Reijsbergen et al. 2021; Laurent et al. 2022; Azevedo Sousa et al. 2021;
Werner et al. 2020; Bouraga 2020), often less focusing on the economic foundations of the
Ethereum ecosystem.? However, it is crucial to acknowledge the instrumental role of eco-
nomic incentives and developments in shaping Ethereum’s trajectory and fee market, as
evidenced by phenomena such as CryptoKitties, token sales, and the emergence of DEXs,
which profoundly impacted Ethereum'’s evolution. Incorporating an economic perspective
into the analysis of Ethereum’s fee market is essential for obtaining a comprehensive un-
derstanding of the ecosystem. While prior studies have examined individual systems and
unanticipated events in specific systems (Fagir-Rhazoui et al. 2021; Spain et al. 2020), there
remains a lack of comprehensive analyses encompassing multiple economic systems and
their potential interdependencies within the Ethereum fee market context. This research
gap underscores the necessity for a thorough investigation of the economic environment
in which fees function, to comprehend their relevance. Such an analysis would constitute
a valuable reference for decision-making in projects intending to utilize Ethereum as an
infrastructure. Additionally, from a stakeholder-oriented perspective (Freeman 1984), it is
important to assess the extent to which projects can tolerate comparatively less favorable
fees, in comparison to layer-2 solutions such as Arbitrum or Optimism, given the potential
network and spillover effects that may derive from other markets or assets on Ethereum.
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This would allow stakeholders to make informed decisions and adapt their strategies to
the dynamic Ethereum fee market.

Our research aims to examine the activity of economic systems, classified based on
their direct or indirect dependency on the Ethereum network, and evaluate their influence
on transaction fees. For example, maximal extractable value (MEV) (Daian et al. 2020) may
only be significant as long as (uninformed) market participants participate in the Ethereum
network, as observed with DEXs and meme coins (Li and Yang 2022; Xia et al. 2021). In light
of this context, we pose the research question: what significant economic activities transpire
within the Ethereum network, and how do they affect transaction fees? This inquiry is
crucial for understanding the broader economic implications of blockchain technology and
its impact on various stakeholders within this rapidly evolving digital landscape.

To identify economic systems, we undertake an exploratory multivocal analysis of
Ethereum data platforms, informed by the existing scientific literature on Ethereum. Follow-
ing the identification of these systems, we delve into the central inquiry of this study: un-
covering the causal relationship between individual systems and fees within the Ethereum
network.* We employ two proxies as measures for each system’s economic activity: (a) the
number of users specific to a particular system and (b) the on-chain economic value trans-
ferred (in USD) for that system. This approach ensures that high-usage solutions with low
volumes receive due attention, while also considering applications with relatively few users
but significant transaction volumes. In essence, the two variables serve as complementary
metrics for evaluating economic participation and relevance within the network.

Given the temporal sensitivity of causality (Shi et al. 2018; Ren et al. 2023), this study
utilizes the time-varying Granger causality methodology to discern the relationship be-
tween fees, blockchain users (represented by unique active wallets), and economic volume.
This econometric methodology, devoid of pre-processing steps, is adept at identifying
the inception and cessation dates of causal episodes. A comprehensive understanding of
the bidirectional causality between these variables enables the revelation of the temporal
trajectory of the causal relationship. Employing time-varying Granger causality for the
identification of causal relationships further facilitates a plethora of research opportunities,
encompassing an in-depth analysis of the temporality and directionality of relationships
(i.e., whether they are positive or negative).

This study makes several contributions to the literature, aligning with broader research
themes in the fields of blockchain technology, network economics, and digital finance.
Firstly, it reveals that transaction fees play an instrumental role in the functioning of a
majority of the examined systems. The findings suggest that these fees are not merely
a technical feature but a critical economic lever affecting the viability and dynamics of
blockchain-based (eco-)systems. This aspect of the research contributes to the growing body
of work examining the microstructure of blockchain networks and the economic behavior
of digital asset markets. Additionally, the activity and volume of numerous systems exert
a considerable impact on network fees. It is worth noting that the causal relationships
among variables exhibit dynamic properties and are subject to temporal fluctuations. This
variability can be attributed to a combination of factors, including the microstructure of
endogenous factors within the Ethereum ecosystem, as well as exogenous factors that
are outside the scope of this investigation. This highlights the importance of considering
broader market dynamics and technological developments in blockchain research. Secondly,
the results indicate that the number of unique active wallets influences the average fees in
the network, and fees play a vital role in user migration. Consequently, fees ought to be
judiciously managed by Ethereum network stakeholders. The causal relationship between
fees, users, and the volume of deposits and withdrawals on cryptocurrency exchanges
underscores the presence of a time-varying feedback loop within the Ethereum network’s
functioning. This adds to the understanding of market mechanisms in digital finance and
platforms, particularly in the context of decentralized financial structures.

Thirdly, the investigation of the causal spillover between DEX volume, DEX users,
and network fees emphasizes the necessity for DEXes to strike a balance between attracting
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more users and maintaining manageable fees. The diminishing significance of fees over
time, for instance, for DEXes, implies that fees” impact on users may vary depending on
the economic context, signifying the relevance of MEV for the Ethereum network at certain
times. This aspect of the study aligns with broader research themes in blockchain scalability,
user-centric design in DeFi, and the economics of transaction fees in distributed ledger
technologies. In conclusion, these findings provide valuable insights into the operation
of these economic systems on Ethereum. They not only enhance our understanding of
the interdependencies within the ecosystem but also stress the importance of ongoing
research into the multifaceted relationship between transaction fees and network activity.
Such research is vital for developing more efficient, user-friendly, and economically viable
blockchain platforms, which are key goals in the broader field of digital finance and
blockchain technology development.

This article proceeds as follows. Section 2 provides a conceptual background on
transaction costs from a theoretical perspective (Section 2.1) and with a focus on the
Ethereum network (Section 2.2). In Section 3, the process of identifying economic systems
on the blockchain network (Section 3.1), data collection and descriptive considerations
(Section 3.2), and the empirical approach are described (Section 3.3). Section 4 consists
of the results of the time-varying Granger causality. Section 5 discusses the results and
concludes.

2. Conceptual Background
2.1. Transaction Cost Theory

Transaction cost theory, an economic concept that focuses on the costs associated with
conducting transactions, posits that these costs can significantly impact the efficiency of
resource allocation, regardless of the distribution of property rights. The theory is based
on Coase (Coase 1937), was initially proposed by Williamson (Williamson 1979) in the late
1970s, and was subsequently developed and refined for specific use cases (Masten et al.
1991; Hennart 1982). In the context of Ethereum, the theory can help understand the role of
transaction costs, such as gas fees, in allocating resources within the network. There are
significant transaction costs in the Ethereum ecosystem, some of which include:

e Information costs: Imperfect information, price volatility, and complexity contribute
to information transaction costs in the Ethereum network. Users may lack accurate
information about gas prices, leading to overpaying or underpaying, thereby con-
tributing to resource allocation inefficiencies. Gas price volatility and the intricacies of
understanding and calculating gas fees further complicate decision-making for users,
especially for those without technical expertise in blockchain technology (Abel et al.
2013; Holmstrom and Milgrom 1991; Arrow 1974).

e  Bargaining costs: The Ethereum network handles a vast number of transactions daily,
making individual bargaining for each transaction time-consuming and impractical.
Ethereum is designed to maintain pseudonymity, and direct negotiation of fees could
jeopardize this anonymity. Additionally, the dynamic nature of gas prices and fluctu-
ating demand for transaction fee negotiation are challenging and unrealistic (Milgrom
and Roberts 1990; Hart and Moore 1990; Grossman and Hart 1986).

o Enforcement costs: In Ethereum’s trustless, decentralized environment, enforcing
agreed-upon fees and transaction inclusion can be challenging without a centralized
authority. Resolving disputes related to transaction fees or performance is difficult
and costly. Aligning incentives for users and miners or validators is crucial and can
be achieved through well-designed economic mechanisms and consensus algorithms
(Dyer and Singh 1998; Zaheer and Venkatraman 1995).

The Ethereum network employs a multifaceted approach to addressing information,
bargaining, and enforcement costs. To mitigate information costs, gas price estimators
have been developed, to provide real-time estimates to aid users in selecting suitable fees.
Additionally, Ethereum’s market-based mechanism for determining gas prices allows users
to specify fees, while miners (before September 2022) or validators (after September 2022)
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opt for transactions based on the fees offered, approximating efficient resource allocation.
Ongoing protocol upgrades, such as Ethereum 2.0, strive to enhance the predictability
and user-friendliness of the gas fee market. As for enforcement costs, the network lever-
ages smart contracts to automatically enforce agreements, thereby minimizing manual
enforcement and dispute resolution. Ethereum relies on consensus algorithms, such as
PoW (before September 2022) and PoS (after September 2022), to maintain blockchain in-
tegrity, align incentives, and ensure the inclusion of transactions. Furthermore, fee markets
create incentives for miners to prioritize transactions with higher fees and for users to pay
appropriate fees to facilitate prompt transaction processing.

2.2. Ethereum Transaction Fees

Ethereum is a blockchain platform that uses gas to execute transactions and host
smart contracts (Buterin 2014). The amount of gas used for a transaction is determined
by the computing power required for that specific contract. The transaction fee for each
execution is based on a free-market system, where the issuer decides how much they are
willing to pay for each unit of gas. Miners or validators determine which transactions
are included in blocks, e.g., the ones with the highest fees. However, the flexibility and
complexity of this system present challenges for developers, maintainers, and users of
blockchain-powered applications (Khan et al. 2022). Based on an analysis of the gas usage
of Ethereum transactions between October 2017 and February 2019, Zarir et al. (2021) find
that the majority of miners prioritized transactions based on gas prices alone. Further, the
authors show that 25% of functions with at least 10 transactions have unstable gas usage
and suggest that developers can use prediction models to make more informed decisions
on gas prices. Another study finds that increasing gas prices does not significantly reduce
the end-to-end latency of Ethereum within a certain range of prices (Zhang et al. 2021).

Donmez and Karaivanov (2022) investigate the economic factors that influence trans-
action fees within the Ethereum blockchain. Through the use of queueing theory and
empirical analysis, they show that changes in service demand have a significant impact
on fees. Specifically, when blockchain utilization is high, per-unit fees tend to increase
on average, with a particularly strong nonlinear effect observed above 90% utilization.
Additionally, they identify that the type of transaction also plays a crucial role in deter-
mining the gas price, with a larger proportion of regular transactions (i.e., direct transfers
between users) being associated with higher gas prices. Another study that relies on
data from 2018 shows that the number of pending transactions and the number of miners
have the greatest influence on Ethereum transaction fees when compared to other factors
(Pierro and Rocha 2019).

An examination of the impact of transaction fee prices on user activity in blockchain-
enabled decentralized systems, specifically focusing on Decentralized Autonomous Or-
ganizations (DAOs) found that there is only a minor influence of fee (gas) prices on user
activity, which is anomalous in a self-regulated market (Fagir-Rhazoui et al. 2021). Focus-
ing on the context and impact of the competitive environment among buyers vying for a
limited supply of tokens offered in initial coin offerings (ICOs), i.e., token sales, Spain et al.
(2020) indicate that while buyers incentivize miners to prioritize their transactions during
ICOs, the latency of these transactions is primarily determined by the levels of supply and
demand in the network.

Through the collection of information on 7.2 million Ethereum transactions, Azevedo
Sousa et al. (2021) correlate the pending time of transactions to several fee-related features
and evaluate different ranges of values for these features, including default and unusual
values adopted by users and clusters of users with similar behaviors. The results of the
empirical analysis provide strong evidence that there is no clear correlation between fee-
related features and the pending time of transactions. Therefore, the authors conclude that
transaction features, including gas and gas prices defined by users, cannot determine the
pending time of transactions on the Ethereum platform. A plethora of other studies analyze,
evaluate or forecast gas prices on Ethereum, i.e., how fees should ideally be set for the
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initiation of transactions, and find multiple ways for optimization or identify inefficiencies
(Feng et al. 2023; Bouraga 2020; Antonio Pierro et al. 2020; Pierro et al. 2022; Mars et al.
2021; Chunmiao Li et al. 2020; Liu et al. 2020; Laurent et al. 2022; Werner et al. 2020).

The Ethereum Improvement Proposal (EIP) 1559 was implemented to improve the
transaction fee market on Ethereum. The update uses an algorithmic rule with a constant
learning rate to estimate a base fee, which reflects current network conditions (Buterin et al.
2019; Yulin Liu et al. 2022). However, research on on-chain data from the period after its
launch suggests that EIP-1559 has led to intense, chaotic oscillations in block sizes and
slow adjustments during periods of high demand. These phenomena result in unwanted
variability in mining rewards (Leonardos et al. 2021). To address this issue, Reijsbergen et al.
(2021) propose an alternative base fee adjustment rule that utilizes an additive increase
multiplicative decrease (AIMD) update scheme and provides simulations showing that
the approach outperforms EIP-1559. Also referring to limitations of mechanisms such as
EIP-1559, Chunmiao Li (2021) proposes a dynamic posted-price mechanism, which uses not
only block utilization but also observable bids from past blocks to compute a posted-price
for subsequent blocks. The goal of this mechanism is to reduce price volatility.

In conclusion, it can be argued that there is a significant amount of ongoing research
in the area of transaction costs within the Ethereum network. However, the majority of
this research is concentrated within the field of computer science, specifically focusing
on identifying optimization opportunities and developing novel approaches. In contrast,
there exists comparatively limited research from an economic or transaction cost theory
perspective or research that specifically examines specific economic systems or phenomena.
This serves as motivation for the above-mentioned research question and methodological
approach outlined in the subsequent sections.

3. Methods and Data
3.1. Ethereum Transaction Fees

To identify the economic systems of the Ethereum network for empirical analysis, a rig-
orous, multivocal exploratory approach is employed. This approach consists of two primary
steps: (1) an exploratory analysis of non-academic data platforms in the field of Ethereum,
focusing on addresses or address bundles associated with numerous transactions and fees;
and (2) a validation of the identified systems through bibliometric analyses of the respective
topics, determining the relevance of the systems as recognized by academic literature.

For the initial step, Ethereum and blockchain data providers such as Etherscan
(Etherscan 2023b), Dune Analytics (Dune Analytics 2023), Glassnode (Glassnode 2020),
and Flipside Crypto (Flipside Crypto 2023) are utilized to analyze the Ethereum network’s
status at regular one-week intervals between 1 August and 1 November 2022. This analysis
aims at identifying and documenting relevant markets, wallets, contracts, and estimated
transaction costs, resulting in a preliminary overview of significant economic systems. For
instance, the Ethereum addresses of stablecoins Tether (USDT) and USD Coin (USDC)
were found to be associated with a high number of transactions, thus indicating their
substantial economic significance. Consequently, the “stablecoins” system was identified
and validated based on the abundant academic literature on the subject. In contrast, the
Ethereum Name Service (ENS), an open naming system based on the Ethereum blockchain,
represents an atypical case. Although on-chain data suggest its relevance as a “system”,
academic validation is currently lacking. As such, ENS may represent a promising area for
future research.

Table 1 presents a summary of the six identified systems examined in this study,
accompanied by pertinent academic references for validation purposes. These systems
include (a) Bridges, (b) Centralized Exchanges (CEXs), (c) Decentralized Exchanges (DEXs),
(d) Maximal Extractable Value (MEV) bots, () Non-Fungible Tokens (NFTs), and (f) Sta-
blecoins. It is important to note that this selection is not intended to be a comprehensive
compilation of every economic system on the Ethereum network, but rather a representa-
tive sample of systems that are relevant to the research question. Given the challenge of
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comprehensively identifying, extracting data from, and analyzing all six economic systems
in question, we utilize proxy variables to approximate the economic activity of individ-
ual systems. Specifically, we employed Etherscan’s Ethereum address labeling service,
which facilitates the identification and classification of prominent actors on the Ethereum
blockchain through the assignment of account labels. For instance, a roster of all recognized
bridges can be accessed through the account handle, “bridge” (Etherscan 2023a). This
approach was replicated for all identified economic systems, yielding a range of three to
five addresses or contracts as proxy variables per system, which are presented in Table 1.
These addresses were then used to extract data on volumes and distinct active users, which
were aggregated to compute system-specific data.

Table 1. Economic systems and proxy addresses on the Ethereum blockchain.

System Description Name Address ;}rea(mn_ Date/First Numberlof
ransaction Transactions
. . - . . Axie Infinity: Ronin Bridge 0Ox1a2a1c938ce3ec39b6d47113c7955baad9d d454f2 25 January 2021 3,090,670
Dlockchain protocols or platforms that allow for interoperability betwcen different 2ZkSync Oxabea9132b05a70803a4e85004£d0e1800777fbef 15 June 2020 825,134
N lockchain networks (Lan et al. 2021; Teutsch et al. 2019; Zhang et al. 2022; Lee et al.
Bridges 2022; Xie et al. 2022; Yiying Liu et al. 2022; Qasse et al. 2019; Belchior et al. 2022; Stone Hop Protocol 0xb8901acb165ed027e32754e0ffe830802919727f 1 October 2021 497,580
202 1C Hardjono 2023) - ! ! ! Immutable X: Bridge 0x5fdcca536174d2b9134b29090c87d01058e27e9 10 March 2021 384,515
’ ! Optimism: Gateway 0x99c9fc46f92e8alc0dec1b1747d010903e884bel 22 June 2021 300,528
Binance Hot Wallet A 0x3f5ce5fbfe3e9af3971dd833d26ba9b5c936f0be 4 August 2017 17,017,383
Deposits and withdrawals from wallets of centralized crypto asset exchanges (Ante et al Binance Hot Wallet B 0x28¢6c06298d514db089934071355e5743bf21d60 22 April 2021 11,507,057
CEX 2021a; le Pennec et al. 2021; Brandvold et al. 2015; Makarov and Schoar 2020; Ante 2020; Bittrex Wallet 0xfbb1b73c4f0bda4f67dca266ce6ef42f520fbb98 10 August 2015 11,492,410
Bianchi et al. 2022; Petukhina et al. 2021). Coinbase Wallet A 0x3cd751e6b0078be393132286¢442345¢5dc49699 27 April 2021 9,852,269
Coinbase Wallet B 0xb5d85cbf7cb3ee0d56b3bb207d5fc4b82f43£511 27 April 2021 9,351,971
Decentralized exchanges (DEX), which allow for peer-to-peer trading of crypto assets SushiSwap Router 0xd9elcel7f2641f24ae83637ab66a2ccadc378b9f 4 September 2020 4,131,024
DEX (Lan et al. 2021; Teutsch et al. 2019; Zhang et al. 2022; Lee et al. 2022; Xie et al. 2022; Uniswap v2 Router 0x7a250d5630b4cf539739df2c5dacb4c659f2488d 5 June 2020 58,660,014
Yiying Liu et al. 2022; Qasse et al. 2019; Belchior et al. 2022; Stone 2021; Hardjono 2021). Uniswap v3 Router 0xe592427a0aece92de3edeel f18e0157c05861564 4 May 2021 5,673,190
Bots that exploit market inefficiencies to extract profit, known as miner extractable value MLy Bot1 0xa57bd00134b2850b2a1c35860ce9eal00ddoct 26 March 2019 3041491
or maximal extractable value (MEV) (Daian et al. 2020; Qin and Gervais 2021; Zhou etal.  MEY, Bot2 0x0000000000007f150bd6f54c40a34d7c3d5e9f56 23 October 2020 2,327,098
MEV 2021; Churiwala and Krishnamachari 2022; Obadia et al. 2021; Kulkarni et al. 2022; MEV Bot 3 0x860bd2dbaded475a61e6d1645e16¢365(6d78666 11 February 2020 2175487
Malkhi and Szalachowski 2022; Weintraub et al. 2022; Bartoletti et al. 2022), ’ MEV Bot 4 0x000000000000006f6502b7f2bbac8c30a3f67e92 1 May 2020 1,438,193
o h - T . ) MEV Bot 5 0x4cb18386e5d1f34dc6eea834bf3534a970a3f8e7 26 February 2021 732,871
Non-fungible tokens, which are unique digital assets that can represent ownership of Azuki Oxed5af388653567af2(3886224dc7cdb3241c544 20 January 2022 87,238
things like artwork or collectibles (Daian et al. 2020; Qin and Gervais 2021; Zhou et al Bored Ape Yacht Club Oxbedcaleda7647a8ab7c2061c2e118a18a936{13d 22 April 2021 141,249
NETs 2021; Churiwala and Krishnamachari 2022; Obadia et al. 2021; Kulkarni et al. 2022; CloneX Oxa9cf6f5ddde70224e2e23dedd2c055(30ada28h 12 December 2021 100,589
\1a]k’hl and Szalachowski 2022 Wemtmub/e( al. 2022: Ba rm]e(’h et al. 2022). ’ Mutant Ape Yacht Club 0x60e4d786628fea6478f785a6d7e704777c86a7c6 28 August 2021 121,620
o : - ’ o CryptoPunks 0xb47e3cd837ddf8e4c57f05d70ab865de6e193bbb 22 June 2017 50,630
" . BUSD 0x4fabb145d64652a948d72533023f6e7a623c7c53 5 September 2019 1,740,628
Crypto assets that are pegged to the value of a specific asset, such as the US dollar, in
orc}llg' to reduce volatilﬁvgii their value (Fiedler f\)nd Ante 2023; Hoang and Baur 2021; DAI 0x6b175474¢89094c44dad8bo54eedeact95271d0f 13 November 2019 16,642,305
Stablecoins .15 ot al, 2022; Ante et al. 2021a, 2021b; Grobys et al. 2021; Moin et al. 2020; Saggu FRAX 0x853d955acef822db058eb8505911ed77f175b99% 16 December 2020 575,751
2022; Griffin and Shams 2020; Wang et nl.’ZOZO): © UsDC 0xa0b86991c6218b36c1d19d4a2e9eb0ce3606eb48 3 August 2018 59,242,016
T h N ! USDT 0xdac17f958d2ee523a2206206994597c13d831ec7 28 November 2017 174,406,655

Table 1 provides a comprehensive overview of six unique economic systems operating on the Ethereum blockchain,
along with their corresponding proxy addresses. The systems analyzed encompass Bridges, Centralized Exchanges
(CEXs), Decentralized Exchanges (DEXs), Maximal Extractable Value (MEV) bots, Non-Fungible Tokens (NFTs),
and Stablecoins, with data sourced from Etherscan. The table offers a succinct description of each system, the
precise proxy address, the inception date or initial transaction, and the total number of transactions linked to the
address. The table features a concise description of each system, the specific proxy address, the creation date or
first transaction, and the aggregate number of transactions associated with the address. All transaction data were
collected on 28 January 2022.

3.2. Data
3.2.1. Transaction Fees on the Ethereum Blockchain

We utilize Glassnode (Glassnode 2020) as our principal data source to acquire com-
prehensive time series data on transaction costs (fees) within the Ethereum network at
daily intervals. The dataset covers the period from 1 July 2020 to 14 November 2022 and
encompasses mean transaction fees in USD. Across all transaction types, the mean daily
value of fees amounts to USD 13.18, indicating that they are conceivably “too high” for a
plethora of applications that necessitate substantial transaction throughput.” To illustrate
the behavior of fees over time, we depict the mean fees in USD in both logarithmic form
and as a first difference in Figure 1. Notably, we find no discernible trend in the logarithmic
form of the variable.
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Figure 1. Transaction fees on the Ethereum blockchain. Figure 1 illustrates the transaction fees on the
Ethereum blockchain using data obtained from Glassnode at daily intervals. The dataset comprises
mean transaction fees in USD from 1 July 2020 to 14 November 2022. The blue curve represents the
logged transaction fees, while the orange curve displays the first difference in the transaction fees.

To investigate the time series properties of the transaction fee variable, we apply
the ADFmax unit root test because it accounts for both forward and reverse realizations
of the variable under scrutiny (Leybourne 1995; Otero and Baum 2018). We incorporate
a constant and trend in the test regressions. The selection of lag order is informed by
the Akaike Information Criterion (AIC), the Schwarz Information Criterion (SIC), and a
General-to-Specific algorithm (Hall 1994; Campbell and Perron 1991) with a 5% significance
level. The results of the test are displayed in Table 2. The unit root tests indicate that fees
are optimally represented in first differences, as the hypothesis of a unit root cannot be
rejected for the log-transformed series.’®

Table 2. ADFmax test results for time series properties of Ethereum transaction fees in USD.

Log-Transformed First-Differenced
Lags ADFmax p-Value Lags ADFmax p-Value
AIC 6 —1.018 0.536 7 —12.233 *** 0.000
SIC 5 —1.196 0.444 4 —19.770 *** 0.000
GTSps 6 —1.018 0.537 7 —12.233 *** 0.000

Table 2 displays the results of an ADFmax test, incorporating a constant and trend for both log-transformed and
first-differenced transaction fees on the Ethereum blockchain. The data are sourced from Glassnode, with daily
intervals covering the period between 1 July 2020 and 14 November 2022. The untransformed dataset considers
mean transaction fees in USD. Significance levels are indicated by *, **, and *** for 10%, 5%, and 1%, respectively.

3.2.2. Underlying Economic Systems on the Ethereum Blockchain

We utilized Flipside Crypto (Flipside Crypto 2023) as a data source to collect daily
time series data on the economic systems within the Ethereum network. To achieve this,
we developed and implemented custom application programming interfaces (APIs) for
each distinct contract or address on the Ethereum blockchain defined in Table 1. These
APIs allowed us to determine the number of unique active wallets and the corresponding
volume, measured in USD, associated with transactions. The term “active” denotes a
wallet, specifically a blockchain address, which partakes directly in a successful transaction.
Conversely, the term “unique” signifies that addresses are not enumerated multiple times,
thereby precluding redundancy. Consequently, the metric of unique active wallets can
serve as a surrogate measure for authentic singular users within the blockchain ecosystem.
It is imperative to note, however, that the determination of whether a lone individual
exercises control over multiple unique addresses remains unfeasible.

Figure 2 presents time series plots for the six identified economic systems, showcasing
the transacted volume in USD and unique active wallets, both log-transformed. In the
case of the (a) bridge system, a considerable upsurge in volume is observed, commencing
in July 2021 and reaching its zenith towards the end of 2021 and mid-2022. On average,
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the daily transfer volume via the bridges is slightly above USD 23 million, with a highly
skewed distribution (standard deviation = USD 77 million; maximum = USD 1.5 billion).
The number of unique active wallets also experiences substantial growth, escalating from
less than 1000 to almost 20,000 wallets per day during mid-2021. Notwithstanding the
subsequent decline in active wallets, it is essential to note that the activity levels remain
markedly elevated compared to earlier periods, with a peak value of 29,793 unique active
wallets recorded in June 2022. On average, 2757 unique wallets per day interact with the
bridges employed for system calculation, highlighting the system’s economic importance.
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Figure 2. Log-transformed transaction fees and unique active wallet users by economic system in the
Ethereum ecosystem. Figure 2 features six plots that display log-transformed activity, with unique
active wallets (orange) and transacted volume in USD (blue) plotted over time. The systems include
(a) Bridges, (b) Centralized Exchanges (CEXs), (c) Decentralized Exchanges (DEXs), (d) Maximal
Extractable Value (MEV) bots, (e) Non-Fungible Tokens (NFTs), and (f) Stablecoins. Data are obtained
using Flipside Crypto. Custom application programming interfaces (APIs) were developed and
implemented for each distinct contract or address on the Ethereum blockchain, allowing for the
determination of unique active wallets and their corresponding transaction-associated volumes,
measured in USD.

An analysis of (b) CEX deposit and withdrawal activity in Figure 2 reveals a striking
growth pattern in volume up to mid-2021, succeeded by a precipitous decline over several
months and a brief resurgence towards the end of 2022. Subsequently, a sustained decrease
in average volume emerges. The daily mean economic volume stands at USD 717 million,
accompanied by a standard deviation of USD 686 million, indicating considerable variability
in the data. The number of distinct active wallets mirrors the volume fluctuations, averaging
25,205 per day and peaking at 590,000 on a single day—an exceptional outlier. Notably,
sporadic short-term user surges in 2022 are ephemeral aberrations that do not alter the
overarching downward trajectory, reflecting a potential shift in user behavior and market
dynamics within the centralized exchange ecosystem.

The daily average trading volume for the analyzed (c) DEXes in Figure 2 is estimated
to be approximately USD 2.9 billion. A notable expansion in volume transpires from mid-
2020 to mid-2021, succeeded by a brief contraction and subsequent zenith towards the end
of 2021. However, in the following year, a consistent diminution in volume materializes,
interspersed with occasional fluctuations, such as a modest upswing in October 2022.
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This pattern may reflect evolving market conditions and user preferences. Scrutiny of the
number of distinct wallets engaged in DEX transactions uncovers a pronounced increase up
to mid-2021 when the apex number of unique wallets reached 105,000. Beyond this juncture,
a persistent decline in user engagement manifests, punctuated by sporadic short-lived
surges in activity towards the year’s end. On average, 32,144 unique wallets partake in
transactions with the DEXes daily throughout the examined timeframe, indicating the
importance of these platforms within the decentralized finance ecosystem.

The analysis of (d) MEV volume and active wallet data in Figure 2 exhibits fluctuations,
with a rapid ascent until mid-2021, succeeded by a descent. The average daily MEV
volume equates to USD 26.3 million, while the mean unique active wallets number 128. A
contrasting trend emerges in the unique wallet data, as a sharp upswing commences in
early 2022, culminating in June 2022 at 513. This development may indicate the growing
impact of MEV on blockchain security and miner incentives.

In the realm of (e) NFTs in Figure 2, the examination of the economic system com-
mences in April 2021, corresponding with the launch of selected initiatives. The average
daily trade value for NFT collections amounts to USD 2.1 million, engaging 64 distinct
active wallets within the network. However, the volume exhibits substantial fluctuations
(standard deviation = USD 4.1 million). The NFT volume trend reveals a steep incline until
mid-2022, paralleled by a similarly sharp decline, reflecting the volatility and speculative
nature of the NFT market.

The (f) stablecoins in Figure 2 underscore their significance within the Ethereum
network, boasting an average daily volume of USD 22 billion and engaging over 104,000
unique active wallets. The volume remains relatively stable, punctuated by occasional
upward outliers. The daily number of stablecoin users consistently surpasses 50,000 wallets,
reaching its zenith of over 200,000 in November 2022, highlighting the persistent demand
for stablecoins as a medium of exchange and store of value.

We employ the ADFmax test procedure with constant and trend to investigate the time
series properties of the identified systems. The presence of unit roots in first differences
can be rejected for all systems, as illustrated in Table 3. The unit root test suggests that the
variables are optimally described in the first differences—consistent with Table 2.”

Table 3. ADFmax test results for time series properties of log-transformed economic activity by
economic system in the Ethereum ecosystem.

Transaction Volume (USD) Active Users
System Lags ADFmax p-Value Lags ADFmax p-Value
AIC 7 —15.85 *** 0.000 5 —16.25 *** 0.000
(a) Bridges SIC 5 —20.52 #** 0.000 2 —22.99 *#** 0.000
GTSps 7 —15.85 #** 0.000 5 —16.25 #** 0.000
AIC 6 17.56 *** 0.000 5 —17.75 *** 0.000
(b) CEX SIC 5 23.80 *** 0.000 5 —17.75 *** 0.000
GTSps 5 23.80 *** 0.000 5 —17.75 *** 0.000
AIC 5 —19.85 *** 0.000 4 —15.40 *** 0.000
(c) DEX SIC 5 —19.85 *** 0.000 1 —25.49 #** 0.000
GTSps5 5 —19.85 *** 0.000 4 —15.40 *** 0.000
AIC 6 —15.84 *** 0.000 2 —22.57 #** 0.000
(d) MEV SIC 4 —19.05 *** 0.000 2 —22.57 #** 0.000
GTSps5 6 —15.84 #** 0.000 2 —22.57 #** 0.000
AIC 3 —17.27 #** 0.000 3 —19.39 *** 0.000
(e) NFTs SIC 0 —33.10 *** 0.000 3 —19.39 *** 0.000
GTSps 3 —17.27 #** 0.000 3 —13.39 *** 0.000
AIC 7 —17.92 #** 0.000 7 —12.02 #** 0.000
(f) Stablecoins SIC 6 —20.63 *** 0.000 6 —14.03 #** 0.000
GTSps5 6 —20.63 *** 0.000 6 —14.03 *** 0.000

Table 3 presents the results of an ADFmax test, incorporating a constant and trend for both log-transformed and
first-differenced unique active wallets and transaction volumes in USD across various economic subsystems within
the Ethereum blockchain. The systems include (a) Bridges, (b) Centralized Exchanges (CEXs), (c) Decentralized
Exchanges (DEXs), (d) Maximal Extractable Value (MEV) bots, (e) Non-Fungible Tokens (NFTs), and (f) Stablecoins.
Significance levels are denoted by *, **, and *** for 10%, 5%, and 1%, respectively.



J. Risk Financial Manag. 2024, 17, 19

11 of 28

3.3. Empirical Approach
3.3.1. Granger Causality

Granger causality is a statistical concept that aims to determine the causal relationship
between two time series variables. The concept of Granger causality states that if the past
values of variable y; can be used to predict the current value of variable y,, taking into
account the past values of y,, then y; is said to Granger cause vy, (Granger 1981; Engle and
Granger 1987). The formal approach described in the following is adapted from the method
described by Baum et al. (2021, 2022) to analyze the temporal stability of Granger-causal
relationships. In a bivariate VAR(m) model, y1; and y,; represent economic time series
of interest.

yit = @(()1)2;:1:1 @gi).‘/ltfk + Z,T:l @é?yzpk‘i‘sltr (1)
and ) R )
m m
Yor = @(() )Zkzl ®§k)y1t_k + Zk:1 @ék)yzt—k‘*'&t/ 2)

The joint significance of multiple parameters is evaluated using a Wald test, examining
the null hypothesis of no causality from y; to y,. The system can be reshaped in matrix
notation, with y; = [y1; yor], e = [1 Y1 V'i—2 ... V¢ 4], and [] 2x 2m + 1) = [P0 D1 ...

1) @) a1 1)
Om] with @0 = [@;” @]’ and O = %5‘) %5‘) fork=1,..., m.
Gy Do
Thus, the bivariate VAR(m) can be expressed as:
ye =[xt +er 3)

The null hypothesis of the absence of causality from y; to y, is represented by
Rqi_»7m =0, where R;_,, serves as the coefficient restriction matrix and 77 = vec([]). The
statistic used to evaluate this null hypothesis in the presence of heteroskedasticity is referred
to as W1, and is calculated as:

P TN -1
Wisp = T(Rio#), [Risa(VIEV R, (Risa), 4)

withV = Iy ®Qand Q = T'Y, x;x} and ¥~ = T~!Y, &¢. The term ¢ stands for £ ® x,
with & = y; — f[xt. Iy refers to the number of variables in the VAR model.

The framework for testing Granger causality within the context of a VAR model,
estimated using stationary variables, is augmented to account for the possibility of inte-
grated variables. Toda and Yamamoto (1995) and Dolado and Liitkepohl (1996) suggest
the use of a Lag-Augmented VAR (LA-VAR) model, which is an extension of the original
VAR(m) model with the inclusion of d lags to account for the maximum order of integration
of the variables. The resulting model is represented as VAR(m + d). The procedure for
conducting a Granger causality test within the framework of an LA-VAR model remains
unchanged, with the exception that the coefficients associated with the additional d lags
are not included in the testing restrictions.

3.3.2. Time-Varying Granger Causality

The validity and robustness of VAR results are often contingent upon the specific time
period over which the VAR is estimated. This highlights the need for a more comprehensive
approach when assessing structural stability, as the existence of Granger causality between
a pair of variables may be supported over one time frame, yet may be found to be fragile
when alternative periods are considered. Recent literature, such as the work of Phillips et al.
(2011, 2014, 2015a, 2015b) has contributed significantly to the field by developing methods
for detecting and dating financial bubbles. These methods involve the use of right-tailed
unit root tests in conjunction with date-stamping techniques. Subsequently, the concept
of Granger causality has been extended by Shi et al. (2018, 2020) to incorporate these
techniques, resulting in a more robust approach to assessing causality.
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In order to analyze time-varying Granger causality, recursive estimation methods are
required. These methods involve computing a sequence of test statistics for each time period
of interest and using this information for inference. The three algorithms that generate
this sequence of test statistics are the forward expanding window (FE) (Thoma 1994), the
rolling window (RO) (Arora and Shi 2016; Swanson 1998), and the recursive evolving (RE)
algorithms (Shi et al. 2020; Phillips et al. 2015a). These algorithms are illustrated in Figure 3,
where each arrow represents a subsample over which the test statistic is computed. Given
a sample of T + 1 observations, denoted as {yo, 1, - - ., y7}, and a value r such that 0 <7 < 1,
the Wald test statistic is computed over a subsample starting at y[Tr;] and ending at y[Tr].
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(a) Forward expanding window (b) Rolling window (¢) Recursive evolving window

Figure 3. Sample sequences and window widths. Adapted from Phillips et al. (2015a). The red
arrows indicate the temporal scope and progression for each test statistic. For the Forward Expanding
Window (FE), the arrow originates from the initial data point and moves forward, reflecting an
increasing window as new data is included. The Rolling Window (RO) displays arrows of equal
length, symbolizing a constant-sized window that progresses through the data, discarding the
oldest point for a new one at each step. Lastly, the Recursive Evolving Window (RE) shows arrows
beginning at successive data points, each extending to the end, depicting windows that expand over
time starting from various points in the series.

The interpretation of causality (or lack thereof) in the results derived from various
algorithms is predicated on the premise that a minimum of two out of three tests must
exhibit concordant outcomes. This criterion serves as an indicator of causal influences. The
application of three distinct tests provides a validation of the robustness of the results.

4. Results
4.1. Baseline Estimation

Table 4 presents the Wald statistic outcomes and the 95% and 99% thresholds for
inferring causality among economic systems within the Ethereum ecosystem, including
(a) bridge volume and bridge activity; (b) CEX volume and CEX activity; (c) DEX volume
and DEX activity; (d) MEV volume and MEV activity; (e) NFT volume and NFT activity;
and (f) stablecoin volume and stablecoin activity.

The empirical analysis uncovers statistically significant bivariate causal interconnec-
tions amongst all variables, employing rolling (RO) and recursive evolving (RE) algorithms.
This highlights the crucial role of various forms of economic activities in shaping the
Ethereum network’s dynamics. In certain instances, the forward expanding (FE) algorithm
yields statistically insignificant results; however, Phillips et al. (2015a) posit that the forward
algorithm exhibits less reliability compared to its rolling and recursive counterparts.
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Table 4. Time-varying Granger causality estimates between economic systems on the Ethereum
blockchain.

Forward Rolling Recursive

Direction of Causality Wald 95th 99th Wald 95th 99th Wald 95th 99th
(a) Bridges
Bridge volume S Fees 7.09 8.98 14.18 16.73 *** 9.86 15.08 16.81 *** 10.19 15.56
Bridge activity € Fees 17.20 *** 9.48 15.63 19.71 *** 8.71 15.41 27.63 *** 11.03 16.04
Fees 5§ Bridge volume 4.13 7.19 11.29 15.47 *** 7.68 12.87 15.67 *** 7.87 12.87
Fees 5§ Bridge activity 9.19 ** 6.22 11.92 13.95 *** 6.45 11.84 15.89 *** 6.82 11.92
(b) CEX
CEX volume S5 Fees 27.05 *** 8.17 11.47 31.87 *** 9.63 15.32 47.96 *** 10.27 15.63
CEX activity ¢ Fees 3.42 7.39 13.27 46.99 *** 8.74 15.85 46.99 *** 9.06 16.04
Fees § CEX volume 52.35 *** 7.69 14.42 29.24 *** 9.03 13.82 55.79 *** 9.29 14.51
Fees ©§ CEX activity 16.65 *** 7.46 11.31 33.49 *** 7.65 13.53 33.49 *** 7.94 14.51
(c) DEX
DEX volume &5 Fees 9.07 ** 8.93 15.08 32.20 *** 10.62 14.52 32.39 *** 10.97 15.46
DEX activity ¢ Fees 30.77 *** 9.07 14.38 29.33 *** 9.94 15.47 36.66 *** 10.60 15.86
Fees %5 DEX volume 17.36 *** 9.17 15.60 19.52 *** 9.39 17.92 36.40 *** 9.70 17.93
Fees %5 DEX activity 18.98 *** 10.85 16.11 20.69 *** 11.97 15.36 22.04 *** 11.98 16.17
(d) MEV
MEV volume 25 Fees 13.85 ** 11.03 23.09 18.27 ** 15.86 25.40 18.31 ** 16.65 25.99
MEYV activity ¢ Fees 13.41 13.59 23.09 21.54 *** 13.83 24.30 26.06 *** 14.58 26.01
Fees 5 MEV volume 13.21 ** 11.36 17.52 20.01 *** 12.06 17.01 23.43 *** 12.51 17.52
Fees 5 MEV activity 8.56 11.20 19.01 21.51 *** 11.49 18.74 21.62 *** 12.26 19.01
(e) NFT
NFT volume 5 Fees 6.94 8.19 14.33 17.42 ** 9.03 18.90 17.42 ** 9.61 18.90
NFT activity &€ Fees 11.58 ** 9.00 12.50 17.67 *** 9.03 12.50 23.13 *** 9.71 13.40
Fees § NFT volume 12.57 ** 10.25 13.79 37.30 *** 10.64 13.90 41.21 *** 10.67 14.15
Fees 5 NFT activity 12.39 12.82 16.16 36.77 *** 13.02 17.99 38.66 *** 13.46 17.99
(f) Stablecoins
Stablecoin volume 5 Fees 9.36 *** 7.05 9.31 11.52 ** 8.03 11.79 16.79 *** 8.07 12.92
Stablecoin activity € Fees 13.12 ** 12.49 16.90 26.84 *** 13.83 20.67 40.98 *** 14.50 20.67
Fees S5 Stablecoin volume 9.07 ** 8.58 11.28 23.61 *** 8.55 11.73 36.78 *** 8.93 11.90
Fees S5 Stablecoin activity 41.55 **+* 743 12.84 18.11 *** 9.86 13.66 43.56 *** 9.14 13.66

Table 4 presents the robust Wald test statistics for Granger causality tests, with the 95th and 99th quantiles of the
empirical distributions based on 499 bootstrap replications. *, **, and *** for 10%, 5%, and 1%, respectively.

4.2. Bridges

The interplay between bridge utilization and transaction fees constitutes a subject
of considerable interest within the domain of blockchain economics. Blockchain bridges,
as technological solutions, enable interoperability among disparate blockchain networks.
The connection between these bridges and the Ethereum network may be subject to var-
ious influences, such as a potential decline in Ethereum network activity attributable to
high bridge usage, or a fee increase driven by elevated demand for bridge services. It is
reasonable to anticipate that blockchain bridges influence Ethereum transaction fees by alle-
viating network congestion, fostering competition among blockchain networks, facilitating
transaction fee arbitrage opportunities, and promoting layer-2 scaling solutions. Intuitively,
higher fees may prompt certain users to explore alternative, lower-fee blockchain network
options, while a fee reduction could, in theory, entice certain users to rejoin the Ethereum
network. Nevertheless, the migration process could culminate in the permanent departure
of projects or users, as they may be reluctant to face the risk of potential future fee hikes
and the associated need for subsequent migration, or they might simply be content with
another blockchain network. The presence of bridging services and solutions, such as
Axie Infinity’s Ronin Bridge, exemplifies the correlation between transaction costs and
migration within the blockchain ecosystem. The Ronin Bridge, for instance, is a smart
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contract that allows users of the NFT or play-to-earn game Axie Infinity to transition to the
Ronin sidechain, which was primarily established due to the elevated transaction costs on
the Ethereum network (Axie 2021).

The results of the time-varying Granger causality analysis between bridge transaction
volume, activity, and mean fees in the Ethereum network, are illustrated in Figure 4. The
dashed lines denote the critical values of bootstrapped test statistics at the 90% and 95%
levels. A Granger curve positioned above these lines indicates the presence of significant
causal relationships in the context of Ethereum transaction fees. Figure 4 reveals that
Ethereum fees generally exert a Granger-causal influence on bridge activity over time
(Figure 4, panels d h,1). This suggests that fluctuations in fees directly impact user behavior
on bridges. Notably, a feedback loop is observed, as bridge activity also exhibits a Granger-
causal effect on Ethereum fees until Q2 of 2022 (Figure 4, panels b,fj). This observation
implies that users may have migrated to alternative blockchains, consequently weakening
the causal relationship between these variables—consistent with our expectations. Despite
anotable decrease in average fees over the sample period (see Figure 1), the causal influence
of fees on bridge activity seems to persist throughout much of the sample (Figure 4, panels
b,j). This observation suggests that the fees in the Ethereum network, despite being
comparatively low, may not be competitive enough in comparison to other networks and
layer-2 solutions, leading to a continued churn in the network. In contrast, the analysis
generally does not reveal significant causal effects of Ethereum fees on bridge transaction
volume (Figure 4, panels c,g/k). The findings concerning the causal impact of bridge
transaction volume on Ethereum fees also yield mixed results (Figure 4, panels a,e,i).
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Figure 4. Time-varying Granger causality tests for bridge volume, activity, and mean fees in the
Ethereum network. Figure 4 displays the bivariate results derived from forward expanding (FE),
rolling (RO), and recursive evolving (RE) algorithms using the time-varying Granger causality
model developed by Baum et al. (2021, 2022). The analysis employs the Lag-Augmented Vector
Autoregression (LA-VAR) model proposed by Toda and Yamamoto (1995) and Dolado and Liitkepohl
(1996). The sample period spans from 1 July 2020 to 14 November 2022, with a minimum window
size set at 20% of the sample. Models incorporate four augmented lags and a trend. Dashed lines
represent the critical values of bootstrapped test statistics at the 90% and 95% significance levels. The
results are robust to heteroskedasticity.

4.3. Centralized Exchanges (CEX)

The relationship between CEX hot wallet movements and Ethereum transaction fees
can be delineated through an examination of several distinct factors such as network
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congestion, arbitrage opportunities, and exchange operations. Network congestion arises
when CEXs process numerous transactions, increasing demand for block space on the
Ethereum blockchain and intensifying competition for transaction processing. In addition,
arbitrage opportunities are created due to price discrepancies between CEXs and other
exchanges or DEXs, prompting traders to buy low on one exchange and sell high on
another. These activities require asset transfers between wallets, contributing to hot wallet
movements and higher transaction fees. Additionally, CEXs routinely transfer funds
between their hot and cold wallets for security and operational purposes, further impacting
Ethereum transaction fees.

The time-varying Granger causality analysis between CEX transaction volume, activity,
and mean fees in the Ethereum network, as depicted in Figure 5, reveals a mutual interaction
between the variables. Ethereum fees generally exert a Granger-causal influence on CEX
transaction volume, with the causal effect growing in statistical significance over time
(Figure 5, panels ¢,g k). A feedback loop is also observed, as CEX transaction volumes
typically Granger-cause Ethereum fees (Figure 5, panels a,e,i). This suggests that as CEX
transaction volume increases, it spurs heightened demand for block space and greater
competition among users for transaction processing. Consequently, users are willing to pay
higher gas fees to expedite their transactions, driving up average Ethereum transaction
fees. When Ethereum transaction fees increase, they affect trading and transferring costs
on CEXs, influencing user behavior. This may incentivize traders to engage in more
high-value transactions, leading to a rise in CEX transaction volume and reinforcing the
causal relationship between Ethereum fees and CEX transaction volume. The presence of
a feedback loop implies that market participants closely monitor the interplay between
Ethereum transaction fees and CEX transaction volume, transacting more on CEXs in
response to increasing Ethereum fees to capitalize on arbitrage opportunities or market
volatility. This, in turn, contributes to network congestion and further elevates Ethereum
transaction fees in a self-reinforcing cycle. Overall, the analysis uncovers a bidirectional
relationship between CEX transaction volume and Ethereum fees that strengthens over time,
driven primarily by supply and demand dynamics for block space on the Ethereum network
and the strategic behavior of market participants in response to fluctuating transaction costs.

4.4. Decentralized Exchanges (DEX)

DEXs enable peer-to-peer trading of digital assets without a centralized intermediary
by leveraging smart contracts and automated market-making protocols, fostering direct,
trustless transactions between participants. User activity on DEXSs is influenced by factors
such as market sentiment, profitable trading opportunities, and the expansion of the de-
centralized finance (DeFi) ecosystem. As user activity and transaction volumes increase,
the demand for limited resources on the underlying blockchain network rises, intensifying
competition for block space and leading to higher transaction fees. In this context, elevated
transaction fees on networks like Ethereum may deter DEX users from conducting trades
or interacting with decentralized applications (dApps), causing a decline in transaction
volumes and user activity until fees revert to lower levels. Conversely, reduced transac-
tion fees on Ethereum may incentivize users to engage in trades and other activities on
DEXs, thereby boosting transaction volumes and user activity. Ultimately, the interplay
between transaction volumes, user activity on DEXs, and Ethereum transaction fees reflects
a dynamic relationship, with increased demand for network resources contributing to
fluctuating transaction fees.
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Figure 5. Time-varying Granger causality tests for CEX volume, activity, and mean fees in the
Ethereum network. Figure 5 displays the bivariate results derived from forward expanding (FE),
rolling (RO), and recursive evolving (RE) algorithms using the time-varying Granger causality
model developed by Baum et al. (2021, 2022). The analysis employs the Lag-Augmented Vector
Autoregression (LA-VAR) model proposed by Toda and Yamamoto (1995) and Dolado and Liitkepohl
(1996). The sample period spans from 1 July 2020 to 14 November 2022, with a minimum window
size set at 20% of the sample. Models incorporate four augmented lags and a trend. Dashed lines
represent the critical values of bootstrapped test statistics at the 90% and 95% significance levels. The
results are robust to heteroskedasticity.

The time-varying Granger causality analysis, presented in Figure 6, explores the re-
lationship between DEX transaction volumes, activity, and mean fees in the Ethereum
network. The results reveal that, from Q3 2022 onwards, DEX transaction volumes gener-
ally Granger-caused Ethereum transaction fees (Figure 6, panels e,i). Over the same period,
Ethereum transaction fees did not consistently exhibit a Granger-causal effect on DEX trans-
action volumes (Figure 6, panels c,g k), although sporadic instances of Granger causality
between Ethereum transaction fees and DEX activity are observed (Figure 6, panels d,h,1).
The Granger-causal relationship between DEX volume and Ethereum transaction fees can
be attributed to the increasing utilization of DEXs, which amplifies demand for limited
resources on the Ethereum blockchain network. Consequently, escalating transaction fees
are driven by heightened competition for block space due to increased user activity and
transaction volumes on DEXs. However, the lack of a consistent Granger-causal relation-
ship between Ethereum transaction fees and DEX volumes suggests that multiple factors,
such as market sentiment, trading opportunities, and the expansion of the DeFi ecosystem,
influence users’ behavior beyond transaction fees alone. Therefore, the impact of transac-
tion fees on DEX volumes is more nuanced, with external factors potentially playing a more
significant role in determining DEX activity. The occasional instances where Ethereum
transaction fees Granger-cause DEX activity emphasize the complex and dynamic nature of
the relationship between Ethereum transaction fees and DEX activity, highlighting periods
when elevated transaction fees might have a more pronounced influence on user behavior,
discouraging users from engaging with DEXs and causing a decline in transaction volumes
and user activity.
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Figure 6. Time-varying Granger causality tests for DEX volume, activity, and mean fees in the
Ethereum network. Figure 6 displays the bivariate results derived from forward expanding (FE),
rolling (RO), and recursive evolving (RE) algorithms using the time-varying Granger causality
model developed by Baum et al. (2021, 2022). The analysis employs the Lag-Augmented Vector
Autoregression (LA-VAR) model proposed by Toda and Yamamoto (1995) and Dolado and Liitkepohl
(1996). The sample period spans from 1 July 2020 to 14 November 2022, with a minimum window
size set at 20% of the sample. Models incorporate four augmented lags and a trend. Dashed lines
represent the critical values of bootstrapped test statistics at the 90% and 95% significance levels. The
results are robust to heteroskedasticity.

4.5. Maximal Extractable Value (MEV)

Prior to the Merge, Maximal Extractable Value (MEV) referred to the additional value
that could be obtained by miners in a proof-of-work (PoW) consensus mechanism by
strategically including, excluding, or ordering transactions in a block. After the Merge,
when Ethereum transitioned to a proof-of-stake (PoS) consensus mechanism, the term
Maximal Extractable Value replaced Miner Extractable Value. In this new context, validators
took on the role of managing transaction inclusion, exclusion, and ordering, as opposed to
miners. Although the terminology and consensus mechanism changed, the core concept
of extracting additional value from block production beyond standard block rewards and
transaction fees remained consistent.

The interrelation between MEV activity, characterized by the number of searchers pur-
suing profitable opportunities, and Ethereum transaction fees is driven by the competitive
nature of MEV extraction. Heightened MEV activity intensifies competition for transaction
inclusion in blocks, prompting searchers to offer higher gas fees to validators to increase the
likelihood of their transactions being included and, consequently, raising the MEV rewards.
This competitive bidding process results in elevated Ethereum transaction fees. Moreover,
MEYV transaction volumes, representing the cumulative value derived from MEV opportu-
nities, play a significant role in determining Ethereum transaction fees. As MEV transaction
volumes grow, searchers are drawn to the potential rewards, exacerbating competition and
driving gas prices upward. In highly competitive MEV scenarios, such as DEX arbitrage,
searchers may allocate up to 90% or more of their total MEV revenue to gas fees to ensure
transaction inclusion in a block (Ethereum Foundation 2023). Furthermore, the deployment
of generalized frontrunner bots by some searchers adds to the competitive environment for
transaction inclusion. These bots monitor the Mempool for lucrative transactions, replicate
transaction codes, replace addresses with their own, and resubmit the modified transaction
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with higher gas prices. This frontrunning phenomenon contributes to increased Ethereum
transaction fees by further intensifying the competition for transaction inclusion.

The time-varying Granger causality analysis, presented in Figure 7, explores the
relationship between MEV transaction volumes, activity, and mean fees in the Ethereum
network. The results reveal that, from Q1 2022, Ethereum transaction fees generally
Granger-caused MEV activity (Figure 7, panels h,1). However, from Q2 2022 onwards,
the Granger-causal influence of Ethereum transaction fees on MEV activity (Figure 7,
panels c,g k) weakened in significance. Likewise, the impact of MEV activity (Figure 7,
panels a,e,i) and volume (Figure 7, panels b,f,j) on Ethereum transaction fees also declined
in significance from Q2 2022 onwards. This reduction in significance could be attributed
to several factors, such as the emergence of alternative value extraction methods, changes
in searcher strategies, or adaptations in the Ethereum ecosystem. Additionally, market
participants might have adjusted their behaviors in response to the evolving dynamics
of MEV opportunities and transaction fees, leading to new equilibrium points in the
competitive landscape.
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Figure 7. Time-varying Granger causality tests for MEV volume, activity, and mean fees in the
Ethereum network. Figure 7 displays the bivariate results derived from forward expanding (FE),
rolling (RO), and recursive evolving (RE) algorithms using the time-varying Granger causality
model developed by Baum et al. (2021, 2022). The analysis employs the Lag-Augmented Vector
Autoregression (LA-VAR) model proposed by Toda and Yamamoto (1995) and Dolado and Liitkepohl
(1996). The sample period spans from 1 July 2020 to 14 November 2022, with a minimum window
size set at 20% of the sample. Models incorporate four augmented lags and a trend. Dashed lines
represent the critical values of bootstrapped test statistics at the 90% and 95% significance levels. The
results are robust to heteroskedasticity.

4.6. Non-Fungible Tokens (NFT5)

NFTs represent a novel class of digital assets, characterized by their unique and
non-interchangeable properties, which distinguish them from fungible tokens such as cryp-
tocurrency coins and tokens. Primarily developed on the Ethereum blockchain utilizing
ERC-721 or ERC-1155 token standards, NFTs enable the tokenization of a diverse range
of digital and physical assets, including digital art, collectibles, virtual real estate, and
tangible goods. As NFT transactions contribute to the overall transaction volume on the
Ethereum network, escalating NFT transaction volumes and non-fungible user activity,
which encompass actions like minting, trading, and transferring NFTs, can intensify net-
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work congestion. During periods of high demand, competition for limited block space
heightens, leading users to offer higher gas prices and subsequently drive up Ethereum
transaction fees. The notable influence of NFT volume on fees in April and September 2022
can be ascribed to speculative bubbles prevalent in the NFT market, as corroborated by the
literature (Maouchi et al. 2022; Wang et al. 2022).

The time-varying Granger causality analysis between NFT transaction volume, activity,
and mean fees in the Ethereum network is presented in Figure 8. Estimates reveal that
Ethereum transaction fees primarily Granger-caused NFT activity (Figure 8, panels h,l) and
transaction volumes (Figure 8, panels g,k) between Q4 2021 and Q1 2022. One possible
interpretation of this causal relationship is that higher transaction fees might have served
as a barrier to entry for some users, discouraging them from engaging in NFT-related
activities and leading to reduced transaction volumes. Conversely, lower transaction fees
may have acted as a catalyst for NFT user activity, incentivizing users to participate in
minting, trading, and transferring NFTs, thereby increasing transaction volumes. However,
the evidence for NFT user activity (Figure 8, panels {j) or transaction volume (Figure 8,
panels a,e,i) Granger-causing Ethereum transaction fees are mixed, suggesting a more
nuanced causal relationship. This absence of a consistent causal link may be attributed
to various confounding factors impacting Ethereum transaction fees, such as network
capacity, miner preferences, and the overall transaction demand on the Ethereum network.
For instance, a surge in non-NFT-related transactions may have led to increased network
congestion, subsequently driving up transaction fees, independent of NFT user activity or
transaction volume.
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Figure 8. Time-varying Granger causality tests for NFT volume, activity, and mean fees in the
Ethereum network. Notes: Figure 8 displays the bivariate results derived from forward expanding
(FE), rolling (RO), and recursive evolving (RE) algorithms using the time-varying Granger causality
model developed by Baum et al. (2021, 2022). The analysis employs the Lag-Augmented Vector
Autoregression (LA-VAR) model proposed by Toda and Yamamoto (1995) and Dolado and Liitkepohl
(1996). The sample period spans from 1 July 2020 to 14 November 2022, with a minimum window
size set at 20% of the sample. Models incorporate four augmented lags and a trend. Dashed lines
represent the critical values of bootstrapped test statistics at the 90% and 95% significance levels. The
results are robust to heteroskedasticity.

4.7. Stablecoins

Stablecoins are a type of cryptocurrency designed to maintain a stable value by pegging
their value to a reserve of assets, such as fiat currencies, commodities, or other cryptocur-
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rencies. These digital assets provide users with the benefits of cryptocurrencies, such as
fast and secure transactions, while minimizing the price volatility typically associated with
them. As stablecoin transaction volumes and user activity increase, the demand for pro-
cessing these transactions on the Ethereum blockchain grows, leading to higher transaction
fees. This is due to the limited throughput capacity of the Ethereum network, which can
only process a certain number of transactions per second. As more users compete for
this limited resource, they are willing to pay higher fees to ensure their transactions are
processed in a timely manner. Consequently, higher stablecoin transaction volumes and
user activity contribute to increased Ethereum transaction fees, reflecting the network’s
scarcity of processing capacity and the competitive nature of the market for blockchain
transaction processing.

The time-varying Granger causality analysis between stablecoin transaction volume,
user activity, and mean fees in the Ethereum network, as shown in Figure 8, reveals intrigu-
ing insights into the interdependencies between these factors. Our findings indicate that
Ethereum transaction fees significantly Granger-caused stablecoin user activity (Figure 9,
panels d,h,l) and transaction volume (Figure 9, panels g,k). Additionally, the recursive
evolving (RE) algorithm detected a highly significant shift in Granger-causal directionality
from Q2 2022 onwards, with stablecoin user activity (Figure 9, panel j) and transaction
volume (Figure 9, panel i) Granger-causing Ethereum transaction fees. This feedback loop
suggests a bidirectional causality that can be ascribed to the growing prominence and
adoption of stablecoins within the cryptocurrency ecosystem. The increasing influence of
stablecoins on the Ethereum network may have led to heightened transaction demand,
consequently driving up Ethereum transaction fees. These findings highlight the complex
relationships between stablecoin dynamics and the Ethereum network as they continue to
shape the evolving cryptocurrency market landscape.
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Figure 9. Time-varying Granger causality tests for stablecoin volume, activity, and mean fees in the
Ethereum network. Notes: Figure 9 displays the bivariate results derived from forward expanding
(FE), rolling (RO), and recursive evolving (RE) algorithms using the time-varying Granger causality
model developed by Baum et al. (2021, 2022). The analysis employs the Lag-Augmented Vector
Autoregression (LA-VAR) model proposed by Toda and Yamamoto (1995) and Dolado and Liitkepohl
(1996). The sample period spans from 1 July 2020 to 14 November 2022, with a minimum window
size set at 20% of the sample. Models incorporate four augmented lags and a trend. Dashed lines
represent the critical values of bootstrapped test statistics at the 90% and 95% significance levels. The
results are robust to heteroskedasticity.



J. Risk Financial Manag. 2024, 17, 19

21 of 28

5. Discussion, Future Research, and Conclusions

Transaction costs represent a critical component of economic exchanges within blockchain
ecosystems such as Ethereum, where they arise from actions like transferring the native
cryptocurrency Ether or implementing smart contract operations. Within the Ethereum
network, transaction costs (i.e., gas fees) remunerate the computational effort required
to process transactions. A comprehensive grasp of these costs and their inherent dy-
namics is crucial, as transaction costs underpin all economic activities occurring within
blockchain ecosystems like Ethereum. Moreover, these costs significantly influence the
system’s behavior and determine the feasibility of various economic endeavors. Therefore,
an in-depth understanding of transaction costs in blockchain networks is indispensable
for informed decision-making and the judicious exploitation of these advanced technologi-
cal frameworks.

This study investigates the relationship between transaction fees within the Ethereum
blockchain network and various economic subsystems that leverage the network, encom-
passing (a) Bridges; (b) CEXs; (c) DEXs; (d) MEV bots; (e) NFTs; and (f) Stablecoins. Through
the application of a dynamic Granger causality analysis, the study unveils intricate, inter-
connected causal interdependencies between the transaction costs of the Ethereum network
and its economic activities across these subsystems. The complexity of these relationships
can likely be attributed to the direct influence of transaction costs on users’ incentives to
engage in economic transactions within the network.

Considering the analysis of the six discrete economic subsystems discussed in this
paper, specific implications for each can be discerned:

e (a)Bridges: For bridges, the results reveal a bidirectional causality between the number
of unique active wallets associated with bridge protocols and the mean transaction
fees within the Ethereum network. The observed feedback loop potentially indicates a
migration of users towards alternative blockchain infrastructures. Despite the consider-
able decrease in transaction fees over the analyzed duration, it underscores Ethereum’s
diminished competitiveness in comparison to other blockchain networks and layer-2
solutions. These insights highlight the role of transaction fees in influencing user
migration trends and the ensuing need for judicious oversight.

e (b) CEXs: For Ethereum network stakeholders, the findings highlight the crucial role
of CEX deposits and withdrawals in the fee network’s operation. The strengthening,
bidirectional Granger-causal relationship between Ethereum fees and CEX transaction
volume is underpinned by a feedback loop. This suggests that increasing CEX transac-
tion volume catalyzes demand for block space and transaction processing competition,
resulting in higher gas fees. This, in turn, influences trading and transferring costs
on CEXs, prompting users to pursue higher-value transactions, thereby reinforcing
the causal nexus. Market participants may also monitor this interplay, capitalizing on
arbitrage opportunities or market volatility, and perpetuating a self-reinforcing cycle
of network congestion and escalating fees. Our findings contribute to the literature on
centralized exchanges and decentralized blockchain networks (Ante et al. 2021a; Ante
2020; Aspris et al. 2021).

e  (c) DEXs: The causal relationship between DEX volume, DEX users, and network fees
illuminates the interplay among these three elements in the Ethereum network. The
findings suggest that an increase in DEX volume causally influences higher fees, which
subsequently have a significant causal influence on the DEX user counts. Over time,
this relationship weakens, likely due to the diminished economic significance of the
DeFi system (i.e., bubbles) (Maouchi et al. 2022; Wang et al. 2022). However, decreasing
fees positively impacts the DEX user counts by rendering smaller trades economically
viable again. Future scholarly inquiry is required to validate these postulations. For
Ethereum network stakeholders, these findings underscore the need for DEXes to
balance the trade-off between attracting more users and ensuring manageable fees,
thus explaining why, e.g., Uniswap and SushiSwap also launched on other blockchain
networks (Shen 2021) and continue to explore this option (Malwa 2023). Furthermore,
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DEXs need to consider the impact of fees on their user base when making fee-related
decisions (i.e., network fees, not DEX-specific transaction fees). Additionally, the
decline in fees’ significance over time suggests that the impact of fees on users may
differ depending on the economic context.

e (d) MEVs: A discernible causal linkage between Ethereum network fees and MEV
volume/activity emerges during certain periods, signifying the intermittent impor-
tance of MEV within the Ethereum ecosystem. This phenomenon may be ascribed to
elements such as the advent of alternative value-extraction approaches, alterations
in searcher tactics, or adjustments in the Ethereum environment. Furthermore, mar-
ket actors may have recalibrated their actions in response to the shifting interplay
between MEV prospects and transaction fees, culminating in novel equilibrium points
within the competitive arena. Subsequent investigations may consider delving into
the potential ramifications of additional MEV market participants by employing a
more exhaustive dataset, as the current findings, predicated on the activities of five
eminent MEV bots, may not encompass the entirety of the MEV market landscape.®

e (e) NFTs: The analysis highlights a sophisticated causal interplay among NFT vol-
ume, NFT activity, and Ethereum network fees, where speculative bubbles may have
significantly impacted relationships (Maouchi et al. 2022; Wang et al. 2022). Results
show that fees causally influenced NFT activity and transaction volumes. This causal
relationship can be interpreted as heightened fees acting as an entry barrier for users,
discouraging (encouraging) NFT participation and resulting in reduced (increased)
transaction volumes. Nonetheless, the evidence for the causal influence of NFT user
activity or transaction volume on fees is not definitive, indicating a complex causal in-
terplay. The lack of a consistent causal connection may be due to several confounding
factors, such as network capacity, miner preferences, and overall transaction demand,
with non-NFT-related transactions potentially exacerbating network congestion and
raising fees independently of NFT activity or volume.

e (f) Stablecoins: Findings indicate that Ethereum transaction fees causally influenced
stablecoin user activity and transaction volumes. Furthermore, evidence suggests
a shift in causal directionality commencing from Q2 2022, wherein stablecoin user
activity and transaction volume causally impacted transaction fees. This feedback
mechanism infers a bidirectional causality, attributable to the burgeoning prominence
and adoption of stablecoins within the cryptocurrency domain. The escalating in-
fluence of stablecoins on the Ethereum network precipitated heightened transaction
demand, consequently leading to an increase in Ethereum transaction fees. These
findings underscore the complex interdependencies between stablecoin dynamics
and the Ethereum network as they collaboratively mold the dynamic cryptocurrency
market landscape.

The findings of this study indicate that transaction fees serve as a significant causal
determinant for nearly all investigated subsystems, and the activity and volume of nu-
merous subsystems causally influence overall network fees. Nevertheless, it is essential
to recognize the dynamic character of causality, which undergoes change over time and
is plausibly attributable to various factors meriting additional exploration. By analyzing
the activity and transaction volumes of each subsystem in conjunction with a time-varying
Granger causality methodology, the causal spillover directions and temporal heterogeneity
within the Ethereum network are discerned. This research presents a holistic evaluation
of the interactions between Ethereum on-chain metrics across multiple economic subsys-
tems, emphasizing causal spillover effects and temporal heterogeneity. The assessment of
temporal variability uncovers a dynamic pattern of bidirectional causality between fees
and primary economic markets, illustrating the evolving nature of these interactions across
distinct timeframes.

The results of this investigation further corroborate the prevailing literature’s assertion
that the recursive evolving algorithm for detecting time-varying Granger causality produces
superior and economically defensible outcomes, in alignment with the findings of other
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studies employing the same methodology (Ren et al. 2023). Conversely, the forward
algorithm demonstrates the lowest level of detection precision, indicative of its incapacity
to capture the most persistent causal relationships within the designated sample duration.

Future research could delve into specific subsystems such as bridges or NFTs, employ-
ing micro-level or user-level analysis to unearth granular insights. Such an approach would
enable a deeper understanding of the individual behaviors and decisions that drive market
dynamics within the blockchain ecosystem. Additionally, qualitative research methods
could be employed to explore user motivations directly. Qualitative research surrounding
questions, such as why individual users switched blockchains and if transaction costs
influenced their decision, could provide valuable context to our quantitative data, offering
a richer, more nuanced understanding of user behavior and market trends. This qualitative
inquiry would not only complement our findings but also uncover the human factors
influencing the technological and economic dimensions of blockchain networks.

Moreover, our study, while extensive, encounters limitations in the methodology
regarding the direction of causality. This limitation presents a significant opportunity
for future research to dissect and understand the causal relationships more precisely. A
detailed exploration of causality directions could reveal the extent to which transaction
costs directly influence user behavior and market movements, or vice versa. Such an inves-
tigation would be instrumental in refining our understanding of the complex dynamics
within blockchain networks. Understanding these causal pathways is crucial for develop-
ers, policymakers, and stakeholders within the blockchain ecosystem to make informed
decisions and strategize effectively.

Additional future research avenues include cross-blockchain comparative studies to
understand the competitive landscape, the impact of layer-2 solutions on network efficiency,
and the optimization of transaction processing algorithms. Behavioral economics and user
behavior studies in response to fluctuating transaction costs, alongside the exploration of
regulatory and policy implications, could provide deeper insights. Investigating the influ-
ence of technological innovations like sharding and rollups, conducting socio-economic
impact studies for different user demographics, and interdisciplinary approaches combin-
ing computer science, economics, and sociology are crucial for a holistic understanding
of blockchain ecosystems. These avenues not only extend current research but also foster
interdisciplinary knowledge and practical applications in the blockchain domain.

In conclusion, it is important to acknowledge that the current paper does not provide
an exhaustive analysis of the interactions between the examined variables. Additional
research is necessary to ascertain the precise effects between fees and on-chain metrics,
encompassing the number of unique active wallets and the extent of transaction volume.
This study serves as a foundation for future inquiries to enhance the understanding of trans-
action cost dynamics within blockchain networks, such as Ethereum, and the implications
for a range of stakeholders, including users, developers, and policymakers. By analyzing
the intricate relationships between transaction fees and diverse economic systems on the
Ethereum network, this research contributes to the burgeoning literature on blockchain
networks, decentralized finance, and digital assets, ultimately facilitating more informed
decision-making and efficacious utilization of these cutting-edge technologies.
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Notes

! On 15 September 2022, the Ethereum blockchain underwent a substantial upgrade at block 15537393, commonly referred to as the

Merge. This pivotal transition replaced the traditional proof-of-work (PoW) consensus mechanism with the more energy-efficient
proof-of-stake (PoS) mechanism, where validators stake Ether in lieu of relying on hardware-based miners. Before the upgrade,
the average block time experienced significant fluctuations due to network congestion. Post-merge, however, the block time has
become more predictable and consistent, averaging approximately 12 s. This enhancement in block time can be ascribed to the
accelerated and more efficient block processing facilitated by the PoS mechanism, as well as alterations to the transaction fee
structure that have effectively mitigated congestion and augmented overall network efficiency.

Ethereum transaction fees are remitted in Ether; however, the associated ‘gas’ fees are denominated in Gwei, where one Gwei is
equivalent to 0.000000001 Ether.

(Reijsbergen et al. 2021; Leonardos et al. 2021) determined that Ethereum Improvement Proposal (EIP) 1559 generally achieved its
objectives, but suggested an alternative base fee adjustment rule employing variable learning rate mechanisms. Concurrently,
Laurent et al. (Laurent et al. 2022; Azevedo Sousa et al. 2021) devised a novel Monte Carlo method to ascertain the minimum
fee a user ought to pay for their transaction to be processed with a given probability within a specified timeframe. In contrast,
Azevedo Sousa et al. (2021) found no evident correlation between Ethereum fee-related characteristics, such as user-defined
gas and gas price, and the pending time of transactions. Lastly, Werner et al. (2020) introduced a gas price recommendation
mechanism that amalgamates a deep-learning-based price forecasting model with an algorithm parameterized by a user-specific
urgency value. This mechanism led to average cost savings exceeding 50% compared to existing recommendation mechanisms
while incurring only a slight delay.

This study opts to utilize the USD value of the transaction fee as opposed to the Gwei value, as the former exhibits greater stability
and is less susceptible to fluctuations. For instance, should the value of Ether experience rapid appreciation or depreciation, the
corresponding Gwei value in USD would undergo swift alterations, which ultimately impacts users’ focus and considerations. In
addition, it can be assumed that economic players will want to use a stable currency such as the USD for their planning.

For comparison purposes, it is noteworthy to mention that PayPal’s transaction fee structure involves a charge of 5% of the paid
amount plus USD 0.05 (Khan and State 2020). Thus, only transactions exceeding USD 262 on PayPal would surpass the average
transaction fee of USD 13.18 on the Ethereum network.

6 We validated this result using the KPSS and Augmented Dickey-Fuller test (Kwiatkowski et al. 1992).

See note 6 above.

In interpreting the results, it is vital to recognize the presence of survivorship bias within the underlying data. This bias arises
from the consideration of only successful and valuable NFT collections (e.g., the five selected in this study), while numerous less
successful or failed projects are excluded. These overlooked projects may constitute a larger market share and exhibit a distinct
relationship with network fees. Consequently, the findings should not be generalized to the entire NFT market but rather pertain
specifically to the upper echelon. This limitation extends to the analysis of MEV bots as well.
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