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Abstract: This study rolls out a robust framework relevant for simulation studies through the
Generalised Autoregressive Conditional Heteroscedasticity (GARCH) model using the rugarch
package. The package is thoroughly investigated, and novel findings are identified for improved and
effective simulations. The focus of the study is to provide necessary simulation steps to determine
appropriate distributions of innovations relevant for estimating the persistence of volatility. The
simulation steps involve “background (optional), defining the aim, research questions, method of
implementation, and summarised conclusion”. The method of implementation is a workflow that
includes writing the code, setting the seed, setting the true parameters a priori, data generation
process and performance assessment through meta-statistics. These novel, easy-to-understand steps
are demonstrated on financial returns using illustrative Monte Carlo simulation with empirical
verification. Among the findings, the study shows that regardless of the arrangement of the seed
values, the efficiency and consistency of an estimator generally remain the same as the sample size
increases. The study also derived a new and flexible true-parameter-recovery measure which can be
used by researchers to determine the level of recovery of the true parameter by the MCS estimator.
It is anticipated that the outcomes of this study will be broadly applicable in finance, with intuitive
appeal in other areas, for volatility modelling.

Keywords: bias; consistency; efficiency; simulation design; volatility persistence

1. Introduction

A simulation-based experiment is not often included in research because many up-
coming researchers do not have an adequate understanding of the nitty-gritty involved.
Although the details involved in simulation modelling are generally inexhaustible, this
study, however, unveils a crucial framework relevant for the simulation of financial time
series data using the Generalised Autoregressive Conditional Heteroscedasticity (GARCH)
model for volatility persistence estimation. Volatility persistence describes the effect of
a shock to future expectation of the variance process (see Ding and Granger 1996). The
ultimate goal of the study is to familiarise researchers with the concepts of simulation
modelling through this model. The framework utilises the robust simulating resources of
the GARCH model, through set parameters, to generate data that are analysed, and the
estimates from the process are then used by chosen metrics to explain the behaviour of
selected statistics of interest.

Monte Carlo simulation (MCS) studies are computer-based experiments that use
known probability distributions to create data by pseudo-random sampling. The data may
be simulated through a parametric model or via repeated resampling (Morris et al. 2019).
MCS applies the concept of imitating a real-life scenario on the computer through a certain
model that can hypothetically generate the scenario. By simulating or repeating this
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process a considerably large number of times, it is possible to obtain outcomes that can
enable precise computation of desired issues of concern, such as the possible assumed
error distribution/s that can suitably describe a given stock market. In preparing for a
simulation experiment, reasonably ample time is needed to organise a well-written and
readable computer code and for simulated data generation. Implementation of a good
simulation experiment and reporting the outcomes require adequate planning.

Series of R application software packages such as the rugarch (Ghalanos 2022), GAS
(Ardia et al. 2019), GRETL (Baiocchi and Distaso 2003), {GARCH (Wuertz et al. 2020),
SimDesign (Chalmers and Adkins 2020), tidyverse (Wickham et al. 2019), to mention but a
few, are currently available for simulation studies. This study exemplifies how the GARCH
model through the rugarch package can be effectively used to improve volatility modelling
through a MCS experiment, with outcomes verified empirically. The simulation steps are
designed to be reasonably general with the expectation that any other related packages!
should be able to replicate the routine. Although there are good books on simulation
approaches in general (see Bratley et al. 2011; Kleijnen 2015), up until now, to the best of our
knowledge, there has not been any monograph with a direct step-by-step comprehensive
layout on a simulation framework using the GARCH model. Hence, this study rolls out
an inclusive simulation design that is summarily required for a robust simulation practice
in finance to determine appropriate assumed innovations, relevant for estimating the
persistence of volatility using this model, with the knowledge applicable in other fields.
Here, the MCS approach is used to obtain the most suitable assumed innovation, through
which the volatility persistence is empirically estimated.

Since the rugarch package does not make provision for calculating the coverage prob-
ability?, this study also computes the MCS estimator’s recovery levels through the “true
parameter recovery (TPR)” measure as a proxy for the coverage. The results show that
the MCS estimates considerably recover the true parameters. The raw data used for this
study are the daily closing S&P South African sovereign bond index, abbreviated to S&P
SA bond index. They are Standard & Poor data for the bond market in US dollars from
Datastream (2021) for the period 4 January 2000 to 17 June 2021 with 5598 observations.
The rest of the paper is organised as follows: Section 2 reviews the theories underpinning
two heteroscedastic models, the TPR measure, and the description of the design of the
simulation framework. Section 3 presents the practical illustration of the simulation frame-
work, with empirical verification, on financial bond return data. Section 4 discusses the key
findings and Section 5 concludes.

2. Materials and Methods
2.1. The GARCH Model

The GARCH model was developed by Bollerslev (1986) as a generalisation of the
Autoregressive Conditional Heteroscedasticity (ARCH) model introduced by Engle (1982).
It is a classical model that is normally defined by its conditional mean and variance
equations for modelling financial returns volatility (Kim et al. 2020). The mean equation is
stated as

Tt = i+ €, (1)

where r; is the return series, e; = z;0; denotes the residual part of the return series that is
random and unpredictable, where z; ~ N(0, 1) are the standardised residuals which are
independent and identically distributed (i.i.d.) random variables with mean 0 and variance
1 (McNeil and Frey 2000; Smith 2003), p; is the mean function that is usually stated as an
Autoregressive Moving Average (ARMA) process,

P q
=Y i+ ) 0ieri, (2)
i-1 i—1
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where ¢; (i=1,..., p)and 0; (i =1, ..., g) are unknown parameters. The variance equation
of the GARCH(u, v) model is defined as

0f = w e+ aoff o+ Loy o Pudiy, 3)

where w > 0 is the intercept (white noise), coefficientsa; > 0 (j=1,...,v)and g; > 0(i =1,
..., u), respectively, measure the short-term and long-term effects of ¢; on the conditional
variance (Maciel and Ballini 2017). The non-negativity restrictions on the unknown param-
eters, a; and f3;, are imposed for c? > 0. The equation shows that the conditional variance

2 . and past conditional variances 07 ;.

0? is a linear function of past squared innovation &
The GARCH model is a more parsimonious specification (Nelson 1991; Samiev 2012) since
it is an equivalence of a certain ARCH(co) model (Zivot 2009). When u = 0 in Equation (3),

the GARCH model changes to the ARCH model with conditional variance stated as

0F = w+ oqs%_l . 4)
GARCH(1,1) is the simplest model specification with # =1 and v = 1 in Equation (3), and it
is conceivably the best candidate GARCH model for several applications (Fan et al. 2014;
Zivot 2009). The volatility persistence of the GARCH(1,1) model is defined as aq + 1 (see
Engle and Bollerslev 1986; Ghalanos 2018). Volatility persistence is used to evaluate the
speed of decay of shocks to volatility (Kim et al. 2020). Volatility exhibits long persistence
into the future if « + f — 1, hence the closer the sum of the coefficients is to one (zero),
the greater (lesser) the persistence. However, if the sum is equal to one, then shocks to
volatility persist forever and the unconditional variance is not determined by the model.
This process is called integrated-GARCH (Chou 1988; Engle and Bollerslev 1986). If the
sum is greater than one, the conditional variance process is explosive, suggesting that
shocks to the conditional variance are highly persistent. Covariance stationarity of the
GARCH model is ensured when Zle aj+ Y.it 1 Bi <1, while the unconditional variance
of epis 02 = E(e2) = w/{1 — ( 1)+ iy Bi)} (Zivot 2009).

For the maximum likelihood estimation (MLE), the log-likelihood function for max-
imising the likelihood of the unknown parameters given the observations is stated as

L N 1 s%
(Ble) =} 2e><p<—M), ®)
t=14/2707} t
where ¢ = (4, w, aq, ..., 0, B1, .., ﬁu)T is a vector of parameters, and € = (¢e1,...,eN) is a
realisation of length N. The quasi-maximum likelihood estimation (QMLE) based on the
Normal distribution and MLE have the same set of instructions for estimating 9; the only
difference, however, is in the estimation of a robust standard deviation of & (see Bollerslev
and Wooldridge 1992; Feng and Shi 2017; Francq and Zakoian 2004).

The maximised log-likelihood function with Student’s t distribution (Duda and
Schmidt 2009) is stated as

vl
lr1L(19‘|£)—t_%1 In F(’Z’)F\(/(j/—>72)n: —;m((fz)—(v;l)ln{l*’oz(;%_z)} , (6)

where I'(-) and v are the gamma function and degree of freedom, respectively.

2.2. The fGARCH Model

The family GARCH (fGARCH) model, developed by Hentschel (1995), is an inclu-
sive model that nests some important symmetric and asymmetric GARCH models as
sub-models. The nesting includes the simple GARCH (sGARCH) model (Bollerslev 1986),
the Absolute Value GARCH (AVGARCH) model (Schwert 1990; Taylor 1986), the GJR
GARCH (GJRGARCH) model (Glosten et al. 1993), the Threshold GARCH (TGARCH)
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model (Zakoian 1994), the Nonlinear ARCH (NGARCH) model (Higgins and Bera 1992),
the Nonlinear Asymmetric GARCH (NAGARCH) model (Engle and Ng 1993), the Ex-
ponential GARCH (EGARCH) model (Nelson 1991), and the Asymmetric Power ARCH
(apARCH) model (Ding et al. 1993). The sub-model apARCH is also a family model (but
less general than the f{GARCH model) that nests the sGARCH, AVGARCH, GJRGARCH,
TGARCH, NGARCH models, and the Log ARCH model (Geweke 1986; Pantula 1986). The
fGARCH(u, v) model is stated as

v u
o) =w+ Y o] (12— Aol = Mjfzij = A1)’ + ) Bjo) @)
= =

This robust {GARCH model allows different powers for 0; and z; to drive how the residuals
are decomposed in the conditional variance equation. Equation (7) is the conditional
standard deviation’s Box—Cox transformation, where the transformation of the absolute
value function is carried out by the parameter 4, and 7y determines the shape. The Ay;
and Aq; control the shifts for asymmetric small shocks and rotations for large shocks,
respectively. The fit of the full {GARCH model can be implemented with ¢ = J (see
Ghalanos 2018). Volatility clustering in the returns can be quantified through the model’s
volatility persistence stated as

u v
P=3 Bi+) wo ®)
j=1 =1

=

where ¢;, expressed in Equation (9), is the expected value of z; in the absolute value
asymmetry term’s Box-Cox transformation. Volatility clustering implies that large changes
in returns tend to be followed by large changes and small changes tend to be followed
by small changes. The persistence is obtained in this study through the “persistence()”
function in the R rugarch package. See (Ghalanos 2022; Hentschel 1995) for details on
fGARCH and the nested models.

[e9)

0j = E(|z—j — Ayl — Mj(zimj — Ag)))° = / (Iz = Agj| — Mj(z — A9)))°f(2,0,1,...)dz (9)

—00

2.3. The True Parameter Recovery Measure

Since the focus of MCS studies involves the ability of the estimator to recover the true
parameter (see Chalmers 2019), this study applies the “true parameter recovery (TPR)”
measure in Equation (10) to compute the level (degree) of recovery of the true parameter
through the MCS estimator. The TPR measure is a means of evaluating the performance of
the MCS estimates in recovering the true parameter. That is, it is used to determine how
much of the true parameter value is recovered by the MCS estimator.

) %, (10)

where K =0, 1, 2, ..., 100 is the nominal recovery level, ¢ is the true data-generating
parameter and # is the estimator from the simulated (synthetic) data. For instance, a TPR
estimated value of 95% or 100% denotes that the MCS estimator recovers the complete
95% or 100% of the true parameter. This complete recovery of the true parameter ¢ can be
achieved by the MCS estimator 0 when @ = 9, where ¢ > 0, such that the TPR outcome
equals the given nominal recovery level K (i.e., TPR = K%).

x K

_ (6-9)
TPR = (K— -

2.4. Simulation Design

The design of the simulation framework includes “background (optional), defining
the aim, research questions, method of implementation, and summarised conclusion”. The
method of implementation is a workflow that involves writing the code, setting the seed,
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setting the true parameter/s a priori, data generation process, and performance evaluation
through meta-statistics. As summarised by the flowchart in Figure 1, these crucial steps are
relevant for successful simulations through the GARCH model. The details of each design
step are as follows:

Background (optional)

\
|
v

Define the aim of the simulation study

A

State the research questions
\

v

Write the simulation code

l

Set the seed

Set the true parameter a priori

.

Data generation process (DGP)

‘

Meta-statistical evaluation of performance

uoljejuswa|dw| JO poyla

v

Discussion and summarised conclusion

Figure 1. Simulation design flowchart to determine suitable assumed innovations.

2.4.1. Aim of the Simulation Study

After optionally stating the background that explains crucial underlying facts about
the study, the next step is to define the aim of the study, and it must be clearly, concisely and
unambiguously stated for the reader’s understanding. The focus of MCS studies generally
dwells on estimators’ capabilities in recovering the true parameters 8, such that E(8) = ¢
for unbiasedness, & — ¢ as the sample size N — co for consistency, and root mean square
error (RMSE) or standard error (SE) tends to zero as N — oo for good efficiency or precision
of the true parameter’s estimator. Hence, the aim of the study may revolve around those



J. Risk Financial Manag. 2023, 16, 392

6 of 30

properties, such as bias or unbiasedness, consistency, efficiency or precision of the estimator.
The aim can also evolve from comparisons of multiple entities, such as comparing the
efficiency of various error distributions, or comparing the performance of multiple models,
or on improvement to an existing method.

2.4.2. State the Research Questions

After defining the study’s aim, relevant questions concerning the purpose of the
simulation should be outlined. These will be pointers to the objectives of the study. The
intricacies of some statistical research questions make them better resolved via simulation
approaches. Simulation provides a robust procedure for responding to a wide range of
theoretical and methodological questions and can offer a flexible structure for answering
specific questions pertinent to researchers’ quest (Hallgren 2013).

2.4.3. Method of Implementation

The simulation and empirical modelling of this study are implemented in R Sta-
tistical Software, version 4.0.3, with RStudio version 2022.12.0+353, using the rugarch
(Ghalanos 2018, 2022), SimDesign (Chalmers and Adkins 2020), tidyverse (Wickham et al.
2019), zoo (Zeileis and Grothendieck 2005), aTSA (Qiu 2015) and forecast (Hyndman and
Khandakar 2008) packages. Computation is executed on Intel(R) Core(TM) i5-8265U CPU
@ 1.60GHz 1.80 GHz. The method of implementing the simulation is as follows:

*  Write the code: Carrying out a proper simulation experiment that mirrors real-life
situations can be very demanding and computationally intensive, hence readable com-
puter code with the right syntax must be produced. The code in this study is written
to fit the true model® to the real data to obtain the true parameter representations® for
the MCS. These true parameter values and other outputs from the fit are used in the
code to generate simulated datasets that are analysed to obtain the MCS estimators.
The standard errors of the estimates are also obtained in the process.

*  Set the seed: Simulation code will generate a different sequence of random numbers
each time it is run unless a seed is set (Danielsson 2011). A set seed initialises the
random number generator (Ghalanos 2022) and ensures reproducibility, where the
same result is obtained for different runs of the simulation process (Foote 2018). The
seed needs to be set only once, for each simulation, at the start of the simulation
session (Ghalanos 2022; Morris et al. 2019), and it is better to use the same seed values
throughout the process (Morris et al. 2019).

Now, through the GARCH model, this study carries out an MCS experiment to
ascertain whether the seed values’ pattern or arrangement affects the estimators’ efficiency
and consistency properties. Two sets of seeds are used for the experiment, where each
set contains three different patterns of seed values. The first set is S = {12345, 54321,
15243}, while the second set S, = {34567, 76543, 36547}. In each set, the study tries to use
seed values arranged in ascending order, then reverses the order, and finally mixes up
the ordered arrangement. The simulation starts by using GARCH(1,1)-Student’s ¢, with
a degree of freedom v = 3, as the true model under four assumed error distributions of a
Normal, Student’s ¢, Generalised Error Distribution (GED) and Generalised Hyperbolic
(GHYP) distribution. Details on these selected error distributions can be seen in Ghalanos
(2018) and Barndorff-Nielsen et al. (2013). The true parameter values used are (4, w, a, ) =
(0.0678, 0.0867, 0.0931, 0.9059), and they are obtained by fitting GARCH(1,1)-Student’s ¢ to
the SA bond return data.

Using each of the seed patterns in turn, simulated datasets of sample size N = 12,000,
repeated 1000 times are generated through the parameter values. However, because of the
effect of initial values in the data generating process, which may lead to size distortion
(Su 2011), the first N = {11,000, 10,000, 9000, 8000} sets of observations are each discarded
at each stage of the generated 12,000 observations to circumvent such distortion. That is,
only the last N = {1000, 2000, 3000, 4000} are used under each of the four assumed error
distributions, as shown in Table A1, Appendix A. These trimming steps are carried out
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following the simulation structure of Feng and Shi (201 7)°. An observation-driven process
such as the GARCH can be size-distorted with regards to its kurtosis, where strong size
distortion may be a result of high kurtosis (Silvennoinen and Terdsvirta 2016). The extracts
of the RMSE and SE outcomes for the GARCH volatility persistence estimator & + j3 are
shown in Table Al. For S; in Panel A of the table, as N tends to its peak, the performance
of the RMSE from the lowest to the highest under the four error distribution assumptions is
Student’s t, GHYP, GED and Normal in that order, while that of SE from the lowest to the
highest is GHYP, Student’s ¢, GED and Normal in that order, for the three arrangements of
seed values.

For S, in Panel B of the table, as N reaches its peak at 4000, the performance of the
RMSE from the lowest to the highest is Student’s ¢, GHYP, GED and Normal in that order,
while that of SE from the lowest to the highest is GHYP, GED, Student’s t and Normal
in that order, for the three S, patterns of seed values. Hence, efficiency and precision in
terms of RMSE and SE are the same as the sample size N becomes larger under the three
seeds, regardless of the arrangement of the seed values under S, as also observed under
;. In addition, the flows of VN consistency of the estimator under the seed values in 5;
are roughly the same; this is also applicable to those of the seed values in S,. The plotted
outcomes can be visualised as displayed by the trend lines within the 95% confidence
intervals in Figure 2 for the three seed values of sets S; in Panel A and S; in Panel B, where
the efficiency and consistency outcomes are roughly the same with increase in N.

To summarise, this study observes that, as N — oo, the pattern or arrangement of the
seed values does not affect the estimator’s overall consistency and efficiency properties,
but this may likely depend on the quality of the model used. The seed is primarily used to
ensure reproducibility. Panels C and D of the figure further reveal that the RMSE/SE — 0
as N — oo for the four error distributions in S; and S».

Table Al further shows that the MCS estimator & + j considerably recovers the true
parameter « + § at the 95% nominal recovery level, where some of the estimates even
recover the complete true value (0.9990) with TPR outcomes of 95%. These recovery
outcomes can be seen in the visual plots of Figure 3 (or as shown in Panels A and B of
Figure A1, Appendix B), where Panels A(i) and B(i) reveal that the MCS estimates perform
quite well in recovering the true parameter as shown by the closeness of the TPR outcomes
to the 95% (i.e., 0.95) nominal recovery level for S; and Sy, respectively. The bunched
up TPR outcomes in Panels A(i) and B(i) are clearly spread out as shown in Panels A(ii)
and B(ii) for S; and S, respectively. From these recovery outputs, two distinct features
can be observed. First, the TPR results do not depend on the sample size as shown in
Panels A and B of Figure 4 for S and S,, which is a feature of coverage probability (see
Hilary 2002); second, the closer (farther) the MCS estimate is to zero, the smaller (larger)
the TPR outcome, as revealed in Panels C and D of the figure.

o After setting the seed, the true parameter representations of the true sampling distri-
bution (or true model) are then set a priori (Koopman et al. 2017; Mooney 1997).

*  Next, simulated observations are generated using the true sampling distribution or
the true model given some sets of (or different sets of) fixed parameters. Generation
of simulated datasets through the GARCH model is carried out using the R package
“rugarch”. Random data generation involving this package can be implemented using
either of two approaches. The first approach is to carry out the data-generating simu-
lation directly on a fitted object “fit” using the ugarchsim function for the simulated
random data. The second approach uses the ugarchpath function, which enables simu-
lation of desired number of volatility paths through different parameter combinations
(see Ghalanos 2018, 2022; Pfaff 2016 for relevant details on the two functions and
their usage).
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(A) Efficiency and consistency of the three S1 seed patterns

(B) Efficiency and consistency of the three S2 seed patterns
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Figure 2. Panels (A,B) show the efficiency and VN consistency in S; and S; for each seed pattern, while
Panels (C,D) reveal the impacts of sample size on RMSE and SE under the assumed errors in Sy and S.
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Figure 3. TPR outcomes in Panels A(i) and B(i) for S; and Sy, respectively. The outcomes are clearly
spread out in Panels A(ii) and B(ii) for S; and S,. The dotted lines are the 95% (i.e., 0.95) nominal

recovery levels.
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(A) S1: TPR outcomes vs sample size (B) S2: TPR outcomes vs sample size
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Figure 4. The TPR outcomes against sample size are shown in Panels (A,B), while Panels (C,D) show
the TPR outcomes against the MCS estimates.

The simulation or data-generating process can be run once or replicated multiple times.
This study carries out another MCS investigation through the GARCH model to determine
the effect (on the outcomes) of running a given GARCH simulation once or replicating it
multiple times. That is, for a given sample size and seed value, the outcome of running the
simulation once is compared to that of running it with different replications such as 2500,
1000 and 300. This MCS experiment uses GARCH(1,1)-Student’s t, with v = 3, as the true
model under four assumed error distributions of a Normal, Student’s {, GED and GHYP.
However, it should be understood that any non-normal error distributions (apart from the
Student’s f that is used here) can also be used with GARCH(1,1) model for the true model.
The GARCH(1,1)-Student’s ¢ fitted to the SA bond return data yields the true parameter
values (1, w, «, B) = (0.0678, 0.0867, 0.0931, 0.9059).

Using these parameter values, datasets of sample size N = 12000 are generated in
each of the four distinct simulations (i.e., simulations with 1, 2500, 1000 and 300 repli-
cates). After necessary trimmings in each simulation, to evade initial values effect, the last
N = {1000, 2000, 3000} sets of observations are used at each stage of the generated 12,000 ob-
servations under the four assumed innovation distributions. That is, datasets of the last
three sample sizes, each simulated once, then replicated L = {2500, 1000, and 300} times are
consecutively generated. From the modelling outputs, it is observed that the log-likelihood
(1Ik), RMSE, SE and bias outcomes of &, ﬁ and & + B estimators for each simulation under
the four assumed errors are the same for the three sample-size datasets with the same seed
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value, regardless of whether the simulation is run once or replicated multiple times. For
brevity, this study only displays the outcomes of the experiment under the assumed GED
error for each run in Table 1. However, increasing the number of replications may reduce
sampling uncertainty in meta-statistics (Chalmers and Adkins 2020).

*  The generated (simulated) data are analysed, and the estimates from them are eval-
uated using classic methods through meta-statistics to derive relevant information
about the estimators. Meta-statistics (see Chalmers and Adkins 2020) are performance
measures or metrics for assessing the modelling outputs by judging the closeness
between an estimate and the true parameter. A few of the frequently used meta-
statistical summaries, as described below, include bias, root mean square error (RMSE)
and standard error (SE). For more meta-statistics, see Chalmers and Adkins (2020);
Morris et al. (2019); Sigal and Chalmers (2016).

Bias

The bias, on average, measures the tendency of the simulated estimators @ to be
smaller or larger than their true parameter value ¢. It is defined as the average difference
between the true (population) parameter and its estimate (Feng and Shi 2017). The optimal
value of bias is 0 (Harwell 2018; Sigal and Chalmers 2016). An unbiased estimator, on
average, yields the correct value of the true parameter. Bias with a positive (negative) value
indicates that the true parameter value is over-estimated (under-estimated). However, in
absolute values, the closer the estimator is to 0, the better it is. Bias is stated mathematically
as E(¢ — ¢), but can be presented in MCS (see Chalmers 2019) as bias = 1 Y (§; - 9).
The two formulae are connected as

L
EF—0)=ED) 0= 191«—19:%2(191«—19), (11)

==
'M“

I
—_
l
A

1

where 8 = @i(i =1,...,L) is a finite ith number of the sample estimate 9 for the datasets, L
is the number of replications, and ¢ is the true parameter.

Table 1. Outcomes of different simulation replicates.

Panel A: Simulation run once

14 ,3 N 11k RMSE& Bias& SE& RMSE/@ Biasﬁ SEﬁ RMSE&_H; BianH_ﬁ SE&_H@
0.0931 0.9059 1000 —2020.5 0.0504 0.0328 0.0383 0.0551 —0.0443 0.0327 0.0719 —0.0115 0.0710
2000 —3813.8 0.0246 0.0046 0.0241  0.0462 —0.0374 0.0271 0.0608 —0.0327 0.0512
3000 —5734.2 0.0156 —0.0037 0.0152  0.0316 —0.0269 0.0166 0.0441 —0.0306  0.0317
Panel B: Simulation run with 2500 replications
0.0931 0.9059 1000 —2020.5 0.0504 0.0328 0.0383 0.0551 —0.0443 0.0327 0.0719 —0.0115 0.0710
2000 —3813.8 0.0246 0.0046 0.0241  0.0462 —0.0374 0.0271 0.0608 —0.0327 0.0512
3000 —5734.2 0.0156 —0.0037 0.0152  0.0316 —0.0269 0.0166 0.0441 —0.0306  0.0317
Panel C: Simulation run with 1000 replications
0.0931 09059 1000 —2020.5 0.0504 0.0328 0.0383  0.0551 —0.0443 0.0327 0.0719 —0.0115 0.0710
2000 —3813.8 0.0246 0.0046 0.0241  0.0462 —0.0374 0.0271 0.0608 —0.0327 0.0512
3000 —5734.2 0.0156 —0.0037 0.0152  0.0316 —0.0269 0.0166 0.0441 —0.0306  0.0317
Panel D: Simulation run with 300 replications
0.0931 0.9059 1000 —2020.5 0.0504 0.0328 0.0383 0.0551 —0.0443 0.0327 0.0719 —0.0115 0.0710
2000 —3813.8 0.0246 0.0046 0.0241  0.0462 —0.0374 0.0271 0.0608 —0.0327 0.0512
3000 —5734.2 0.0156 —0.0037 0.0152  0.0316 —0.0269 0.0166 0.0441 —0.0306  0.0317

Standard Error

Sampling variability in the estimation can be evaluated via the standard error (SE)
as stated (see Chalmers 2019; Yuan et al. 2015) in Equation (12). Also called Monte Carlo
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standard deviation, it is a measure of the efficiency or precision of the true parameter’s
estimator, which is used to estimate the long-run standard deviation of 9; for finite repe-
titions. It does not require knowing the true parameter @ but depends on its estimator &;
only. The smaller the sampling variability, the more the efficiency or precision of the ¢'s
estimator (see Morris et al. 2019). Sampling variability decreases with increased sample size
(Sigal and Chalmers 2016).

A

L
(8; — 9)2, where =) d/L. (12)
i=1

=)=
-

SE =

1

RMSE

The root mean square error (RMSE) is an accuracy measure for evaluating the dif-
ference between a model’s true value and its prediction. RMSE measure indicates the
sampling error of an estimator when compared to the true parameter value (Sigal and
Chalmers 2016) and it is stated as

(13)

Its computation involves the true parameter ¢. An estimator with lesser RMSE is more
efficient in recovering the true parameter value (Sigal and Chalmers 2016; Yuan et al. 2015),
and minimum RMSE produces maximum precision (Wang et al. 2018). Consistency of
the estimator occurs when RMSE decreases such that & — @ as the sample size N — oo
(Ghalanos 2018; Morris et al. 2019). RMSE is related to bias and sampling variability as

RMSE = \/bias’ + SE2. (14)

That is, the RMSE is an inclusive measure that combines bias and SE, such that low SE can
be penalised for bias. The mean squared error (MSE) is obtained by squaring the RMSE.
MCS is highly reliant on the law of large numbers, and it is expected that the distribution of
an appropriately large sample should converge to that of the underlying population as the
sample size increases (Gilli et al. 2019). It is also expected that the Monte Carlo sampling
error should decrease as the sample size increases, but this is not always the case. That
is, the sample size cannot always be sufficiently increased to limit the sampling error to a
tolerable level (Gilli et al. 2019).

2.4.4. Discussion and Summary

After implementing the method, the last stage in the framework steps is the conclusion,
which needs to reflect a summary discussion of all logical findings from the experiments,
with answers to the research questions. The conclusion brings out the novelty of the
research and may also include the limitations experienced and opportunities for future
work. In addition, relevant information on simulation results can be conveyed through
graphics, tabular presentation, or both.

3. Results: Simulation and Empirical
3.1. Practical Illustrations of the Simulation Design: Application to Bond Return Data

By way of illustration, this section practically describes how the stated steps can be
applied using Monte Carlo simulations with a real data empirical verification.

3.1.1. The Background

It is believed that observation-driven models can appropriately estimate volatility
when fitted with a suitable error distribution (Bollerslev 1987). Observation-driven mod-
elling exists in the presence of time-varying parameters, where parameters are functions
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of lagged dependent variables, concurrent variables and lagged exogenous variables (see
Buccheri et al. 2021; Creal et al. 2013 for details). Data generation using the rugarch pack-
age can be performed through a variety of models that include the simple GARCH, the
exponential GARCH (EGARCH), the GJR-GARCH, the Component GARCH (CGARCH)
(Lee and Engle 1999), the Multiplicative Component GARCH (MCGARCH) (Engle and
Sokalska 2012), among others, and two omnibus models apARCH and fGARCH (as de-
scribed in Section 2.2).

The apARCH model is less robust than the f{GARCH model (Ghalanos 2018), hence
the latter is used for the data generation in this study. Specifically, {GARCH(1,1) model is
used as the true data-generating process (DGP) for the MC simulation because the first
lag of conditional variability can considerably capture volatility clustering existing in the
time series data. In other words, the dependence of volatility on recent past activities is
more than on distant past activities (Javed and Mantalos 2013). Hence, this illustrative
study showcases the effectiveness of the observation-driven model f{GARCH for estimating
the persistence of volatility, where the outcomes of the model fitted with each of ten
assumed innovation distributions of the Normal, skew-Normal, Student’s t, skew-Student’s
t, GED, skew-GED, GHYP, Normal Inverse Gaussian (NIG), Generalised Hyperbolic Skew-
Student’s t (GHST) distribution and Johnson’s reparametrised SU (JSU) distribution are
compared. Details on the error distributions can be found in Ashour and Abdel-hameed
(2010); Azzalini (1985); Azzalini and Capitanio (2003); Barndorff-Nielsen et al. (2013); Branco
and Dey (2001); Eling (2014); Ghalanos (2018); Lee and Pai (2010); Pourahmadi (2007).

The DGP fGARCH(1,1) model, as stated in Equation (15), is used to generate simulated
return observations using the non-Normal Student’s t error with v = 4.1 as the true error
distribution.

o) = w+ 107 (|ze-1 — Amt| — Ma{zem1 — Am })° + Bio) 4 (15)

Here, a Student’s t with shape parameter or degree of freedom v = 4.1 is used to ensure that
E[z}] < o0, which enables v/N consistency of the QML estimation following the assumption
of Francq and Thieu (2019) (see Hoga 2022). Moreover, the Student’s t distribution is used
as the true error distribution in this study because it can suitably deal with leptokurtic or
fat-tailed features (Duda and Schmidt 2009; Lin and Shen 2006) experienced in financial
data (Hentschel 1995), and it is also assumed that stock prices appear to have a distribution
much like the Student’s t (Heracleous 2007). However, based on relevance and research
needs, users may choose to use any leptokurtic distributions, such as the GED or others,
for their data generation. Simulation through the rugarch package can be carried out
using the ugarchsim® and ugarchpath functions, but not all the stated data-generating
models currently support the use of ugarchpath method (see Ghalanos 2018). Hence, this
illustration is implemented using the ugarchsim function through the “fit object” approach.
The ugarchsim function has been used in Shahriari et al. (2023); Sefteland and Iversen
(2021); Zhang (2017) as it gives the user flexibility and control.

Further background study reveals the findings of Morris et al. (2019), where the authors
showed that RMSE is more applicable as a performance measure where the objective of the
simulation is prediction rather than estimation. The authors discussed how more sensitive
RMSE is to the choice of the number of observations used during method comparisons
than when only SE or bias is used. Hence, for fairness in performance assessments, the SE
is used as the key metric or measure of efficiency (precision) in this illustrative study.

It is also noticed from the outcomes of the {GARCH modelling that two sets of standard
error (SE) estimates are returned. That is, the default MLE SE and the robust QMLE SE
(Ghalanos 2018; White 1982; Zivot 2013). This study used the robust {GARCH QMLE SEs
for the simulation illustrations because they are claimed to be consistent (but not efficient)
and asymptotically normally distributed if the volatility and mean equations are well
specified (Bollerslev and Wooldridge 1992; Wuertz et al. 2020).
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3.1.2. Aim of the Simulation Study

This study aims at obtaining the most appropriate assumed error distribution for
volatility persistence estimation when the underlying (true) error distribution is unknown.

3.1.3. Research Questions

This simulation study should result in responses to the following questions:

1.  Which among the assumed error distributions is the most appropriate from the
fGARCH process simulation for estimating the persistence of the volatility?

2.  Financial data are fat-tailed (Li 2008), i.e., non-Normal. Hence, will the combined
volatility estimator & + 8 of the most suitable error assumption still be consistent
under departure from Normal assumption?

3. What type (i.e., strong, weak or inconsistent) of v/N consistency, in terms of RMSE
and SE, does the {GARCH estimator & + 3 exhibit?

4. How is the performance of the MCS estimator & + 3 in recovering the true parameter?

3.1.4. Method of Implementation

To initiate the implementation method, the written code in Appendix C is first used
to fit the true model f{GARCH(1,1)-Student’s ¢ to the SA bond return data (BondDataSA)
through the ugarchfit function of the f{GARCH fit object. Next, through the ugarchsim
function, using seed 12345 in the code, the outputs from the fit are set (or used) a priori
as the true parameter values («, 8) = (0.0748, 0.9243) for the simulation process as shown
in Table 2. These parameter values with other estimates from the fit object are used di-
rectly to generate (simulate) N = 15,000 sample size observations, replicated 1000 times.
However, after trimming down the simulated dataset, following the simulation structure of
Feng and Shi (2017), to prevent the effect of initial values, by removing the first
N = {7000, 6000, 5000} sets of observations at each stage of the simulated 15,000 observa-
tions, the last N = {8000, 9000, 10,000} observations are processed under each of the ten
assumed innovation distributions as shown in Table 2. For brevity, the presented code in
Appendix C only shows the command lines for the first stage of the simulated data, with
the trimming. This briefly illustrates how the 15,000 observations are generated through
the ugarchsim function and then trimmed down to 8000. The remaining two stages (i.e.,
N =9000 and 10,000) of the data generation and trimmings are run following this same
pattern.

Figure 5 displays the visual outlooks of the simulated returns and volatilities for
the first three series in the 1000 replicated series for N = 8000. These sampled visuals
show that each of the 1000 replicated series of the simulated (synthetic) data has a unique
randomness and shape that make them different from every other series. Hence, the
estimate from the family GARCH simulation is the average of all the estimates from the
different replicated series.

After generating simulated observations, the f{GARCH(1,1) model is fitted to each
simulated dataset under the ten error assumptions as shown in the code. However, for
brevity in the written code, the {GARCH(1,1) model is only fitted under the Normal error
using the “distribution.model = norm” argument in the ugarchspec function. All the other
error assumptions can be fitted in the same pattern by simply replacing the “norm” with the
naming convention of the relevant error distribution, e.g., “snorm” for skew-Normal, “std”
for Student’s t, “sstd” for skew-Student’s ¢ (see Ghalanos 2018 for details, and the complete
code can be found at https://github.com/rsamuelll accessed on 14 August 2023). The
parsimonious ARMA(1,1) model is also used in the code as the most suitable among the
tested candidate ARMA models to remove serial correlation in the simulated observations.
However, consistency can still be achieved in simulation modelling regardless of correlated
sample draws. That is, the sampled variates do not need to be independent to achieve
consistency (Chib 2015).
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Table 2. True model f{GARCH(1,1)-Student’s t with true parameters a = 0.0748, B = 0.9243 and « + 8 = 0.9991.

N & B &+ p 1k RMSE;  Bias; SE.  RMSE;  Biasy SE;  RMSE,,; Bias,,; SE,,; TPR, ;
95%

Panel A 8000 0.0835 09234 10069  —138604 00390 00087 00380 00377  —0.0009 00377 00761 00078 00757  95.74%
Normal 9000 00790 09259  1.0049  —154909 0.0297 00042 00294 00465  0.0015 00464 00760 00058 00758  95.55%
10000 00803 09281  1.0085 —17,081.0 0.0088 00055  0.0069 00091 00038 00082 00178 00094 00151  95.89%

Panel B 8000 00834 09235 10069  —138604 00385 00086 00375 00372  —0.0009 00372 00752 00078 00748  95.74%
skew- 9000 00792 09262 10055 -15490.6 00138 00044 00131 00216 00019 00215 00352 00064 00346  95.61%
Normal 10000 00801 09284  1.0085 —17,0802 00085 00053  0.0066  0.008 00041 00079 00173 00094 00145  95.89%%
Panel C 8000 00736 09226 09963  —13337.1 00060  —0.0012 00058 00059  —0.0017 00056 00118  —0.0029 00115  94.73%
Studentt 9000 00727 09279 10006  —149120 00054  —0.0021 00050  0.0056  0.0036 00043 00094 00014 00093  95.14%
10000 00735 09263 0999  —164283 00043  —0.0013 00041 00035 00020 00028 00070 00008  0.0069  95.07%

Panel D 8000 00732 09225 09957  —13337.1 0.0084  —0.0016 00083 00064  —0.0018 00062 00149  —0.0034 00145  94.68%
skew- 9000 00715 09262 09977  —149122 00061  —0.0033 00051 00040 00019 00036 00088  —0.0014  0.0087  94.87%
Studentt 10000 00743 09277 10020  —164284 00035  —0.0005 00034 00041 00034 00024 00065 00029 00058  95.27%
Panel E 8000 00770 09244 10014  -133863 00079 0002 00076 00076 00001 00076 00153 00023 00152  95.22%
GED 9000 00734 09266 10000 —149663 00056  —0.0014 00054 00053 00023 00048 00103 00009 00103  95.09%
10000 00753 09275  1.0028  —164923 00036 00005 00035  0.0042 00032 00027 00073 00037 00062  95.35%

Panel F 8000 00750 09221 09971  —133862 0.0059 00002 00059 00059 ~ —0.0022 00054 00115  —0.0020 00113  94.81%
skew- 9000 00734 09265 09999  —14966.0 0.0055  —0.0014 00054 00054 00022 00049 00103 00008 00103  95.08%
GED 10000 00753 09275  1.0028 164923 00035 00006 00035  0.0040 00031 00025 00070 00037  0.0060  95.35%
Panel G 8000 00732 09234 0996  —133363 00065  —0.0016 00063 00054  —0.0009 00053 00119  —00025 00116  94.76%
GHYP 9000 00720 09279 09999  —149114 00057  —0.0028 00050 00056  0.0036 00043 00093 00008 00093  95.08%
10000 00729 09265 09994  —164277 00045  —0.0019 00040 00035 00022 00027 00067 00003  0.0067  95.08%

PanelH 8000 00731 09229 09961  —133433 00058  —0.0017 00056 00057  —0.0014 00055 00115  —0.0031 00111  9471%
NIG 9000 00719 09275 09994  —149197 00059 ~ —0.0029 00052 00053 00031 00043 00095 00003 00095  95.03%
10000 00729 09266 09995  —164381 0.0045  —0.0019 00041 00034 00023 00025 00066  0.0004  0.0066  95.04%

Panel I 8000 00711 09218 09930  —134350 0.0067  —0.0036 00056 00070 ~ —0.0025  0.0065 00135  —0.0062 00121  94.42%
GHST 9000 0.0699 09261 09960  —150273 00071  —0.0049 00051 00049 00018 00046 00102  —0.0031  0.0097  94.71%
10000 00734 09266 0999  —16569.1 0.0038  —0.0014 00035 00034 00022 00026 00061 00008 00061  95.08%

Panel | 8000 00731 09232 09963  —13337.1 00057  —0.0017 00055 00057  —0.0011 00055 00114  —0.0028 00110  94.74%
JSU 9000 00719 09277 0999  —149124 00057  —0.0029 00050  0.0053 00033 00042 00091 00005 00091  95.04%
10000 00727 09264 09991  —164293  0.0045  —0.0020 00040  0.0033 00020 00026 00066 00000  0.0066  95.00%
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Figure 5. Simulated returns (in Panel A) and simulated volatility (Panel B) of the first three repli-
cated series.

Next, the selected meta-statistics are now used to evaluate the estimators. The most
suitable assumed error distribution for estimating the persistence will be obtained from the
estimator /s with the best precision and efficiency from the meta-statistical comparisons
made under all the selected error assumptions. Three meta-statistical summaries that
include the bias, RMSE and SE, are used in this illustration. The computation of the metrics
is direct but may sometimes be nerve-racking, and manual programming may even cause
unanticipated coding errors and other abrupt setbacks. To circumvent this, SimDesign
statistical package (Chalmers and Adkins 2020; Sigal and Chalmers 2016) with in-built
meta-statistical functions for computational accuracy is used in this illustration, beginning
from bias estimation. The log-likelihood (llk) of the estimates, with the RMSE, bias and
SE for &, B and & + B estimators are displayed in Table 2, but SE is the key performance
measure for efficiency and precision.

Now comparing RMSE for &, the results from the table show that both the skew-GED
and skew-Student’s t outperform the other assumed innovations in efficiency with the least
values as N tends to the peak at 10,000. For B, the JSU, followed by the GHST and NIG,
outperforms the rest of the innovation assumptions in efficiency with the least RMSE value
as N tends to the peak. For & + 8, the GHST followed by the skew-Student’s t outperform
the remaining eight innovation assumptions as N tends to the peak, but the skew-Student’s
t is the best as the sample size reaches the middle at N = 9000 for both & + 3 and .

Comparing bias for &, as N approaches the peak, the absolute values of biases for the
GED and skew-Student’s t outperform the rest. For B, the JSU and the true innovation
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Student’s t both take the lead as N reaches the peak. For & + f, the JSU followed by the
GHYP outperform the other innovations in absolute values of biases as N reaches the peak.

For precision and efficiency comparison in terms of the key performance metric SE, the
skew-Student’s f relatively outperforms the others in efficiency and precision as N tends to
the peak for &, 8 and & + f, in particular, for 3 and & + . Finally, for the 1k comparison,
the GHYP outperforms the rest, with the largest estimates at the three N sample sizes.
To summarise, when the true innovation is Student’s t, the skew-Student’s  assumed
innovation distribution relatively outperforms the other nine innovation assumptions in
efficiency and precision, while the GHYP performs better than the rest through the log-
likelihood. Tt is observed here that the SEs of &, B and & + B estimators for the assumed
Normal innovation distribution are the largest when compared with those of the other nine
assumed innovation distributions. This justifies the claim that the QMLE of the family
GARCH model (with Normal innovation) is inefficient. Furthermore, it is observed from the
tabulated outputs that the RMSE and SE of the estimators are considerably /N consistent
in recovering the true parameters under the assumed innovations. The visual illustrations
of the consistency for the outputs of & + j estimator are graphically displayed in Figure 6.
The figure shows that the closer the absolute values of biases are to zero, the closer the SE is
to the RMSE. Whenever bias drifts away from zero, the gap between SE and RMSE widens,
but if otherwise, then their trend lines closely follow the same trajectory. The visual plots
also show that RMSE and SE decrease as N increases, but bias is independent of N.

It is also observed from the table and as shown in Panels A and B of Figure 7 that
the MCS estimates for the estimator & -+ 3 considerably recover the true (volatility) pa-
rameter value of 0.9991, with TPR outcomes closely clustered around the 95% (i.e., 0.95)
nominal recovery level under the ten error assumptions. This indicates a good performance
of the MCS experiments with suitably valid outputs. However, the non-Normal errors
perform slightly better in the recovery than the Normal and skew-Normal errors, as clearly
revealed in Panel B. It can also be seen from the tabular results that the TPR outcomes are
independent of N, and the closer the MCS estimate is to zero, the smaller the TPR estimate.

Sample size effects on RMSE, SE and Bias

Normal skew—-Normal Student's t skew-Student's t GED
./-4——_. .__/
skew-GED GHYP NIG GHST JSU
T ————

8000 8500 9000

9500 100008000 8500 9000

9500 10000 8000 8500 9000 9500

Sample size (N)

100008000 8500 9000 9500

Metric: == RMSE = SE - Bias

Figure 6. The impact of sample size on RMSE, SE and bias for the f{GARCH(1,1)-Student’s t MCS

10000 8000 8500 9000 9500

10000

modelling. The RMSE and SE are considerably /N consistent, but bias is independent of N.



J. Risk Financial Manag. 2023, 16, 392

17 of 30

(A) True parameter recovery outlook (the coverage)

1.00

0.75

TPR outcomes
o
g
o

0.25
0.00
A_Normal B_skew—Normal C_Student's t D_skew-Student's t E_GED F_skew-GED G_GHYP H_NIG I_GHST J_Jsu
Errors
(B) True parameter recovery outlook (the coverage)

0.956 ‘ ‘
)
[¢B]
S
o
£0.952
3 I
o ]
P IT RTPMPRTES ‘ ..........................................
o
— 0.948

0.944

A_Normal B_skew—Normal C_Student's tD_skew—Student's t E_GED F_skew-GED G_GHYP H_NIG I_GHST J_Jsu
Errors
NI

8000 8500 9000 950010000

Figure 7. Panels (A,B) display the TPR outcomes, where the clustered outcomes in Panel (A) are
clearly spread out in Panel (B). The dotted line is the 95% (i.e., 0.95) nominal recovery level.

3.2. Empirical Verification

Next, the outcomes of the MCS experiments empirically verified using the real return
data from the SA bond market index. Among the ten assumed error distributions, the most
appropriate for the {GARCH process to estimate the volatility persistence of the bond market’s
returns is examined. For the market index, the price data are transformed to the log-daily
returns by taking the difference of logarithms of the price, expressed in percentage as

P
re = ln(t> x 100. (16)
Py

The P; and P;_ are the closing bond price index at time t and the previous day’s closing
price at time t — 1, respectively; r; is the current return, and In represents the natural logarithm.

3.2.1. Exploratory Data Analysis

To start with, the price index and returns are first inspected through exploratory data
analysis (EDA) as displayed in Figure 8. The EDA visually sheds light on the content of
the dataset to reveal relevant information and potential outliers. Figure 8 unearths some
downswings or steep falls in the volatility of price (in plot a) and returns (in plot ¢) around
the years 2002, 2008, 2016 and 2020. The most recent as shown by the plots for 2020 was
due to the global COVID-19 pandemic.

For further inspection, the figure is now separated into two panels: left and right. The
left panels contain plots 4, b, ¢, f for daily bond prices, while the right panels consist of
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(a) S&P SA Bond Price Index

plots ¢, d, g, h for the returns. The left panels reveal non-stationarity in the price index as
observed in the price series plot, the density plot, quantile-quantile (QQ) plot and the box
plot. On the other hand, the right panels show stationarity in the returns through the return
series plot, the density plot, the QQ plot and the box plot. These summarily elucidate the
non-stationarity in the SA daily bond prices and stationarity in the returns.
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Figure 8. EDA of price (panels a,b,e,f) and returns (panels c¢,d,g h) for SA Bond Index.

3.2.2. Tests for Serial Correlation and Heteroscedasticity

Next, linear dependence (or serial correlation) and heteroscedasticity are filtered out
by fitting ARMA-fGARCH models with each of the ten innovation distributions to the
stationary return series. The ARMA(1,1) model, as stated in Equation (17), is found to be
the most adequate, among all the examined candidate ARMA(p,q) models, to remove serial
correlation from the SA bond market’s return residuals. Table 3 presents the outcomes of
the Weighted Ljung—Box (WLB) test (see Fisher and Gallagher 2012 for details) for fitting
the ARMA(1,1) model. The p-values of the test at lag 5 all exceed 0.05 under each error
distribution. Based on this, we fail to reject the null hypothesis of “no serial correlation” in
the SA bond market’s returns. This means there is no evidence of autocorrelation in the
return residuals.

1t = o+ P1ri—1 + Q1€4-1 + & (17)

Following the filtering of linear dependence in the return series, Engle’s ARCH test
(see Engle 1982) is carried out using the Lagrange Multiplier (LM) and Portmanteau-Q (PQ)
tests to check for the presence of heteroscedasticity or ARCH effects in the residuals. These
tests are implemented based on the null hypothesis of homoscedasticity in the residuals
of an Autoregressive Integrated Moving Average (ARIMA) model. Both tests’ outcomes
show highly significant p-values of 0 as shown in Figure 9. Hence, the null hypothesis
of “no ARCH effect” in the residuals is rejected, which denotes the existence of volatility
clustering. Based on this, a heteroscedastic model can be fitted to remove the ARCH effects
in the series. To achieve this, the candidate robust {GARCH(u, v) models, with each of the
ten error distributions, are fitted to the SA bond returns, where the fit of the parsimonious
fGARCH(1,1) model as shown in Equation (18) is found to be the most suitable.

U';Y =w+ 0610'?_1(|Zt,1 —Anq| — /\11{215,1 - )\21})6 + /31(77_1. (18)

After fitting the fGARCH model to the returns, the weighted ARCH LM test is used to
ascertain if ARCH effects have been filtered out. The p-value of the “ARCH LM statistic (7)”
at lag 7 in Table 3 is greater than 5% under each of the ten innovation distributions. Hence,
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this indicates that heteroscedasticity is filtered out since we fail to reject the null hypothesis
of “no ARCH effect” in the residuals. These outcomes show that the variance equation is
well specified.

Table 3. ARMA(1,1)-fGARCH(1,1) models’ empirical outcomes on SA Bond return data.

Panel A Panel B Panel C Panel D Panel E

Normal skew-Normal Student’s t skew-Student’s ¢ GED
il 0.0164 *** 0.0078 * 0.0387 * 0.0177 0.0378 **
w 0.0323 0.0278 0.0297 * 0.0270 * 0.0311 *
a 0.0701 * 0.0670 * 0.0690 * 0.0661 * 0.0700 *
ﬁ 0.9093 * 0.9170 * 0.9188 * 0.9236 * 0.9137 *
A 0.2504 * 0.2344 * 0.3499 * 0.3445 * 0.2879 *
An 0.2245 0.2209 *** 0.0729 0.0943 0.1445*
g = 5 1.4550 * 1.4233 * 1.2362 * 1.2058 * 1.3436 *
Persistence (15) 0.9794 0.9825 0.9764 0.9792 0.9762
WLB (5) 0.3227 0.8383 0.9103 1.6060 1.3361
p-value (5) (1.0000) (1.0000) (1.0000) (0.9955) (0.9995)
AR(.:I_.I M 3.0979 3.1854 3.8897 4.1266 3.4264
statistic(7)
p-value (7) (0.4953) (0.4793) (0.3627) (0.3287) (0.4369)
AP-GoF 87.2 64.56 42.32 18.48 53.68
p-value (0.0000) (0.0000) (0.0016) (0.4908) (0.0000)
Log-likelihood —8909.189 —8886.553 —8803.012 —8790.528 —8825.745
AIC 3.1862 3.1785 3.1486 3.1445 3.1568
BIC 3.1969 3.1903 3.1605 3.1576 3.1686
SIC 3.1862 3.1785 3.1486 3.1445 3.1567
HQIC 3.1899 3.1826 3.1528 3.1491 3.1609
Run-time 43245 6.6636 7.6463 11.9177 9.1407
(seconds)

Panel F Panel G Panel H Panel I Panel J

skew-GED GHYP NIG GHST JsuU
il 0.0157 0.0156 0.0155 —0.0062 0.0159
w 0.0273 * 0.0267 * 0.0261 * 0.0251 * 0.0265 *
Q 0.0665 * 0.0661 * 0.0657 * 0.0650 * 0.0658 *
,B 0.9206 * 0.9241 * 0.9246 * 0.9284 * 0.9243 *
)111 0.2823 * 0.3370 * 0.3341 * 0.3202 * 0.3378 *
5\21 0.1592 ** 0.0942 0.0964 0.1163 ** 0.0949
g = 5 1.3048 * 1.2086 * 1.2171 * 1.1942 * 1.2102 *
Persistence (15) 0.9797 0.9795 0.9800 0.9826 0.9796
WLB (5) 2.5350 1.5990 1.8260 2.5920 1.7170
p-value (5) (0.7599) (0.9957) (0.9822) (0.7277) (0.9906)
AR.CI_.I M 3.6331 4.0705 4.0249 4.2354 4.0750
statistic(7)
p-value (7) (0.4026) (0.3365) (0.3430) (0.3139) (0.3359)
AP-GoF 46.18 17.01 22.23 29.37 21.66
p-value (0.0005) (0.5890) (0.2730) (0.0604) (0.3013)
Log-likelihood —8810.111 —8790.079 —8793.107 —8800.387 —8791.112
AIC 3.1515 3.1447 3.1454 3.1480 3.1447
BIC 3.1646 3.1589 3.1585 3.1611 3.1578
SIC 3.1515 3.1447 3.1454 3.1480 3.1447
HQIC 3.1561 3.1497 3.1500 3.1526 3.1493
Run-time 19.0058 49.9461 20.7803 16.8525 10.6434
(seconds)

Note: The “*”, “**” and “***” are 1%, 5% and 10% significance levels, respectively. The p-values at 5% significance

levels are given in the round brackets, while “(5)” and “(7)” are lags 5 and 7, respectively. The AP-GoF (for group
20) is the Adjusted Pearson Goodness-of-Fit Test, and WLB denotes the Weighted Ljung-Box test.
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Figure 9. ARCH Portmanteau Q and Lagrange Multiplier tests.

3.2.3. Selection of the Most Suitable Error Distribution

Next, selection of the most suitable assumed error distribution to describe the market’s
returns, when fitted with the f{GARCH model for volatility persistence estimation, is
obtained from Table 3. It is observed from the table that all, but two, of the {GARCH
volatility parameter estimates (@, &, [3, A11, A21 and 4) under the ten innovation assumptions
are statistically significant at 1% level. This means that these parameters are actively needed
in the model. The two exceptions are the insignificant @ for the Normal and skew-Normal,
and the estimates A,; that are mostly not significant or barely significant. The strongly
significant A1 indicates the dominance of asymmetric large shocks in the return series.

Comparisons of the error distributions are carried out using the log-likelihood and
four information criteria that include the Akaike information criterion (AIC), Bayesian
information criterion (BIC), Hannan—Quinn information criterion (HQIC) and Shibata
information criterion (SIC) (see Ghalanos 2018 for details). The largest log-likelihood value
with the smallest values of the information criteria under a given assumed innovation
indicates that it is the most appropriate innovation distribution to describe the market for
volatility persistence estimation.

It is observed from Table 3 that the values of all four information criteria are smallest
under the skew-Student’s t innovation distribution, but the GHYP innovation has the
highest log-likelihood value. Hence, the skew-Student’s t is the most suitable innovation as-
sumption strictly based on the information criteria, while the GHYP is the most appropriate
if the decision is made using the log-likelihood. The GHYP and skew-Student’s t also yield
better goodness of fit (GoF) outcomes when compared with the remaining eight errors, as
shown by their large p-values in the table, which shows that they are the best fit among
the ten error assumptions for the distribution of the SA bond’s return residuals. Hence,
the volatility persistence of the SA bond market’s returns can be most suitably estimated
through the ARMA(1,1)-fGARCH(1,1) model fitted with the GHYP or skew-Student’s ¢
assumed error distribution. These empirical results are consistent with the Monte Carlo
simulation outcomes. The estimated volatility persistence under these most suitable error
distributions are 0.9795 for the GHYP and 0.9792 for skew-Student’s t. Hence, this indicates
that the volatility of the SA bond market’s returns is considerably highly persistent.

This study also checked the empirical outcomes of fitting the less omnibus apARCH(1,1)
model to the bond return data and we arrived at the same results (of skew-Student’s ¢
through information criteria and GHYP via log-likelihood) obtained by the f{GARCH(1,1)
model (see Table 4). The table only shows the outcomes of the log-likelihood and information
criteria for brevity.
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Table 4. ARMA(1,1)-apARCH(1,1) models” empirical outcomes on SA Bond data.

Panel A Panel B Panel C Panel D Panel E
Normal skew-Normal Student’s ¢ skew-Student’s ¢ GED
Log-likelihood —8910.136 —8887.475 —8803.200 —8790.782 —8826.007
AIC 3.1862 3.1784 3.1483 3.1443 3.1565
BIC 3.1957 3.1891 3.1590 3.1561 3.1671
SIC 3.1862 3.1784 3.1483 3.1443 3.1565
HQIC 3.1895 3.1822 3.1521 3.1484 3.1602
Panel F Panel G Panel H Panel I Panel J
skew-GED GHYP NIG GHST Jsu
Log-likelihood —8810.472 —8790.315 —8793.329 —8802.039 —8791.340
AIC 3.1513 3.1444 3.1452 3.1483 3.1445
BIC 3.1631 3.1575 3.1570 3.1601 3.1563
SIC 3.1513 3.1444 3.1452 3.1483 3.1445
HQIC 3.1554 3.1490 3.1493 3.1524 3.1486
For the run-time, it is observed that the skew-Student’s t is about four (approximately
4.2) times faster than the GHYP for both simulation and empirical modelling. That is, it
takes the GHYP about four times the computational time it takes the skew-Student’s t to
run the same process. Since the empirical and simulation run-times are approximately the
same, we only present the empirical run-times for the ten innovations in Table 3 to conserve
space. For both simulation and empirical runs, the GHYP has the highest runtime among
the ten innovations, followed by the NIG, while the Normal has the least.
From the outputs of the ARMA(1,1)-fGARCH(1,1) model in Table 3, the mean and
variance (from the conditional standard deviation’s Box—Cox transformation in Section 2.2)
equations of the model fitted with each of the GHYP and skew-Student’s t are stated as
With GHYP : ry = Mt + &
= 0.0156 + &
of = w+ma] (21— Anl = An{z1—An})’ + o),
o} 20% 0.0267 + 0.06610} %" (|z;_1 — 0.0942| — 0.3370{z;_1 — 0.0942})"2%%¢ + 0.92410/-2%
With skew-Student’st: 1 = u;+eg
= 0.0177 + ¢
of = wt+wmo) [ (|zie1 — Al — Af{zier — An})’ + Bro)
1.2058

0.0270 + 0.066102%8 (|2, — 0.0943| — 0.3445{z;_1 — 0. 0943})l 2058 4 0923607208

4. Discussion and Summarised Conclusions

In conclusion, it is observed that using the uGARCHsim approach for the MCS
illustration, the GHYP and skew-Student’s t evolve as the most suitable assumed error
distributions to reckon with and use with the fGARCH model for volatility persistence
estimation of the SA bond returns when the underlying error distribution is unknown.
These outcomes are verified empirically. The estimated persistence of volatility under these
most suitable error distributions are 0.9795 for the GHYP and 0.9792 for skew-Student’s
t. Hence, this indicates considerably high volatility persistence in the SA bond market’s
returns. It is also observed that the use of the ugarchsim approach provided considerably
consistent estimates (and recovery) of the true data-generating parameters.

The conclusion under this section continues by providing answers to the four research
questions. In this study, consistency is termed “strong” when the estimator’s RMSE/SE
value decreases as the sample size N increases without distortion. Otherwise, it is weak.
Now, answering the questions: first, the GHYP and the skew-Student’s t distributions are
the most appropriate among the stated assumed error distributions from the f{GARCH
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process simulation for the volatility persistence estimation. Second, the volatility estimator
& + B for each of the most suitable assumed errors GHYP and skew-Student’s ¢ is strongly
V/'N consistent for both RMSE and SE under departures from the Normal assumption as
revealed in Panels G and D of Table 2. Third, there are strong /N consistencies for the
RMSE and SE of the fGARCH estimator & + B under all, but one, of the ten assumed error
distributions as shown in Table 2. The lone exception, however, is the weak consistency
in the SE of the Normal assumption. Fourth, as a proxy for the coverage of the MCS
experiment, the MCS estimator & + 3 performed well in recovering the true parameter
& + B through the TPR measure for the 95% nominal recovery level as revealed in Table 2
and Figure 7. The results show that the TPR outcomes are suitably close to the 95% nominal
recovery level under the ten error assumptions.

5. Conclusions

This study showcases a robust step-by-step framework for a comprehensive simu-
lation by presenting the functionalities of the rugarch package in R for simulating and
estimating time-varying parameters through the family GARCH observation-driven model.
The framework hands out an organised approach to a Monte Carlo simulation (MCS)
study that involves “background (optional), defining the aim, research questions, method
of implementation, and summarised conclusion”. The method of implementation is a
workflow that includes writing the code, setting the seed, setting the true parameters a
priori, data-generation process, and performance assessment through meta-statistics.

This novel, easy-to-understand framework is illustrated using financial return data;
hence, users can easily use it for effective MCS studies. With the uGARCHSsim simulation
approach involved in the modelling, the implementation method is clearly explained with
relevant details. Key observations are identified, and novel findings brought to light. The
framework also outlays clear coding guidelines for data generation using the package, since
data generation is without a doubt an integral part of MCS studies. The key observations
and novel findings in this study include, first, it is shown in the experiment that as the
sample size N becomes larger, the consistency and efficiency properties of an estimator in a
Monte Carlo process are generally not affected by the pattern or arrangement of the seed
values, but this may depend on the quality of the model used. Hence, regardless of the
arrangement of the seed values, the efficiency and consistency of an estimator generally
remain the same as N tends to infinity.

Second, it is investigated and revealed in this study that the outcomes of the GARCH
MCS experiments are the same regardless of whether the simulation or data generating
process is run once or replicated multiple times. Third, this study derived a “true parameter
recovery (TPR)” measure as a proxy for the coverage of the MCS experiment. This new
(original) novel measure is flexible to apply and can henceforth be used by upcoming
researchers to determine the level of recovery of the true parameter value by the MCS
estimates. It is also observed that the volatility estimator of the used f{GARCH model
displays considerably strong v/N consistency.

Lastly, the outcomes of the illustrative study show that the GHYP and skew-Student’s
t errors are the most suitable among the ten assumed innovations to describe the SA
bond returns for volatility persistence estimation. The fit of these two error assumptions
with the {GARCH model revealed considerably high volatility persistence in the returns.
On a wider scale, since volatility is a practical measure of risk, the fit of the GHYP and
skew-Student’s t errors with a specification of the f{GARCH (or, apARCH) model for a
robust volatility modelling may benefit financial institutions and markets by enhancing the
accuracy of their risk estimations. This could potentially lead to a significant reduction in
asset losses. Moreover, it is documented that shocks with a permanent influence on the
variance will have a greater effect on price than those with temporary influence (Arago
and Fernandez-Izquierdo 2003). Hence, through the fit of these innovations, policymakers
and other financial market participants may benefit from a better understanding of the
effects of shocks to future volatility, especially from knowing whether the effects of the
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shocks are transient or (highly) persistent. It is anticipated that researchers will leverage
this study’s novel findings and robust design for improved simulation studies in finance
and other sectors.

5.1. Limitations in the Study

Three limitations or challenges are noticed in this study. The first is on how to obtain
a sufficient sample size that can generate accurate outcomes. To tackle this using the
illustrative example, the process involves testing a selected number of sample sizes, with
each used in turn, until a pattern of efficiency and/or consistency starts to evolve under
the stated error distributions. The most efficient error distribution in terms of the given
performance measure under a particular sample size is carefully noticed. If a set of sample
sizes yields the same efficiency outcomes, the outcome with the best consistency among
the set can be used for a final decision on sample size determination. This is a guide to
obtaining the required sample size/s.

The second is running time. It is observed that a large simulated dataset may some-
times be needed to obtain accurate computations and this may be carried out at the cost
of a large computational (or running) time, depending on the model used. This can be
very demanding, especially when dealing with different stages of large sample sizes. Third,
since the rugarch package does not make provision for calculating the coverage probability,
this study derived a proxy for the coverage using the TPR measure, and it is observed that
the MCS estimates considerably recover the true parameters.

5.2. Future Research Interest

The authors intend to further use the ugarchpath function of the rugarch package
through any of the models that support its use for the framework illustration. The authors
also intend extending the simulation framework ideas to other volatility (persistence)
estimating models, such as the Generalised Autoregressive Score (GAS) model, and to
modelling and estimating multivariate processes. The future extension also includes a
framework for volatility forecasting and portfolio management.
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Abbreviations

The following abbreviations are used in this manuscript:

MCS

SA
GARCH
ugarchsim
ugarchpath
ARCH
TPR

S&P
ARMA
ARIMA
iid.

MLE
QMLE
fGARCH
sGARCH
AVGARCH
GJR GARCH
TGARCH
NGARCH
NAGARCH
EGARCH
apARCH
CGARCH
MCGARCH
p

DGP

RMSE

SE

GED
GHYP

NIG

GHST

JsU

11k

EDA

QQ

LM

PQ

WLB

AIC

BIC

HQIC

SIC
AP-GoF
p-value
GAS

Monte Carlo simulation

South Africa

Generalised Autoregressive Conditional Heteroscedasticity
Univariate GARCH Simulation
Univariate GARCH Path Simulation
Autoregressive Conditional Heteroscedasticity
True Parameter Recovery

Standard & Poor

Autoregressive Moving Average
Autoregressive Integrated Moving Average
Independent and identically distributed
Maximum likelihood estimation
Quasi-maximum likelihood estimation
family GARCH

simple GARCH

Absolute Value GARCH
Glosten-Jagannathan-Runkle GARCH
Threshold GARCH

Nonlinear ARCH

Nonlinear Asymmetric GARCH
Exponential GARCH

Asymmetric Power ARCH

Component GARCH

Multiplicative Component GARCH
Persistence

Data generation process

Root mean square error

Standard error

Generalised Error Distribution
Generalised Hyperbolic

Normal Inverse Gaussian

Generalised Hyperbolic Skew-Student’s ¢
Johnson’s reparametrised SU
log-likelihood

Exploratory Data Analysis
Quantile-Quantile

Lagrange Multiplier

Portmanteau-Q

Weighted Ljung—Box

Akaike information criterion

Bayesian information criterion
Hannan-Quinn information criterion
Shibata information criterion

Adjusted Pearson Goodness-of-Fit
Probability value

Generalised Autoregressive Score
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Appendix A. Outcomes of Different Patterns of Seed Values for Sets S and S,
Table A1l. Outcomes of different patterns of seed values, with true parameter « + = 0.9990.
Panel A (51) Seed: 12345 Seed: 54321 Seed: 15243
A 5 TPR ~ Py TPR " 5 TPR

N a+p  RMSE.;  SEg (95%) a+p  RMSE.;  SEy (95%) a+p  RMSE.;  SEg (95%)

Normal 1000 0.9990 0.0862 0.0862 95.00% 0.9563 0.0757 0.0625 90.94% 0.9909 0.0801 0.0796 94.23%
2000 0.9771 0.0934 0.0908 92.91% 0.9903 0.0419 0.0410 94.17% 0.9839 0.0490 0.0466 93.56%

3000 0.9727 0.0756 0.0709 92.50% 0.9850 0.0373 0.0345 93.67% 0.9791 0.0591 0.0557 93.11%

4000 0.9700 0.0693 0.0629 92.24% 0.9846 0.0412 0.0387 93.64% 0.9972 0.0304 0.0303 94.83%

Student’s ¢ 1000 0.9990 0.0525 0.0525 95.00% 0.9833 0.0441 0.0412 93.50% 0.9990 0.0768 0.0768 95.00%
2000 0.9902 0.0500 0.0492 94.16% 0.9990 0.0349 0.0349 95.00% 0.9958 0.0388 0.0386 94.69%

3000 0.9973 0.0327 0.0327 94.83% 0.9977 0.0308 0.0308 94.87% 0.9956 0.0318 0.0316 94.68%

4000 0.9918 0.0277 0.0267 94.31% 0.9974 0.0258 0.0258 94.85% 0.9963 0.0247 0.0246 94.74%

GED 1000 0.9875 0.0719 0.0710 93.90% 0.9688 0.0499 0.0397 92.13% 0.9899 0.0630 0.0624 94.13%
2000 0.9663 0.0608 0.0512 91.89% 0.9908 0.0336 0.0326 94.22% 0.9847 0.0387 0.0360 93.64%

3000 0.9684 0.0441 0.0317 92.09% 0.9846 0.0347 0.0315 93.63% 0.9795 0.0385 0.0333 93.15%

4000 0.9692 0.0410 0.0282 92.16% 0.9833 0.0328 0.0288 93.51% 0.9839 0.0300 0.0259 93.57%

GHYP 1000 0.9940 0.0557 0.0555 94.52% 0.9785 0.0437 0.0386 93.05% 0.9897 0.0657 0.0650 94.12%
2000 0.9748 0.0507 0.0446 92.70% 0.9979 0.0328 0.0328 94.89% 0.9871 0.0364 0.0344 93.87%

3000 0.9780 0.0353 0.0284 93.00% 0.9901 0.0305 0.0292 94.15% 0.9849 0.0325 0.0293 93.66%

4000 0.9776 0.0322 0.0241 92.97% 0.9898 0.0263 0.0247 94.12% 0.9892 0.0247 0.0226 94.07%

Panel B (S3) Seed: 34567 Seed: 76543 Seed: 36547
A 5 TPR ~ Py TPR N 5 TPR

N a+p  RMSE.;  SEy (95%) b+p  RMSE.;  SEy (95%) b+p  RMSE;  SEy (95%)

Normal 1000 0.9856 0.0583 0.0568 93.72% 0.9942 0.0424 0.0421 94.54% 0.9823 0.3888 0.3884 93.41%
2000 0.9814 0.0396 0.0354 93.33% 0.9891 0.0370 0.0357 94.06% 0.9806 0.1419 0.1407 93.25%

3000 0.9845 0.0708 0.0693 93.62% 0.9809 0.0334 0.0281 93.28% 0.9822 0.0805 0.0787 93.40%

4000 0.9990 0.0397 0.0397 95.00% 0.9778 0.0326 0.0248 92.98% 0.9779 0.0575 0.0535 92.99%

Student’s ¢ 1000 0.9971 0.0474 0.0474 94.82% 0.9990 0.0422 0.0422 95.00% 0.9990 0.0329 0.0329 95.00%
2000 0.9789 0.0364 0.0303 93.08% 0.9990 0.0281 0.0281 95.00% 0.9990 0.0315 0.0315 95.00%

3000 0.9781 0.0326 0.0249 93.01% 0.9975 0.0237 0.0236 94.86% 0.9990 0.0234 0.0234 95.00%

4000 0.9871 0.0253 0.0223 93.87% 0.9955 0.0218 0.0215 94.67% 0.9946 0.0238 0.0234 94.58%

GED 1000 0.9802 0.0463 0.0423 93.21% 0.9899 0.0389 0.0378 94.13% 0.9986 0.0490 0.0490 94.96%
2000 0.9726 0.0386 0.0282 92.49% 0.9898 0.0280 0.0265 94.13% 0.9879 0.0388 0.0371 93.94%

3000 0.9710 0.0398 0.0282 92.33% 0.9820 0.0276 0.0218 93.38% 0.9808 0.0303 0.0243 93.27%

4000 0.9800 0.0285 0.0213 93.19% 0.9782 0.0284 0.0194 93.02% 0.9752 0.0321 0.0215 92.73%

GHYP 1000 0.9863 0.0436 0.0417 93.80% 0.9928 0.0383 0.0378 94.41% 0.9990 0.0370 0.0370 95.00%
2000 0.9744 0.0377 0.0285 92.66% 0.9952 0.0265 0.0262 94.64% 0.9990 0.0358 0.0358 95.00%

3000 0.9737 0.0351 0.0242 92.59% 0.9872 0.0243 0.0213 93.88% 0.9894 0.0256 0.0237 94.09%

4000 0.9810 0.0278 0.0212 93.29% 0.9835 0.0246 0.0192 93.53% 0.9816 0.0275 0.0213 93.35%
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Appendix B. Further Visual Illustrations of S; and S; TPR Outcomes

(A) S1: True parameter recovery outlook (the coverage) (B) S2: True parameter recovery outlook (the coverage)
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Figure A1. The TPR outcomes of S; and S, in Panels (A,B), respectively, where the dotted lines are
the 95% (i.e., 0.95) nominal recovery levels.

Appendix C. The Code for DGP through the Ugarchsim Function

Listing Al. The Code for the Method of Implementation of the MCS Experiment

library (rugarch)
attach (BondDataSA)
BondDataSA<-as . data . frame (BondDataSA)
spec = ugarchspec(variance.model = list(model = ‘‘fGARCH"’,
garchOrder = ¢(1,1),
submodel = ‘‘ALLGARCH’ "),
mean.model = list (armaOrder = ¢(1,1),
include .mean = TRUE),
distribution .model = “‘std’’,
fixed . pars=1list (shape=4.1))
fit = ugarchfit(data = BondDataSA[,4,drop=FALSE], spec = spec)
fit
coef(fit)

# simulate for N=8000

sim = ugarchsim(fit, n.sim=15000, n.start=1, m.sim=1000,
rseed = 12345, startMethod='‘sample’’)

SIMGARCH <- fitted (sim)

simGARCH

sSimGARCH <- as.data.frame (simGARCH)

simGARCH

#Remove the first 7000 for initial wvalues effect
R_sinGARCH <- simGARCH[-¢(1:7000), ]
R_simGARCH
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Listing A1. Cont.

#Fit ARMA(1,1)-fGARCH(1,1) to the simulated dataset R_simnGARCH
#For Normal
spec <— ugarchspec(variance.model = list(model = ‘‘fGARCH"’,
garchOrder = ¢(1,1),
submodel = ‘‘ALLGARCH’ "),
mean.model = list(armaOrder = c(1,1),
include .mean = TRUE),

distribution .model = ‘‘norm’ ")
fit = ugarchfit(data = R_simGARCH, spec = spec)
show( fit)
coef(fit)

Notes

1 The GRETL (Baiocchi and Distaso 2003; Cottrell and Lucchetti 2023), GAS (Ardia et al. 2019) and f{GARCH (Pfaff 2016; Wuertz
et al. 2020) are also among the freely available and applicable software.

Coverage probability is the probability that a confidence interval of estimates contains or covers the true parameter value
(Hilary 2002).

We describe the true model as the data-generating model fitted with the true sampling distribution (see Feng and Shi 2017).
When the true model is fitted to the real data, the estimates from the fit represent the true parameters.

This study only follows the authors’ trimming steps for initial values effect. The other trimming by the authors for “simulation
bias” (where some initial numbers of replications are further discarded after the initial value effect adjustment) are not used here
because it is observed that it sometimes distorts the estimator’s v/ N consistency.

6 See the “Synopsis of R packages” pages 125-27 in (Pfaff 2016) for relevant details on rugarch package and ugarchsim function.
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