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Abstract: With the increasing availability of large volumes of space–time house data, delineating
space–time housing submarkets is of interest to real estate agents, homebuyers, urban policymak-
ers, and spatial researchers, among others. Appropriately delineated housing submarkets can help
nurture submarket monitoring and housing policy developments. Although submarkets are often
expected to represent areas with similar houses, neighborhoods, and amenities characteristics, de-
lineating spatially contiguous areas with virtually no fragmented small areas remains challenging.
Furthermore, housing submarkets can potentially change over time along with concomitant urban
transformations, such as urban sprawl, gentrification, and infrastructure improvements, even in large
metropolitan areas, which can complicate delineating submarkets with data for lengthy time periods.
This study proposes a new method for integrating a random effects model with spatially constrained
data-driven approaches in order to identify stable and reliable space–time housing submarkets,
instead of their dynamic changes. This random effects model specification is expected to capture
time-invariant spatial patterns, which can help identify stable submarkets over time. It highlights
two spatially constrained data-driven approaches, ClustGeo and REDCAP, which perform equally
well and produce similar space–time housing submarket structures. This proposed method is utilized
for a case study of Franklin County, Ohio, using 19 years of space–time private house transaction
data (2001–2019). A comparative analysis using a hedonic model demonstrates that the resulting
submarkets generated by the proposed method perform better than popular alternative submarket
creators in terms of model performances and house price predictions. Enhanced space–time housing
delineation can furnish a way to better understand the sophisticated housing market structures,
and to help enhance their modeling and housing policy. This paper contributes to the literature
on space–time housing submarket delineations with enhanced approaches to effectively generate
spatially constrained housing submarkets using data-driven methods.

Keywords: space–time housing submarket; random effects model; location delineation;
data-driven approach

1. Introduction

A consensus opinion expressed in the housing and real estate literature is that hetero-
geneity in various aspects, including price, exists in urban housing markets. Accordingly,
an entire housing market should be divided into several submarkets, or market segments,
to improve house price prediction accuracy. For example, Watkins (2001) points out that a
housing market can be better analyzed as a set of distinct submarkets instead of one single
homogeneous market. Bourassa et al. (2003) conclude that “housing submarkets matter,
and location plays the major role in explaining why they matter.” A rich set of literature
in the delineation of housing submarkets also reports the importance of location (e.g.,
Goodman and Thibodeau 1998, 2003; Bourassa et al. 1999; Hwang and Thill 2009; Helbich
et al. 2013; Keskin and Watkins 2017). However, most empirically identified submarkets
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are merely based on one- or two-year pooled housing data, without serious temporal con-
sideration (e.g., Goodman and Thibodeau 2007; Wu and Sharma 2012). Thus, their results
may not reflect chronological changes and can be affected by short-term fluctuations. That
is, housing submarkets delineated with data for a short time period may not be reliable
and consistent over time. This outcome is often attributable to either data availability
constraints affiliated with a temporal dimension or the lack of appropriate and robust
analytical methods to account for both spatial and temporal information.

The intrinsic significance of recognizing housing submarkets lies in the inherent het-
erogeneity in prices, internal characteristics, and external locations of houses. Hwang and
Thill (2009) expound upon the following four housing submarket natures: substitutability,
heterogeneity, durability, and rigidity. Bourassa et al. (1999) and Pryce (2013) define hous-
ing submarkets as a group of similar dwellings that are close substitutes for one another
within, but relatively poor substitutes of those outside of, their groupings. Following this
latter convention, the space–time housing submarkets in this paper have been delimited
as space-constrained and time-invariant groups containing similar houses. Space means
the identified submarkets are geographically constrained; time denotes the existence of
consistent housing patterns over time. Because space–time data are decomposable into
systematic space–time trends and small-scale stochastic variations, the focus in this paper
is on consistent and reliable space–time housing patterns (i.e., trends) instead of dynamic
changes (i.e., variations). Hwang and Thill (2009) contend that housing submarkets, at the
macro-level, are durable in the sense that, once built, housing structures and locations are
not going to experience dramatic changes on a large scale (i.e., historical inertia prevails)
beyond age-sensitive downgrading (e.g., deterioration). Thus, uncovering reliable and
stable space–time housing submarkets is vital for policymakers and urban planners when
analyzing and addressing urban affairs, such as the internal structure of cities, residential
mobility, residential segregation, revitalization effects, and urban development, to name a
few possibilities.

Housing submarket delineation has been utilized in various arenas, including strate-
gic housing planning policy (e.g., Jones 2002) and housing price forecasting (e.g., Chen
et al. 2009). Whereas housing submarkets can be delineated based on areal units such as
census tracts or school districts, use of these units is often criticized because of their ad
hoc or subjective nature. Although common clustering methods, such as K-means and
hierarchical, have been popularly utilized, each submarket in their delineation results
commonly comprises numerous fragmented small areas scattered across a study area. Even
employing methods to achieve spatially contiguous housing submarkets does not totally
eliminate identifying homogeneous and spatially non-contiguous submarkets (Keskin and
Watkins 2017). Furthermore, identification of stable spatial–temporal housing submarkets
increases in complexity with the addition of a temporal dimension (e.g., Kopczewska and
Ćwiakowski 2021). Addressing this issue, this paper aims to present a novel approach to
generate stable space–time housing submarkets. Specifically, the purpose of this paper is
twofold. First, to summarize a method combining the random effects (RE) statistical model
with spatially constrained data-driven approaches to identify stable space–time housing
submarkets from a large volume of spatiotemporal housing data. Second, to investigate
different ways of incorporating spatial perspectives into traditional data-driven methods
by introducing two spatially constrained data-driven clustering and graph partitioning
algorithms, ClustGeo and REDCAP (REgionalization with Dynamically Constrained Ag-
glomerative clustering and Partitioning), in an empirical case study delineating housing
submarkets in Franklin County, Ohio (OH).

The rest of this paper is organized as follows. Section 2 presents a literature review
about housing submarket delineations and Section 3 discusses the research method for
space–time housing submarket delineations. Then, Section 4 describes the study area and
the analysis design, and Section 5 presents the analysis results. Finally, Section 6 presents a
discussion and conclusions.
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2. Literature Review

A very sizeable literature (e.g., Goodman and Thibodeau 1998; Bourassa et al. 1999; 2010;
Watkins 2001; Usman et al. 2020) discusses the formulation of housing submarkets that
condenses to the following three main analytical frameworks: a priori framework, classical
data-driven, and spatially constrained data-driven. Their corresponding results are, respec-
tively, geographic, non-geographic, and spatially constrained submarkets. The primary
difference among these three schemes lies in how the construction of housing submarkets
treats either locational attributes or their spatial proximity context. This section focuses
on these three approaches, further discussing space–time procedures for housing market
segmentation.

2.1. Housing Submarket Delimitation Using a Priori Framework

Within a traditional a priori framework, studies about spatial submarkets argue
that location, especially its spatial proximity dimension, plays a more important role
than the physical housing structures themselves in defining a housing submarket. These
investigations delineate spatially contiguous submarkets based upon expert experiences,
such as those of real estate agents, or existing administrative boundaries, such as municipal
borders, school districts, census tracts, racial neighborhood divisions, and/or land-use
zoning borders. For example, Straszheim (1975) combines census tracts on the basis of
racial composition to formulate housing submarkets. Mulligan et al. (2002) adopt nine
different real estate districts as housing submarkets in their study. Goodman and Thibodeau
(1998, 2003) construct spatial submarkets by aggregating spatially adjacent zip code postal
zones, census tracts, or census block groups within the same municipality and independent
school district to achieve a minimum number of house transactions. The benefits of this
framework are that it usually produces meaningful and spatially contiguous local regions
for its resulting submarkets and takes advantage of houses or neighborhoods close to each
other that share many common public services and locational accessibility to numerous
privilege points. Yet, criticism of this category of methods is mainly because (1) delineations
based upon expert opinions are subjective and ad hoc—often experts and/or agents cannot
unanimously agree; and (2) administrative boundaries may not align with manifestations
of the real housing market process and mechanism (Jones et al. 2005)—e.g., homebuyers do
not necessarily limit themselves to seeking similar nearby houses, compromising/removing
the local exchangeability property of houses from submarkets.

2.2. Housing Submarket Delimitation Using Classical Data-Driven Methodologies

Another alternative framework for determining housing submarkets is based upon
classical data-driven statistical methods, such as cluster analysis, classification, or spatial
statistical/econometrics techniques. The underlying logic instructs the input of physi-
cal/structural house attributes and neighborhood characteristic variables into data-driven
algorithms to find close substitutes among houses or geographic areas, enabling a de-
lineation of submarkets, i.e., let the data speak for themselves. Bourassa et al. (1999)
apply principal component analysis (PCA) coupled with K-means cluster analysis to group
dwellings according to their similar housing and neighborhood features, ultimately con-
structing pure aspatial housing submarkets. Their results demonstrate that a hedonic price
model with submarkets based on statistical routines for Melbourne, Australia, yields a
lower weighted mean squared error than its counterpart with spatial submarkets defined by
the traditional a priori method. Hwang and Thill (2009) apply the fuzzy c-means clustering
method (FCM) to derive housing submarkets in the Buffalo–Niagara Falls metropolitan
statistical area (MSA). Kauko (2004) utilizes a self-organizing map (SOM) and learning
vector quantification (LVQ), two popular neural network-based techniques, to identify
Amsterdam housing market segments. The prominent advantages of this latter framework
are that it requires little-to-no prior knowledge and is statistically robust across study areas.
Moreover, outcomes from this stratagem are typically objective and achieve a higher degree
of internal homogeneity and external heterogeneity for submarkets. Its main potential
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weakness is that despite the well-known real estate adage that location is so important, the
house submarkets derived from data-driven algorithms disregard this important age-old
maxim, and, hence, have very spatially fragmented submarket compositions. Therefore,
their identified boundaries may not be practically meaningful and/or their resulting hous-
ing submarket structures may be difficult to interpret or understand.

2.3. Housing Submarket Delimitation Using Spatially Constrained Data-Driven Approaches

Housing submarket delineations with the two preceding approaches are not without
criticism. On the one hand, a priori methods emphasize spatially contiguous and meaning-
ful boundaries. However, their results tend to contain large within-submarket variation.
On the other hand, data-driven statistical methods usually demarcate more homogenous
housing submarkets than those obtained with the a prior method, but often fail to create
spatially contiguous ones. No agreement exists in the academy about the superiority of
one strategy over the other. Fortunately, the more recent literature began recognizing the
importance of both spatial and aspatial factors in determining housing submarkets. Studies
(e.g., Watkins 2001; Bourassa et al. 2003; Helbich et al. 2013; Usman et al. 2020) contend
that instead of merely considering the similarity of housing characteristics or geographic
contiguity, housing submarkets should be determined simultaneously utilizing both spatial
and aspatial factors.

The third framework, spatially constrained data-driven approaches, comes into play
to bridge the two aforementioned frameworks and combines their advantages. To achieve
spatial proximity in housing submarkets, Bourassa et al. (2010) include geographic coor-
dinates as additional variables in hierarchical clustering. Wu and Sharma (2012) impose
spatial constraints in the following way: they use spatially aggregated units (census blocks),
and then incorporate relative location (distance to amenities) and absolute location (ge-
ographic coordinates of census block centroids) in PCA and cluster analysis. However,
these methods treat the geographic location attributes just like other non-spatial attributes.
Thus, they lack flexibility to allow differential weightings between spatial and non-spatial
attributes. Furthermore, the higher the dimension of input variables, the less weight spatial
attributes tend to receive. The case of a relatively large set of non-spatial variables tends to
diminish the desired geographic constraint, helping to induce a coterminous outcome.

To remedy these preceding deficiencies, some spatially explicit models or algorithms
were developed to impose either soft or hard spatial constraints on the delineation of geo-
graphic clusters. For example, Assunção et al. (2006) propose the Spatial Kluster Analysis
by Tree Edge Removal (SKATER) algorithm, which several housing submarket papers
subsequently adopted to delineate spatially constrained submarkets (Helbich et al. 2013;
Soltani et al. 2021). SKATER is a graph partitioning algorithm based upon a minimum
spanning tree (MST) that links spatial neighbors with the lowest cost. The clusters (sub-
trees) partitioned according to this MST are inherently spatially contiguous. Wu et al.
(2018) propose the Density-Based Spatial Clustering (DBSC) algorithm, which explicitly
considers both spatial proximity and attribute similarity, to identify homogeneous and
spatially contiguous housing submarkets in Shenzhen, China. However, their density-
based algorithm was originally devised to cluster point data, making it unsuitable for
polygon data. Their study demonstrates this latter contention by generating submarkets
that remain very fragmented despite the inclusion of spatial constraints. The literature also
houses other spatially explicit algorithms, such as ClustGeo and REDCAP (Chavent et al.
2018; Guo 2008), preforming spatial regionalization, but an absence of their applications
for housing submarket segmentation persists to this day. This paper innovatively applies
these two latter spatially constrained data-driven algorithms to urban housing submarket
delineation, filling this literature gap as one of its contributions. In addition, it summarizes
a comparative analysis assessment of them.
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2.4. Space–Time Housing Submarket Delineations

Despite the current availability of more spatially constrained data-driven algorithms,
studies taking into account both spatial proximity and the temporal dimension are scarce
in the housing submarkets and real estate literature. Some recent studies (e.g., Cohen et al.
2016; Yuan et al. 2018; Wu et al. 2019; Hu et al. 2020) analyze dynamic house price or housing
submarket changes, seeking to explore such influential factors as environmental change,
prevailing general economic conditions, intra-urban migration, and urban development
or policy change. However, investigations of space–time housing submarket stability are
rare. Kopczewska and Ćwiakowski (2021) constitute one exception. They examine whether
identified submarkets in each time period are temporally stable or consistent with those
identified for another period. In their empirical study of house transaction data in Warsaw,
Poland, from 2006 to 2015, they report calculated spatiotemporal varying geographically
weighted regression (GWR) coefficients, and then use these quantities as input variables
into a K-means clustering technique to delineate housing submarkets, finding that the
spatiotemporal stability of their delimitations reaches 80%, as indexed by the Rand and the
Jaccard similarity indices. This outcome provides motivation for developing a data-driven
analytical tactic to construct stable space–time housing submarkets.

3. Research Method

This section overviews the employed research method for demarcating space–time
housing submarkets with two spatially constrained clustering algorithms—REDCAP and
ClustGeo—coupled with an RE model. In doing so, the discussion summarizes a hedonic
price model comparison and evaluation of the performance of the resulting delineated
submarkets.

3.1. Spatially Constrained Clustering Algorithms: REDCAP and ClustGeo

REDCAP combines agglomerative hierarchical clustering with graph partitioning (Guo
2008). This method, an extension of the SKATER algorithm, involves the following two main
components: MST generation and MST partitioning. In its step 1, it constructs a connectivity
graph of spatial neighbors and, in its step 2, it computes the MST by minimizing the overall
cost of the network tree. In its step 3, the MST is partitioned into k-subtrees by recursively
selecting k − 1 edges whose removal maximizes the following objective function:

f (l) = SSDT − (SSDA + SSDB), (1)

where l denotes a chosen edge to cut the tree T, A and B denote two trees created by
removing edge l from tree T, SSDT is the total sum of the squared deviations for tree T,
and SSDA and SSDB are the sums of the squared deviations of trees A and B, respectively.
Because optimal graph partitioning is an NP-hard problem, a heuristic is invoked to speed
up solving the MST partitioning problem (Assunção et al. 2006).

Guo (2008) recounts a crucial weakness in the SKATER algorithm. He points out that
the contiguity matrix is not dynamically updated during the process of constructing an MST
and cutting the subtrees. An example involving two spatial objects that are not spatially
contiguous in the beginning but become spatial neighbors if later they belong to two clusters
that are next to each other, illustrates this shortcoming. Guo adopted the agglomerative
clustering method with three different classical linkage criteria (i.e., single-linkage, average-
linkage, and complete-linkage) to build the spatially contiguous MST, and then provided
two different constraining strategies (first-order and full-order neighbor constraints) to
partition a tree to find optimal clusters. In total, Guo presents six contiguity-constrained
methods in the REDCAP family with a combination of the three linkage types and the
two constraint types. Reapplying this same idea extends this family of possibilities to
more methods using other clustering linkages, such as Ward’s minimum variance criterion
(i.e., within-submarket similarity is maximized, whereas between-submarket similarity
is minimized, on average—an analysis of variance conceptualization). REDCAP is the
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generalization of the SKATER algorithm and simplifies to SKATER when the first-order
neighbor constraint combines with a single-linkage spanning tree.

Chavent et al. (2018) propose ClustGeo, a Ward-like hierarchical clustering algorithm
with spatial constraints. It introduces the following two distance matrices as inputs into
a hierarchical clustering routine: a non-spatial feature distance matrix denoting attribute
dissimilarity (D0) and a spatial distance matrix indicating geographic or spatial dissimilarity
(D1). This algorithm simultaneously considers spatial and non-spatial distance, with a
mixing parameter α ∈ [0, 1] controlling the trade-off between attribute and geographic
dissimilarity under the following classical hierarchical clustering framework:

Dα = (1− α)D0 + αD1. (2)

A crucial facet of this implementation is to establish the optimal weight α by plotting
the two normalized dissimilarity distance metrics for the purpose of increasing spatial
contiguity without seriously deteriorating attribute feature homogeneity.

After determining α, an agglomerative clustering algorithm utilizes the mixed distance
matrix Dα to group observations into hierarchical clusters. When α = 0, this clustering
exploits only the non-spatial feature space D0; that is, it is equivalent to a conventional
hierarchical clustering procedure. When α = 1, clustering takes into account only spatial
similarity, reducing the aggregation decision-making to a function of spatial means and
their accompanying standard distances.

3.2. A Hedonic Price Model with an RE Term

The RE model is widely used in panel data analyses to capture individual-specific
unobserved heterogeneity in calculated statistics. Estimation of this constant heterogeneity
derives from repeated measures through differencing and isolating time-invariant compo-
nents in the model. Recent studies, including Chun (2014), An et al. (2015), Hu et al. (2018),
and Griffith et al. (2019), show that an RE term estimated with this model represents robust
space-specific and time-invariant heterogeneity. In other words, it estimates stable and
robust patterns latent in a space–time data series. Its accompanying model specification
may be written as

ln(Yit) = Xitβ + REi + εit, (i = 1, . . . , n; t = 1, . . . , T), (3)

where i denotes the ith areal unit, which are census block groups in the empirical data
analysis in the next section (n = 868); t indicates the tth time period, which is a three-month
quarter in the ensuing empirical data analysis (T = 76); Yit is the median house price
per square foot for areal unit i at time t; Xit is a matrix of attribute covariates for areal
unit i at time t; REi is the RE term for areal unit i that is common for all t, estimated as
time-invariant and space-specific heterogeneity; and εit is the white noise residual for each
observation tagged as areal unit i at time t.

The hedonic house price model is the most popular statistical rendition in the housing
literature for estimating and describing residential dwelling prices (Can 1992; Sirmans
et al. 2005; Ottensmann et al. 2008; Shimizu et al. 2010; Geng et al. 2015; Xiao 2017). It also
furnishes a popular tool to evaluate the quality of identified real estate submarkets. Its
goodness-of-fits and prediction errors across several alternative submarkets provide a basis
for making illuminating comparisons. Defining submarket binary 0–1 dummy/indicator
variables in order to examine impacts of different submarkets, the hedonic model may be
re-expressed as follows:

ln(Yit) = Xitβx + Xsubβsub + εit, (4)

where Xsub denotes the collection of submarket dummy variables; and βx and βsub, respec-
tively, are attribute and dummy covariate regression coefficient parameters to be estimated.
Moreover, this model specification motivates an adjudication about the merits of any given
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demarcation results, rather than merely encouraging a rather simple model goodness-of-fit
assessment of them.

4. The Study Area and Analysis Design

An empirical study using 19 years of house transaction data in Franklin County, OH,
from 01/01/2001 to 12/31/2019 exemplifies the delineation of coterminous geographic
housing submarkets. Franklin County embodies a typical mid-size private residential
dwellings market, roughly equivalent to the national average. It exhibits population size
stability with an annual growth rate of 1.1% during the period spanned by its empirical
data (i.e., 2001–2019)1. These housing data and variables are open records secured from
the Franklin County Auditor (see Appendix A). The dataset consists of all residential
building transactions with repeat sales records, including all residential building types. The
raw data size is 419,099 location and time-encoded observations. Data cleaning2 renders
301,019 records suitable for data analysis purposes. To make house prices comparable
over 19 years, transaction prices were inflation-adjusted to the base year of 2001 using the
United States (US) Consumer Price Index (CPI) from the US Bureau of Labor Statistics
(https://www.bls.gov/cpi/; accessed on 30 May 2023). Franklin County is situated in the
center of the Columbus MSA, with nearly 42% of its land covered by the state capital and
county seat, namely the City of Columbus. According to the 2020 US Census estimates3,
Franklin County has a population of 1,323,807, making it the most populous county in OH.

Figure 1 portrays the spatial distribution of inflation-adjusted house prices across
Franklin County during the 19 studied years (2001–2019). This map includes the major
highway (denoted by black) for reference purposes. House prices have an east–west geo-
graphic divider transecting the middle of the county, separating its northern and southern
parts: house prices and densities in its north tend to be higher than their counterparts
in its south. A prominent positive spatial autocorrelation map pattern is also observable
here. More expensive houses, denoted by red or dark red, cluster together, whereas less
expensive houses, denoted by green or dark green, spatially concentrate. Or, more generally,
houses with similar values (high–high, moderate–moderate, low–low) tend to cluster in
geographic space. Figure 2 displays two annual time series trajectories: the 2001–2019
inflation-adjusted house prices per unit area (Figure 2a) and the number of residential house
transactions (Figure 2b). Both graphs depict a generic V shape, demonstrating that the price
values and transaction counts reached a peak during 2003–2005, dropped precipitously
during and after the Great Recession (2007–2009), and then slowly bounced back during
2011–2019, which closely aligns with overall US housing market behavior statistics. As the
price change due to the global factor occurred in the entire county, each submarket has the
same change pattern and, hence, the RE estimation for each submarket based on the same
trajectory is not expected to have a large variation.

Housing submarket boundaries delineated here utilized area aggregated spatial units
(e.g., neighborhoods, school districts, zip code postal zone, census tracts, or census block
groups), instead of individual housing units, for three main reasons. The first is the
urban housing development process. House construction in urban areas is usually not by
individuals, but rather by developers or builders in batch (which helps exploit economies of
scale and minimize intermediate transport costs affiliated with agglomeration economies).
It involves constructing hundreds of houses in tandem on an empty track of land, with
economies of scale achieved through the utilization of similar house styles, building sizes,
lot sizes, and other residential attributes, and the sharing of public infrastructure and
services as well as local amenities. The second reason is that housing submarket boundaries
derived from individual housing units are highly spatially fragmented. Hence, resulting
submarkets barely have any practical meaning in real estate market analysis or urban policy
planning. The third, and final, reason is that aggregating a large set of space–time house
data into areal units and temporal intervals can compress data and significantly improve
computational efficiency, which makes the submarket delineation of a large housing dataset
with more than 300,000 records feasible. According to the US Census Bureau4, railroads,

https://www.bls.gov/cpi/
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roads, streets, streams, bodies of water, or other visible physical boundaries or cultural
features form census block group boundaries. A census block group usually contains
600–3000 people, a smaller areal unit than a census tract, school district, or zip code area,
and is relatively homogeneous and compact. Thus, it is a midpoint between a fine (e.g.,
a parcel occupied by an individual housing unit) and a coarse spatial resolution (e.g., zip
code postal zones and census tracts that frequently encompass too much heterogeneity),
and, hence, can serve as an alternative to housing neighborhood boundaries. There are
887 census block groups in Franklin County and, therefore, the individual house data
are reorganized into an 887-by-76 space–time data structure as follows: in the spatial
dimension, 301,204 individual house data are aggregated into and summarized for 887
census block groups; and, in the temporal dimension, data are sliced first by year and then
by quarter, resulting in 76 (=19 × 4) time intervals.
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4.1. Salient Housing Attribute Variables

Clustering algorithms rely heavily on calculating feature separation (mostly Euclidian
distance) among observations to determine similarity. Hence, the curse of dimensionality
is a common issue when dealing with a high dimension of input attributes. To ensure
that any latent spatial information is adequately considered, and resulting submarkets are
interpretable and meaningful, a parsimonious set of variables with three non-spatial facets
and two spatial traits is chosen as input into the algorithms. Notable is that prediction or
forecasting hedonic price models that others have devised—two purposes that are beyond
the scope of this paper—are likely to include not just three, but many, variables (e.g., Li and
Li 2018). The three non-spatial variables—individual unit house price, house living area,
and house age—are the most crucial determinants appearing in the literature for delineating
submarkets. The two spatial attributes are the (x, y) coordinates of the census block group
centroids. All variables were standardized to z-scores using the z-transformation.

Table 1 tabulates summary statistics for the five raw (i.e., pre-z-score) input variables.
Whereas house price, living area, and house age are at the individual house level, the block
group centroid (x, y) coordinates are at the aggregated areal unit level. The minimum
value of house age is −2, denoting purchases for new houses not yet built at the time
of sale. These raw variables are further processed and standardized as described next.
The unit house price is the per house inflation-adjusted transaction price divided by its
corresponding living area. The house age is number of years old at the time of sale. The
individual house price per unit, living area, and house age are aggregated quarterly by
each year within each block group boundary to estimate their median value, with these
medians then concatenated into an 887-by-76 space–time data structure. With repeated
temporal measurements in each analysis unit, the RE models can estimate stable temporal
housing patterns with varying intercepts and no covariates. Figure 3 portrays plots of all
the estimated RE terms in the study area, as well as prominent housing map patterns. Due
to the presence of non-residential land-use zoning, 20 block groups with zero residential
house transactions over 19 years were deleted from the study area, appearing as blank
areas in the maps. Figure 3a portrays a high house value swath in the northern part, and
conspicuous low value concentrations in the central and southern parts, of the county, with
some exceptions in the inner city uptown. Figure 3b,c display an overall concentric zone
pattern (i.e., the Burgess internal structure of the city spatial organization)—smaller, older
buildings in the inner city, versus larger, newer edifices in the outer suburban areas.
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Table 1. Raw data variable summary statistics.

Variables n Min Q1 Median Mean Q3 Max

House price 301,019 41,922 100,946 136,479 162,603 188,933 3,155,512
Living area 301,019 280 1152 1505 1681 2033 15,090
House age 301,019 −2 10 25 32.25 49 218

X coordinate 887 1,763,765 1,811,467 1,831,717 1,831,097 1,848,838 1,889,445
Y coordinate 887 662,696 709,640 726,629 728,506 748,727 778,628

Note: Data were obtained from the Franklin County Auditor.

4.2. An analytical Design for Delineating Housing Submarkets

Figure 4 presents an analytical design comprising five steps. In step 1, the 19 years
of Franklin County residential housing data are split into 2 datasets using a temporally
stratified random sampling scheme. A sizeable amount, 90%, of the yearly stratified
random sample draws is used as a training dataset to delineate the submarkets, with the
remaining 10% of annual data used for testing and comparing the resulting submarkets.
In step 2, the training data are aggregated and summarized at the census block group
level to construct an 887-by-76 spatial panel dataset. In step 3, the RE term is estimated
conditional on the attribute variables of house price per square footage, living area, and
house age as the covariates, capturing consistent temporal housing patterns. In step 4, the
RE terms are introduced in conjunction with spatial information into spatially constrained
data-driven algorithms to delineate the Franklin County space–time housing submarkets.
In the final stage, several alternative submarkets are examined and compared based upon
the following three criteria: spatial contiguity, between-cluster heterogeneity, and model
performance diagnostics. A 10% temporal stratified house sample with a composite size of
30,100 supplies an independent test dataset for evaluating model fit and price prediction
errors of 5 hedonic price models, with and without submarkets.
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5. Results

In order for the spatially constrained algorithms to be comparable, the number of
clusters is set to 10 (i.e., the same constant). Each submarket is portrayed in a different
color. Figure 5a reveals the REDCAP submarkets using Full-order constrained Ward
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linkage clustering (Full-Order-WLK) and Figure 5b is the ClustGeo submarkets map with
K = 10 and α = 0.5. Overall, two spatially constrained data-driven clustering algorithms
generated similar results. Visually, the REDCAP and ClustGeo submarkets have similar
regionalization patterns, both satisfying spatial closeness and compact clustering objectives.
A minor difference between the two is that the REDCAP algorithm enforces a hard spatial
contiguity constraint for each submarket, whereas the ClustGeo algorithm imposes a soft
contiguity constraint for formulating submarkets. A hard spatial constraint means that
two similar observations must share spatial boundaries to be grouped into one submarket.
In contrast, a soft spatial constraint indicates that two observations with high non-spatial
attribute similarity can be grouped into one submarket even if they are not spatially
contiguous, although they exhibit a certain minimal degree of geographic similarity. This is
the reason why Submarkets 4 and 5 in ClustGeo have two discontinuous parts in space
(see Figure 5b).
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Figure 5. Ten submarkets constructed with four methods. (a) REDCAP output; (b) ClustGeo output;
(c) SKATER outputs; (d) A priori submarkets delineated by 17 School district boundaries5. Note that
the numbers are arbitrary submarket IDs for each outcome.

Figure 6a,b reproduce the boxplots of three non-spatial attribute similarity variables—
house price per square footage, living area, and house age—together with the between-
cluster heterogeneity for REDCAP as well as ClustGeo submarkets. These 2 sets of sub-
markets have similar between-cluster heterogeneity values: 0.656 and 0.644, respectively.
The between-cluster heterogeneity index measures the ratio of the between- and total-
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cluster sums of squares and is widely adopted to evaluate uncovered clusters. Linking the
boxplots with their corresponding submarket maps exposes that house age successfully
differentiates between Franklin County inner and outer cities. Table 2 encapsulates the
main attributes of each submarket. First, for REDCAP, low-priced, small houses in the outer
city characterize Submarkets 1, 3, and 5; Submarkets 2 and 9 reflect mainly high-priced,
middle-to-big sized houses in the outer city; Submarkets 6, 7, and 8 brand low-priced,
small-to-mid-sized houses in the inner city; and mid-to-high-priced, big houses in the inner
city stamp Submarkets 4 and 10. Second, for ClustGeo, Submarkets 1, 3, and 7 embrace
primarily low-priced, small-to-mid-sized houses in the outer city; Submarkets 8 and 9
encompass high-priced, big houses in the outer city; Submarket 2 embodies mid-priced
and mid-sized houses in the outer city; Submarkets 4 and 10 mostly consist of low-priced,
small houses in the inner city; and Submarket 5 contains mid-priced and mid-sized houses
in the inner city, Submarket 6 is labeled as high-priced, mid-sized houses in the inner city.
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Table 2. Characteristics of REDCAP and ClustGeo submarkets.

Variables Submarkets
Characteristics

REDCAP
Submarket Labels

ClustGeo
Submarket Labels

House age Inner city (older houses) 4, 6, 7, 8, 10 4, 5, 6, 10
Outer city (newer houses) 1, 2, 3, 5, 9 1, 2, 3, 7, 8, 9

Unit house price
High-priced houses 2, 4, 9 6, 8, 9
Mid-priced houses 10 2, 5
Low-priced houses 1, 3, 5, 6, 7, 8 1, 3, 4, 7, 10

Total living area Big houses 2 5, 8, 9
Mid-sized houses 4, 7, 9, 10 1, 2, 6

Figure 5c,d show the SKATER and a priori submarkets, the latter included as a
reference map. Figure 6c pictures the SKATER submarket housing characteristic boxplots.
Comparing the cluster heterogeneity value and boxplot statistics confirms that the REDCAP
approach performs better than the alternative SKATER algorithm in identifying distinct
clusters. Thus, the REDCAP with Full-Order-WLK is superior to the SKATER approach, at
least in this case, just like the author of the REDCAP method claims. Figure 5d displays the
17 school district boundaries within Franklin County that serve as a priori submarkets6,
included here because a common traditional a priori framework practice is to demarcate
with school district boundaries or municipal administrative borders. These Franklin County
school district boundaries are not necessarily spatially contiguous, as is illustrated by the
Columbus ISD (encoded 2503 in the map). The lack of coterminousness stems from the
spatially fragmented administrative boundaries of the City of Columbus.

The 10% testing data subset was utilized to examine the performance of the 5 hedonic
price models coupled with each of the 4 sets of submarkets: submarket absence (model 1),
17 a priori submarkets (model 2), SKATER submarkets (model 3), REDCAP submarkets
(model 4), and ClustGeo submarkets (model 5). All submarkets are encoded with binary
0–1 dummy variables in their respective specifications. Model performance criteria consist
of both the Akaike (AIC) and Bayesian information criterion (BIC), in addition to a pseudo-
R-squared value (R2) and root mean squared error (RMSE), two of the most popular
goodness-of-fit measures for model comparisons (e.g., Wheeler et al. 2014; Hu et al. 2022).
Table 3 reveals that the hedonic price model with REDCAP submarkets (model 4) has the
best combination of overall model fit and lowest prediction error. The pseudo-R2 value
increases from 0.7382 for model 1, to 0.7734, 0.8042, and 0.8210, respectively, for models
2, 3, and 4, decreasing slightly to 0.8112 for model 5. The AIC and BIC display the same
trend across these five model specifications. Furthermore, models 4 and 5, with respective
REDCAP and ClustGeo submarkets, have the lowest prediction errors, as rated by their
RMSE values. Levene’s test results in Table 4 show that each set of submarkets exhibits
statistically significant between-segments house price variance, with REDCAP yielding
the largest F value that indicates a difference across submarkets. In other words, each
submarket set contains markedly excess house price variability.

This empirical case study using a 19-year Franklin County, OH, house price dataset
renders the following implications. First, all hedonic regression models with submarkets
have a better model fit and lower prediction errors than a posited model with no submarket.
This argues for the presence of house submarkets in Franklin County, a contention that
agrees with the existing housing submarket literature. Second, in terms of three particular
evaluation criteria, the spatially constrained data-driven demarcated submarkets (SKATER,
REDCAP, and ClustGeo) outperform the a priori submarkets. All else being equal, the usual
expectation is that a statistical model whose specification includes more subgroups will
improve its model fit and reduce its prediction error. However, here, hedonic price models
3, 4, and 5 with only 10 submarkets perform better than a prevailing wisdom-based a priori
submarket with 17 subgroups based upon public school districts. Third, not surprisingly,
the REDCAP submarket is superior to the SKATER submarket, because SKATER is a naïve
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case of REDCAP. Fourth, in this empirical study, the model with REDCAP-delineated
submarkets appears to excel in all five hedonic price models, capturing the highest cluster
heterogeneity. However, the difference between REDCAP and ClustGeo may not be statis-
tically significant because their statistic values are relatively close, and a visual inspection
of their resulting submarket structures suggests that they appear to be similar. Therefore,
overall, the proposed REDCAP and ClustGeo approaches perform equally well. Both
algorithms successfully segmented the study area into inner-city and outer-city submarkets,
spawning similar regionalization structures, despite some differences in their submarket
boundaries. Finally, neither of the spatially constrained data-driven algorithms adopted
in this study needs to specify the number of submarkets (K) beforehand, unlike K-means
or DBSCAN. The arbitrariness of a choice of this K is one of the main criticisms leveled at
certain popular clustering algorithms, such as K-means, the EM algorithm for a Gaussian
mixture model, or DBSCAN. Due to their inherent mechanisms, different options of K can
result in a given algorithm creating very different cluster structures. In contrast, both the
ClustGeo and REDCAP algorithms are based upon agglomerative hierarchical clustering,
meaning that clusters are hierarchically nested with varying K. In addition, these latter
algorithms generate scree plots and dendrograms to uncover the finer structure within and
between clusters to help choose an optimal K number of submarkets for a specific dataset.

Table 3. Selected hedonic regression model performance comparisons of submarket absence, a priori
submarkets, and spatially constrained submarkets.

Hedonic Price Models Pseudo R2 AIC BIC RMSE

Base model Model 1: submarket
absence 0.7382 4138.71 4529.38 58,260.5

A priori
submarkets

(K = 17)

Model 2: school district
submarkets 0.7734 −170.62 353.04 52,690.84

Spatially
constrained
submarkets

(K = 10)

Model 3: SKATER 0.8042 −4575.90 −4110.42 54,004.93

Model 4: REDCAP 0.8210 −7276.80 −6811.32 51,412.45

Model 5: ClustGeo 0.8112 −5677.24 −5211.76 51,795.31

Table 4. Levene’s test results for submarket variance equality.

Method Df F Value p-Value

A priori submarkets (K = 17) School district 16 80.424 0.0000

Spatially constrained
submarkets (K = 10)

SKATER 9 100.80 0.0000

REDCAP 9 183.21 0.0000

ClustGeo 9 130.14 0.0000

6. Discussion and Conclusions

The study précised in this paper aimed to delineate stable and reliable space–time
housing submarkets with a large spatiotemporal house sales dataset. Quantification of
its temporal dimension was by extracting consistent and statistically significant patterns
with RE model specifications. The spatial dimension disclosure was through implementing
two spatially constrained data-driven segmentation approaches. The empirical case study
using a 19-year Franklin County, OH, space–time house price dataset illustrates that these
approaches perform better than non-spatial methods and a priori preset spatial boundaries.

Spatial constraints were imposed in this submarket segmentation study at three
different levels. First, individual houses were aggregated into census block groups as the
base unit for formulating submarkets, thus reducing computational burdens and spatial
fragmentation. Second, the absolute location, the individual (x, y) coordinates of block
group centroids, was included as a pair of input covariates to incorporate a reasonable
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proxy for spatial proximity. Third, spatial propinquity (spatial neighbors) or topology was
specified in the data-driven clustering or partitioning algorithms to ensure enforcement of
soft or hard spatial contiguity.

This paper contributes to the existing literature in various ways. First, it helps fill the
literature gap about space–time house submarket delineation, primarily focusing on the
stability of space–time submarkets. It proposes an analytical framework of combining the
RE model with a spatially constrained data-driven approach to demarcate space-specific
and time-invariant housing submarkets. A large quantity of spatial panel house transaction
data in this study allowed for a rather comprehensive examination of this method. Second,
the resulting demarcations produced practical and meaningful submarket boundaries by
taking spatial closeness, spatial contiguity, and area-aggregated spatial census geography
units into account. Third, the results summarized here demonstrate the superiority of
the REDCAP and ClustGeo algorithms for spatial housing submarket delineation. Such
applications of these two spatially constrained data-driven algorithms in housing sub-
market delineation are relatively novel. Although several papers already describe the use
of SKATER, the naïve version of REDCAP, by itself for housing submarket delineation
(e.g., Helbich et al. 2013), this paper presents a comparative analysis of three spatially
constrained data-driven algorithms—SKATER, REDCAP, and ClustGeo. This comparison
yields a practical implication that the data-driven approach can enhance spatial housing
submarket demarcation. Third, this paper explores different ways of incorporating space
into data-driven unsupervised (hierarchical clustering) machine learning algorithms. Ac-
cordingly, it should serve to inspire geospatial researchers to reflect on what roles space
can play in machine learning methods, and encourage more data scientists to incorporate
geographic locations, spatial autocorrelation, and/or spatial topology into current artificial
intelligence (AI) algorithms to bring forth new spatially explicit models and bolster the
cutting-edge research area of GeoAI. Finally, this paper furnishes an enhanced tool to gener-
ate housing submarkets, which is recognized as a crucial component for strategic housing
investment and housing market operations (Jones 2002; Jones et al. 2004). This achievement
can be useful for, especially, local or regional policy practitioners who are responsible for
solving housing problems in relatively small areas such as a metropolitan area. Although
the modeling framework articulated here can be applied to other areas, it may need selected
customizing to adapt it to geographic landscape specific local characteristics.

Based upon findings summarized in this paper, some topics are worth exploring in
future work. First, similar studies can also be undertaken for other coarser geographic
resolution levels, such as zip code areas or census tracts. In theory, house homogeneity is
harder to guarantee within coarser spatial units, but comparing the resulting submarkets
derived from different aggregate areal units spanning a range of coarseness seems like a
worthwhile endeavor. Second, even though this paper targets macro-level stable space–time
submarkets, the investigation of housing submarket dynamics at the micro-level would
be a valuable future exercise. For example, impacts of inner-city gentrification, or of a
newly built highway, on house prices or submarkets. Third, the proposed method is tested
only with RE. Although this component is a popular ingredient in space–time modeling,
other approaches, including fixed and multi-level effects, can also provide compatible
outcomes. Further investigations with a myriad of other approaches can help establish a
more comprehensive understanding of housing submarket delineation.
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Appendix A

The house sale data for the empirical data analysis including the characteristics and
the locations of houses were downloaded from the Franklin County Auditor website
(https://audr-apps.franklincountyohio.gov/reporter accessed on 27 May 2023).

Notes
1 The average annual growth rate is reported by USA Facts that reports population and demographic changes in the USA using

census data. Available online: https://usafacts.org/data/topics/people-society/population-and-demographics/our-changing-
population/. Its last access was on 27 May 2023.

2 Data cleaning mainly consists of deleting irregular sales, such as those with only land, multiple-parcels, non-residential buildings
(e.g., those with 0 bedrooms), apartment complexes, when total building area is less than 200 square feet, or when a house price
(inflation-adjusted) is below $41,921 (the 10th percentile of transaction prices).

3 https://www.census.gov/quickfacts/fact/table/franklincountyohio,US/POP010220#POP010220, accessed on 27 May 2023.
4 Geographic Areas Reference Manual. Available online: https://www2.census.gov/geo/pdfs/reference/GARM/Ch11GARM.

pdf, accessed on 27 May 2023.
5 The data were obtained from the Franklin County Auditor open data portal. Technically, Franklin County has 21 school districts,

of which 4 are at the fringe of the county boundary, resulting in them appearing as tiny polygon fragments. Thus, for this paper,
these small partial territories were merged into surrounding primary school districts.

6 A judicious merging of selected adjacent peripheral school districts located along the county boundary line reduces them to 10
submarkets, for a more meaningful comparison.
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