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Abstract: We examined the evolution of cross-market linkages between four major precious metals 
and US stock returns, before (Phase I) and after (Phase II) the COVID-19 outbreak. Phase II was also 
extended to encompass the Ukrainian conflict, which prolonged the period of uncertainty in finan-
cial markets. Due to the increase in volatility observed in Phase II, we used a heteroskedasticity-
adjusted correlation coefficient to examine the evolution of correlation changes since the COVID-19 
outbreak. We also propose a relevant dissimilarity measure in multidimensional scaling analysis 
that can be used for depicting associations between financial returns in turbulent times. Our results 
suggest that (i) the correlation levels of gold, silver, platinum, and palladium returns with US stock 
returns have not changed substantially since the COVID-19 outbreak, and (ii) all precious metal 
returns exhibit movements that are less synchronized with US stock returns, with palladium and 
gold being the least synchronized. 
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1. Introduction 
In addition to exhibiting good diversification properties in the context of investment 

portfolios (Conover et al. 2009), precious metals are frequently considered to possess good 
safe haven and hedging properties during periods of financial distress (Baur and Lucey 
2010). As a result of these unique characteristics, precious metals received renewed inter-
est from equity investors with the outbreak of the COVID-19 pandemic, since a “flight to 
quality” effect was observed in response to the increased volatility in equity markets. Sev-
eral recent studies have provided empirical evidence for this effect, particularly in the case 
of gold (see, for example, the studies by Akhtaruzzaman et al. 2021; Lahiani et al. 2021). 

A central theme in these studies (reviewed in Section 2) is the derivation of correla-
tion estimates between precious metals and equity returns, using insights from the finan-
cial contagion (Corbet et al. 2020) and mean-variance portfolio (Ji et al. 2020) frameworks 
in the finance literature. Such correlation estimates are frequently used by investors to 
better understand the associations and comovements among the various asset classes, 
when considering the allocation of their financial resources in the context of investment 
portfolios. For example, in a recent study of Asian markets, Yousaf et al. (2021) found that 
the optimal weights in portfolios that combine stocks with gold have changed since the 
outbreak of the COVID-19 pandemic.  

This study contributes to the existing literature by demonstrating that during the re-
cent turbulent period of increased stock market volatility that began with the COVID-19 
pandemic (Kumar and Padakandla 2022), the standard correlation coefficient estimates 
between precious metals and stock market returns become biased and unreliable. This 
heteroscedasticity bias can be corrected using the unconditional correlation coefficient 
proposed by Forbes and Rigobon (2002) in the context of the financial contagion literature. 
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We also propose a multidimensional scaling analysis (MSA) procedure, using a dissimi-
larity measure based on the unconditional correlation coefficient. It can be used by inves-
tors to better understand the similarities (or differences) between precious metals and 
stock market returns.  

The heteroscedasticity bias in the correlation estimates between financial returns dur-
ing turbulent times exists because correlation coefficients are conditional on market vola-
tility. Consequently, when heteroscedasticity exists in the financial returns of an asset 
(e.g., due to a shock), the cross market correlation estimates of other return series with this 
asset will be inflated, even though the underlying cross-market linkages between the two 
series have not changed.  

In finance, this correlation bias is most commonly encountered in the financial con-
tagion literature, when estimating cross-country market linkages after a shock (Loretan 
and English 2000) and in the estimation of intra-market correlations between stocks and 
bonds during periods of increased market volatility (Ronn 1998). Forbes and Rigobon 
(2002) provided a formal proof of this bias using stochastic variables that represent stock 
market returns. The authors also provided a method for adjusting this bias, which we 
discuss in Section 3. 

We demonstrate our proposed method using the financial returns for four precious 
metals (gold, palladium, platinum, and silver) and the US stock market returns, over the 
period from February 2010 to January 2023. This period can be divided into two phases: 
before (Phase I) and after (Phase II) the COVID-19 outbreak, with the second phase also 
extending into the Ukrainian conflict. The COVID-19 cluster in China was first announced 
on 31 December 2019, and the transition to an endemic status for COVID-19 was first an-
nounced for the USA on 17 February 2022, in California.  

On 24 February 2022, Russian President Vladimir Putin announced a “special mili-
tary operation” in Ukraine that marked the beginning of the Ukrainian conflict, and which 
has extended beyond January 2023, which is the latest period covered by the dataset used 
for this study. We therefore defined the two phases in our study as follows: Phase I (the 
stable period)—from February 2010 to December 2019; and Phase II (the turbulent pe-
riod)—from January 2020 to January 2023, covering both the COVID-19 pandemic and the 
Ukrainian conflict.  

Our results suggest an increase in stock market volatility during Phase II that biases 
correlation estimates, providing, therefore, misleading inferences to investors. When cor-
relation estimates are corrected, the correlation levels between US stock returns and pre-
cious metal returns were not found to have changed substantially. In addition, US stock 
returns were found to be less synchronized with precious metal returns, suggesting that 
precious metals constitute useful assets for diversification purposes. Gold, silver, and plat-
inum returns exhibited more similar movements between them, while palladium exhib-
ited the highest level of dissimilarity from all other assets. 

The rest of this article is organized as follows: Section 2 reviews the relevant literature 
concerning the use of precious metals as investment assets, as well as the use of correlation 
coefficients in financial applications. Section 3 presents the unconditional correlation co-
efficient that corrects the heteroscedasticity bias in standard correlation estimates and the 
proposed MSA methodology for depicting the synchronization of comovements between 
financial returns. Section 4 empirically demonstrates the importance of correcting the het-
eroscedasticity bias in correlation estimates and investigates the comovements between 
different assets during the two phases. Section 5 summarizes the main findings of the 
study. 

2. Literature Review 
Precious metals, predominantly gold, are frequently considered as alternative invest-

ment assets with good diversification, hedging or safe haven properties; see, for example, 
the studies by Skiadopoulos (2012); Mensi et al. (2013); Michis (2014, 2019, 2022); Lucey 
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and Li (2015). According to Baur and Lucey (2010), a diversifier exhibits non-perfect pos-
itive correlation with other assets (or a portfolio of assets), on average, while an effective 
hedge exhibits zero or negative correlation with other assets, on average. The safe haven 
property requires zero or negative correlation during times of financial distress.  

The outbreak of the COVID-19 pandemic increased the level of uncertainty in the 
financial markets, which, in turn, caused renewed interest from professional investors in 
the aforementioned properties of precious metals. This “flight to quality” effect increased 
the prices of some precious metals at a time when sharp declines were recorded in all 
major stock market indices, most prominently in the USA (Lahiani et al. 2021). These de-
velopments have been the subject of several recent empirical studies in the finance litera-
ture that re-examined the safe haven properties of precious metals (Ji et al. 2020; Akhta-
ruzzaman et al. 2021; Salisu et al. 2021; Yousaf et al. 2021; Chemkha et al. 2021). Nearly all 
of these studies provide evidence for the safe haven properties of gold during the COVID-
19 era, with some studies also providing similar results for platinum and palladium (La-
hiani et al. 2021), as well as the hedging effectiveness of silver (Salisu et al. 2021).  

With respect to the methodologies, various methods have been proposed in the liter-
ature for examining the relationships between various asset classes and precious metals. 
For example, Lahiani et al. (2021) used a nonlinear autoregressive distributed lag model 
to examine the short-run and long-run relationships between the S&P 500 index and pre-
cious metals, while Michis (2021) employed a multiscale partial correlation clustering 
method to examine the comovements between precious metal futures, energy futures, and 
stock returns. Other methodologies employed include dynamic conditional correlation 
GARCH models (Peng 2020), conditional VaR and copula methods (Uddin et al. 2020), 
VARMA-GARCH models (Salisu et al. 2021), time-varying parameter VAR models (Bouri 
et al. 2021), connectedness indices based on VAR models (Bahloul and Khemakhem 2021), 
and time-varying Granger causality tests (Gharib et al. 2021).  

In this study, an MSA is proposed for investigating the comovements of precious 
metals with US stock returns. Central to this analysis is the use of a distance metric (or 
dissimilarity measure) based on the unconditional correlation co-efficient proposed by 
Forbes and Rigobon (2002). Multivariate analysis and alternative correlation methods 
have also been used by other authors in the literature for examining the associations be-
tween various assets classes. Examples include the Pearson correlation coefficient 
(Geertsema and Lu 2020), time-varying correlation methods (Chiang et al. 2007), partial-
correlation coefficients (Kenett et al. 2015; Jung and Chang 2016), Fisher correlation (Krish-
nan et al. 2009), dynamic conditional correlation (Engle and Colacito 2006), partial-dis-
tance correlation (Creamer and Lee 2019), de-trended cross-correlation (Wątorek et al. 
2019), and the multiscale partial-correlation coefficient (Michis 2022). 

Regarding the use of MSA for the analysis of financial and economic time series, ex-
isting research has relied mainly on Euclidean (Machado et al. 2011; Cox 2013) and spec-
tral (Fourier- or wavelet-based) distance metrics (Camacho et al. 2006; Aguiar-Conraria 
and Soares 2011; Aguiar-Conraria et al. 2013). Our study is the first to use a time-series 
distance metric based on a heteroscedasticity-adjusted correlation coefficient. 

3. Methodology 
3.1. Unconditional Correlation Coefficient 

Considering the following relationship between two stochastic processes, ty  and 

tx ; in the context of the current study, these represent financial returns: 

t t ty a x= +β + ε   (1)

The residuals are assumed to have the following standard properties: 

0tE[ ]ε = , 2
tE[ ] cε = < ∞  and 0t tE[ x ]ε = . 
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Supposing, next, that the sample of time series observations can be divided into two 
groups, where the variance in the first group ( low

xxσ ) is lower from the variance in the sec-

ond group ( high
xxσ ); in the context of the current study, the first group is the period prior 

to the COVID-19 pandemic (Phase I) and the second group is the period after the COVID-
19 pandemic, which extends into the Ukrainian conflict (Phase II). 

By assumption, high low
xx xxσ > σ  and the OLS coefficient estimates are consistent for 

both groups, high lowβ = β = β ; therefore, it can be shown that the following inequality 
holds: 

xx xx

yy yyhigh low

   σ σ>      σ σ   
  

which implies a heteroscedasticity bias in the estimated correlation coefficient of the sec-
ond period, conditional on the variance of x  such that: 

high low
x x

high lowhigh low
y y

σ σρ = β > ρ = β
σ σ

  

Forbes and Rigobon (2002) proposed the following unconditional correlation coeffi-
cient that corrects the heteroscedasticity bias associated with the conditional correlation 
coefficient: 

( )21 1

*

*

ρρ =
 + δ − ρ  

.  
(2)

It can be observed that this correlation function incorporates the conditional correla-
tion coefficient ( *ρ ) and the relative increase in the variance of tx , which has the follow-
ing form: 

1
h
xx
l
xx

σδ ≡ −
σ

  (3)

The residual assumptions associated with Equation (1) suggest the absence of any 
endogeneity or omitted variable problems, such as feedback effects from asset class y  to 
asset class x  or any exogenous universal shocks. Nevertheless, Forbes and Rigobon 
(2002) also demonstrated that the adjustment in Equation (2) provides a good approxima-
tion to the unconditional correlation coefficient, even in cases where these problems exist, 
as long as three criteria for near-identification hold: (a) the change in market volatility is 
large; (b) the source of the increase in market volatility is clearly identified; and (c) the 
source of market volatility is included as one variable in the unconditional correlation 
estimate.  

For the purposes of this study, we considered US stock market returns as the bench-
mark source financial variable in all applications of the unconditional correlation formula 
that satisfies the abovementioned criteria. In addition to its size and importance for the 
global financial system, existing research suggests that the demand for precious metals 
increases when: (i) there are negative developments in the prices of US stocks and inves-
tors prefer precious metals as safe haven assets, as in the study by Lahiani et al. (2021) for 
the COVID-19 era; and (ii) when there is a decline in the value of USD as a result of wors-
ening macroeconomic conditions in the US economy, as studied by Joy (2011) and Re-
boredo (2013).  
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3.2. Multidimensional Scaling Analysis  
In this subsection, we propose an MSA procedure for representing the associations 

between asset returns using two-dimensional spatial maps. MSA is a well-known multi-
variate analysis method for representing objects in low-dimensional spaces. These repre-
sentations have the important property of preserving the similarities or dissimilarities be-
tween the objects in the actual data, in such a way that similar objects are located close to 
each other, while dissimilar objects are located further apart (Everitt and Hothorn 2011). 

In this framework, the measurement of dissimilarity between the objects is an im-
portant consideration and various distance metrics have been proposed in the literature. 
In applied studies, the most commonly encountered dissimilarity measures are the Eu-
clidean distance, the Mahalanobis distance, the Minkowski metric, and the correlation dis-
tance (Cox 2005). For the purposes of this study, we used a distance metric based on the 
unconditional correlation coefficient in Equation (2), as follows: 

( )2
1 1

1 1

*

*
d( )

 
 ρρ = −ρ = −  

  + δ − ρ    

  (4)

Next, we incorporated this distance metric in classical MDS analysis, where the low-
dimensional configuration of points (objects) is derived from a multistep algorithm as fol-
lows (Cox 2005):  
Step 1: Define an (N N× ) matrix, A , using the squared dissimilarities between all pairs 

of financial returns ( i , j ): 

( )21
2

A
ij

d = − ρ  
  

Step 2: Form a positive semi-definite matrix, B , with zero-sum rows and columns, using 
a centering matrix, H , and where the center of coordinate points is set at the 
origin. 

B HAH=  where 1H I 11TN −= − .  

Step 3: Derive the spectral decomposition of B , where Λ  and V  are the matrices of 
ordered eigenvalues ( 1 2 Ne e ... e≥ ≥ ≥ ) and normalized eigenvectors ( 1

i

T
iVV = ), 

respectively, 

B VΛV T=  where 1Λ Ndiag( e ,...,e )=  and 1V N(V ,...,V )= . 

Step 4: Use the following coordinate matrix, X , to represent the N  objects in N  di-
mensions: 

 1 2X VΛ /= . 

When the matrix B  is of rank k , it will have an equal number of positive eigen-
values. Therefore, (N k− ) zero eigenvalues can be excluded from its decomposition and 
the size of the coordinate matrix is reduced as follows: 

1 2
1 1X V Λ /=  where 1 1Λ kdiag( e ,...,e )=  and 1 1V k(V ,...,V )= . 
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The configuration in X  is rotated to its principal axes such that the axes are orthog-
onal between them and the variation in the projected points on the axes follows a decreas-
ing order. Therefore, in practice, it is common to represent objects using two-dimensional 
configurations, with only the first two columns in X .  

The objects are represented by points in the two-dimensional space and the distances 
between the points are analogous to the dissimilarities between the objects in the space of 
the actual (high-dimensional) data. Consequently, objects that are dissimilar based on the 
unconditional correlation distance criterion will be located further apart in the two-di-
mensional space, while similar objects will be located close to each other. The adequacy 
(proportion of the variation explained) of the two-dimensional representations can be 
evaluated with the goodness-of-fit measures presented in point (5) below. According to 
Everitt and Hothorn (2011), scores higher than 0.8 indicate a good fit to the data. 

2

1

1

nn
N

nn

e

e
=

=




   and   

2 2
1

2
1

nn
N

nn

e

e
=

=




. (5)

4. Results and Discussion 
4.1. Results 

To investigate the comovements between precious metals and stock market returns, 
using the analytical framework presented in Section 3, we analyzed the monthly financial 
returns of gold, palladium, platinum, silver, and US stocks for the period from February 
2010 (Feb-10) to January 2023 (Jan-23). The precious metal returns were derived from the 
respective monthly prices (in USD) published by The London Bullion Market Association, 
while the US stock returns were downloaded from the OECD statistical database. 

Table 1 includes summary statistics for all returns series, separately for the two 
phases considered in our analysis. Phase I (stable period) covers the months from Febru-
ary 2010 to December 2019, while Phase II (turbulent period) covers the months from Jan-
uary 2020 to January 2023. It can be observed that US stocks provided the highest positive 
average returns in both periods, despite the decline observed during the turbulent period. 
In contrast, increases were observed for gold, platinum, and silver in the turbulent period, 
suggesting a possible increase in demand for these precious metals once the period of 
economic uncertainty in the US market commenced.  

Table 1. Summary statistics of financial returns. 

 US Stocks Gold Palladium Platinum Silver 
Stable period     
Mean 0.579 0.003 0.014 –0.003 0.002 
Median 0.993 0.001 0.019 –0.005 –0.011 
Stand. Dev. 2.888 0.034 0.062 0.045 0.063 
Min –11.468 –0.068 –0.170 –0.122 –0.162 
Max 6.748 0.116 0.168 0.120 0.172 
Turbulent period     
Mean 0.493 0.007 0.001 0.006 0.012 
Median 1.178 0.000 –0.001 0.018 0.008 
Stand. Dev. 4.913 0.034 0.091 0.066 0.084 
Min –21.940 –0.053 –0.170 –0.210 –0.168 
Max 7.663 0.068 0.196 0.123 0.318 
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US stocks also exhibited the highest standard deviation in both periods, as well as a 
large standard deviation increase during the turbulent period. With the exception of gold, 
which remained stable, increases were observed in the standard deviations of all other 
precious metal returns, although they were smaller in size.  

This is also evident in the respective plots for each series included in Figure 1, where 
the vertical blue line marks the outbreak of the COVID-19 pandemic, dividing the sample 
into the two phases. It can be observed that immediately after the beginning of the 
COVID-19 pandemic, there was a large decline in US stock returns, followed by a recov-
ery, then a short period of gradual decline and a subsequent increase in prices towards 
the end of the series.  

This increase coincides with the beginning of the Ukrainian conflict on the 24 Febru-
ary 2022, marked with the thick red vertical line in Figure 1. Collectively, these movements 
in US stocks increased the standard deviation of returns during the turbulent period. With 
the outbreak of the COVID-19 pandemic, declines were also observed for palladium, plat-
inum, and silver; however, these series quickly returned to their pre-COVID-19 levels.  

 
Figure 1. Financial returns: US stocks and precious metals. 

The large increase in the volatility of US stock returns should be expected to cause a 
bias in the correlation coefficient estimates between US stocks and the precious metal re-
turns, leading to misleading inferences concerning their comovements. Table 2 summa-
rizes these correlation coefficient estimates for the different periods. First, we provide re-
sults using the conditional (on heteroscedasticity) correlation coefficient for the stable and 
turbulent subperiods separately, and then for the full sample that covers both phases. 
With the exception of palladium returns, it can be observed that in all cases, there is a 
noticeable increase in the size of the correlation coefficient in the turbulent period, which 
is also evident (albeit to a smaller extent) in the full period sample estimates.  
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Table 2. Correlations of US stocks with precious metals. 

Correlation Conditional Unconditional 
Period Stable Turbulent Full Full 

US stocks—Gold –0.115 0.300 ** 0.025 0.015 
US stocks—Palladium 0.473 * 0.305 ** 0.399 * 0.248 * 
US stocks—Platinum 0.364 * 0.711 * 0.511 * 0.330 * 
US stocks—Silver 0.182 * 0.589 * 0.344 * 0.210 * 

Note: statistically significant values at: * 5%, ** 10% (t-test: 0 0H :ρ =  vs. 1 0H :ρ ≠ ). 

The unconditional correlation coefficient estimates between the US stocks and pre-
cious metal returns are presented in the rightmost column in Table 2. In all cases, the co-
efficient estimates are smaller, because the unconditional correlation coefficient corrects 
the heteroscedasticity bias associated with the conditional correlation coefficient. For pal-
ladium, platinum, and silver, these reductions are considerable with potential implica-
tions for the resource allocation decisions of the investors interested in these assets.  

To investigate the synchronization of comovements between the different asset clas-
ses, we constructed separate correlation matrices using both the conditional and uncon-
ditional correlation coefficient estimates. These were subsequently used to derive correla-
tion distance metrics that were used in an MSA, with the purpose of generating two-di-
mensional configurations that depict the similarities or dissimilarities between the finan-
cial returns. The correlation matrices are included in Appendix A.  

Table 3 includes the results of the model fit criteria presented in Equation (5) for the 
MSA applications examined. The scores in column 2 correspond to two-dimensional con-
figurations and are analogous in the case for the other columns (e.g., column 3 is for three-
dimensional configurations). All scores included in column 2 are higher than 0.8 which, 
as explained in Section 3, indicates a good fit to the data. It is also worth mentioning that 
the configurations generated with the unconditional distance metric in Equation (4) pro-
vided the best fit to the data of all the two-dimensional configurations. Similarly, Camacho 
et al. (2006), Aguiar-Conraria et al. (2013) and Michis (2021) used two-dimensional con-
figurations for the representations of economic time series. 

Table 3. Multidimensional scaling analysis of goodness-of-fit measures. 

 1 2 3 4 5 
Absolute eigenvalues      
Stable—conditional correlation 0.788 0.868 0.916 0.916 1.000 
Turbulent—conditional correlation 0.465 0.924 0.979 0.979 1.000 
Full—conditional correlation 0.691 0.935 0.988 1.000 1.000 
Squared eigenvalues      
Stable—conditional correlation 0.975 0.985 0.989 0.989 1.000 
Turbulent—conditional correlation 0.502 0.992 0.998 0.999 1.000 
Full—conditional correlation 0.884 0.995 0.999 1.000 1.000 

The two-dimensional configurations for the stable and turbulent periods, derived 
from the conditional correlation matrices in Appendix A, are included in Figure 2 and 
Figure 3, respectively. The results in Figure 2 suggest three distinct, and therefore, dissim-
ilar, comovement asset returns: gold, palladium, and US stocks (US ST). Thus, during the 
stable period, gold and platinum could have potentially provided diversification benefits 
when included in portfolios that track the movements of the US stock market index. Silver 
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and platinum are located closer to US stocks in the two-dimensional space, suggesting 
greater similarity with US stocks compared with the other precious metals. 

 
Figure 2. MSA using the conditional correlation matrix: stable period. 

 
Figure 3. MSA using the conditional correlation matrix: turbulent period. 

When considering the configurations in Figure 3 for the turbulent phase, two basic 
conclusions emerge. First, gold, palladium, and US stocks continue to be located further 
apart (albeit with different distances compared with Figure 2), suggesting that the finan-
cial return movements of gold and palladium continued to be dissimilar and less synchro-
nized to US stocks, and are therefore useful for diversification purposes during the phase. 
Second, platinum is located closer to US stocks, while silver is still located halfway be-
tween US stocks and gold. These changes are also reflected in the respective conditional 
correlation matrices in Appendix A. 
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Figure 4 provides a two-dimensional configuration based on the unconditional cor-
relation matrix across the two periods (full sample), using the distance metric in Equation 
(4) in the context of MSA. It can be observed that when correcting the heteroscedasticity 
bias in the estimated correlations, the two-dimensional configuration becomes more sim-
ilar to the configuration in Figure 2 for the stable period.  

 
Figure 4. MSA using the unconditional correlation matrix: full period. 

Gold, palladium, and US stocks are located further apart, suggesting a dissimilarity 
in their financial returns. Therefore, these precious metals remain useful considerations 
for portfolios that track the US stock market index, because they can provide diversifica-
tion benefits. Furthermore, compared with the configuration in Figure 2, silver and plati-
num are located closer to gold in Figure 4, which suggests financial return movements 
that are more synchronized with gold returns and less similar to US stock returns. This 
similarity is more pronounced in the case of silver. 

4.2. Tests for Normality, Variance Stabilization and Sample Size Adjustment 
In addition to the correlation estimates for the different periods, Table 2 also includes 

the results of t-tests for the null hypothesis of zero correlation (Chen and Popovich 2002) 
between the financial returns. According to the results, only the correlation estimates be-
tween US stocks and gold returns were not found to be significantly different from zero 
(except for the conditional correlation estimate in the turbulent period). However, when 
working with non-normal data, the t-test becomes problematic and Type I error rates tend 
to be inflated (Bishara and Hittner 2012).  

Figure 5 includes density histograms for all the variables considered in this study. It 
can be observed that for some of the return series asymmetries exist that suggest depar-
tures from normality, such as the skewness of gold returns and the asymmetric tails of US 
stock returns. The normality assumption for the return series was also evaluated using 
the well-known Shapiro–Wilk and Kolmogorov–Smirnov normality tests that are fre-
quently used in applied work (Romão et al. 2010). The p-values derived from these tests 
are included in Table 4. The normality assumption was accepted only for the gold and 
palladium time series when using the Shapiro–Wilk test (at either the 5% or 10% signifi-
cance level), while it was rejected for all the time series when using the Kolmogorov–
Smirnov test. 
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Figure 5. Density histograms of financial returns. 

Table 4. p-values for normality tests on the asset returns. 

 Shapiro—Wilk Kolmogorov—Smirnov 
US stocks <0.001 <0.001 
Gold 0.381 <0.001 
Palladium 0.630 <0.001 
Platinum 0.061 <0.001 
Silver 0.001 <0.001 

When normality does not hold alternative non-parametric methods of statistical in-
ference need to be used (Lee and Rodgers 1998). For the purposes of this study we used a 
bias-corrected accelerated bootstrap resampling procedure with 999 replications, (Efron 
and Tibshirani 1994) to generate two-sided 95% confidence intervals for the correlation 
estimates in Table 2. The computations were performed with the confintr package for R, 
available from the CRAN archive and the generated confidence intervals are included in 
Table 5. The results indicate that for all reported periods, the correlation estimates in Table 
2 fall within the corresponding bootstrap confidence intervals of Table 5. 
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Table 5. Confidence intervals for correlations of US stocks with precious metals. 

Correlation Conditional Unconditional 
Period Stable Turbulent Full Full 

US stocks—Gold –0.420–0.103 0.004–0.526 –0.268–0.188 –0.139–0.107 
US stocks—Palladium 0.288–0.598 0.037–0.633 0.232–0.537 0.148–0.344 
US stocks—Platinum 0.158–0.487 0.436–0.898 0.355–0.691 0.224–0.505 
US stocks—Silver –0.001–0.350 0.369–0.764 0.174–0.481 0.107–0.320 

Note: 95% bootstrap confidence intervals for the unconditional correlation coefficient. 

Forbes and Rigobon (2002) showed that the heteroscedasticity bias in the conditional 
correlation formula is due to parameter δ , which is the relative increase in the variance 
of x , not the variance of the regression coefficient in the linear model (1). Since the con-
ditional correlation coefficient is increasing in δ , conditional correlation estimates will 
tend to increase in volatile periods, even if the underlying unconditional correlation coef-
ficient remains the same. 

To demonstrate this, we also applied a variance stabilization transform to the time 
series before proceeding with the correlation estimates, using the power transformation 
proposed by Yeo and Johnson (2000). This transformation can be seen as a generalization 
of the Box–Cox transformation (Greene 2018), which is frequently used in variance stabi-
lization applications (Michis and Nason 2017). With strictly positive data, the two trans-
forms become equal; however, the Yeo–Johnson transformation can also handle time se-
ries with negative observations. The transformation parameter in our application was es-
timated through the maximization of a log-likelihood criterion function (Raymaekers and 
Rousseeuw 2021) and the Yeo–Johnson transformation was implemented using the 
VGAM and car packages for R, available from the CRAN archive. 

The correlation coefficient estimates for the different periods are summarized in Ta-
ble 6. The differences in the conditional correlation estimates between the reported peri-
ods are similar to those included in Table 2. With the exception of palladium returns, in 
all cases, there is a noticeable increase in the size of the conditional correlation coefficient 
in the turbulent period, which is also evident in the full period estimates. 

Table 6. Correlations of US stocks with precious metals: Yeo–Johnson transformation. 

Correlation Conditional Unconditional 
Period Stable Turbulent Full Full 

US stocks—Gold –0.048 0.329 * 0.071 0.047 
US stocks—Palladium 0.498* 0.239 0.390 * 0.270 * 
US stocks—Platinum 0.406* 0.698 * 0.523 * 0.376 * 
US stocks—Silver 0.204* 0.671 * 0.374 * 0.258 * 

Note: statistically significant values at: * 5%, (t-test: 0 0H :ρ =  vs. 1 0H :ρ ≠ ). 

Despite the application of the variance stabilization procedure, the conditional cor-
relation coefficient is still biased upwards due to the structural change in the variance of 
US stock returns in the turbulent period ( h l

xx xxσ > σ ). In contrast, the unconditional corre-
lation estimates are in all cases smaller, which underlines the importance of correcting the 
heteroskedasticity bias using Formula (2). This formula is specifically designed to adjust 
the conditional correlation estimate based on the value of parameter δ . 

As an additional robustness check for our results, we also estimated the “Phase I” 
stable period correlation coefficients using a reduced sample size that covers only the pe-
riod January 2017–December 2019. The available observations for the period February 
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2010–December 2016 were excluded due to the existence of some other minor economic 
downturns and stock market volatility events within this time interval. Specifically, the 
European debt crisis concerns in 2011, the downgrade of US credit rating in August 2011, 
the Flash Crash of 2010 and the 2015–2016 stock market sell-off. 

Even though these events did not escalate into full-blown economic crises, they can 
complicate inference from our correlation coefficient estimates, since “Phase I” (stable pe-
riod) is considered as a benchmark for evaluating the correlation changes in “Phase II” 
(the turbulent period). The correlation coefficient estimates for this alternative stable pe-
riod are included in Table 7. The full period estimates for both the conditional and uncon-
ditional correlation coefficients were also derived using a reduced sample size (January 
2017–January 2023). 

Table 7. Correlations of US stocks with precious metals: alternative stable period. 

Correlation Conditional Unconditional 

Period Stable Turbulent Full Full 
US stocks—Gold –0.067 0.300 ** 0.198 ** 0.098 

US stocks—Palladium 0.243 0.305 ** 0.289 * 0.146 ** 

US stocks—Platinum 0.335 * 0.711 * 0.619 * 0.360 * 

US stocks—Silver –0.021 0.589 * 0.474 * 0.255 * 

Note: statistically significant values at: * 5%, ** 10% (t-test: 0 0H :ρ =  vs. 1 0H :ρ ≠ ). 

In this case too, the differences in the conditional correlation estimates between the 
reported periods are similar to those reported in Table 2. There is a noticeable increase in 
the size of the conditional correlation coefficients in the turbulent period, which is also 
evident in the full period sample estimates. This heteroscedasticity bias is corrected when 
the unconditional correlation coefficient is used, as demonstrated in the last column of 
Table 7. Furthermore, the unconditional correlation levels are similar to those reported in 
Table 2. However, it is important to emphasize that with the exception of platinum re-
turns, all other unconditional correlation coefficient estimates for the alternative stable 
period are not statistically significant at the 5% or 10% level and, therefore, these results 
should be used with caution. 

4.3. Discussion 
The theoretical foundation of our proposed method derives from the financial conta-

gion literature and the large increases in cross-correlations observed between financial 
market indices when a financial crisis (shock) hits one of the interdependent countries. 
Forbes and Rigobon (2002) note that in such cases, large movements in one major stock 
market (e.g., the US stock market crash in 1987) tend to be associated with similarly large 
movements in other interconnected markets. 

However, since correlation estimates are conditional on market volatility, they are 
biased upwards, providing the wrong impression of a large increase in cross-market link-
ages and, therefore, financial contagion. In contrast, the authors showed that adjusting 
this bias deflates the correlation estimates, suggesting only interdependence between the 
markets, which is a condition that exists across all phases of the economy. 

Our study provides similar evidence for the cross market linkages that exist between 
US stocks and precious metal returns. These linkages derive from the investment charac-
teristics of precious metals, which as explained in Section 2 are considered by investors as 
possessing hedging and safe haven properties in times of financial distress. For example, 
Mishkin (2016) notes the following factors as important determinants for the demand for 
gold: lower perceived riskiness relative to other assets, higher expected returns relative to 
other assets and higher liquidity relative to other assets. 
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The transmission mechanism in this case most commonly begins with a shock to the 
US stock market, which generates renewed interest for investments in precious metals 
(the “flight to quality” effect). When correlation estimates between US stocks and precious 
metal returns are performed during this period of increased market volatility, the results 
will be biased upwards, providing misleading inferences to investors seeking to adjust 
their investment portfolios. The large movements in US stocks are erroneously perceived 
as being associated with a significant increase in the linkages between US stocks and pre-
cious metal returns. 

In contrast, the standard deviation changes in Table 1 (e.g., for US stocks and gold 
returns) between the stable and turbulent periods, do not provide any evidence for this 
assertion (increasing for US stock returns but not for gold returns). As demonstrated in 
Table 2, adjusting the heteroscedasticity bias using the unconditional correlation coeffi-
cient provides estimates that are closer to the levels estimated with the conditional corre-
lation coefficient for the stable period. These estimates represent the interdependence that 
exists between US stock and precious metal returns in all phases of the financial system. 

Most existing studies in the literature rely on dynamic conditional correlation 
GARCH models that suggest an increase in the correlation levels during times of financial 
distress. For example, Creti et al. (2013) found that the 2007–2008 financial crisis strength-
ened the links of commodities (including metals) with stock markets, and Sadorsky (2014) 
reported an increase in the correlation levels between emerging market stocks, copper, oil 
and wheat since 2008. 

Furthermore, the empirical results of Mensi et al. (2017) provide strong evidence of 
volatility spillovers between stocks and precious metals since the global financial crisis of 
2007–2008 and the European sovereign debt crisis of 2010–2012. Interestingly, the authors 
found precious metals to be the net recipients and the stocks the source of the spillovers. 
Similarly, Junttila et al. (2018) found the correlation levels between equity returns and 
gold to have increased since the 2008 financial crisis. 

Our results provide a different perspective on the correlation levels observed be-
tween stock market and precious metal returns across different phases of the economy, 
concentrating on the turbulent period that began with the outbreak of the COVID-19 pan-
demic. While we agree with Mensi et al. (2017) that the transmission mechanism between 
stocks and precious metals is indicative of contagion effects, as suggested in the financial 
contagion literature, our results are more compatible with the analysis of Forbes and 
Rigobon (2002) who provided a critical evaluation of the financial contagion literature. 

According to the authors, since correlation coefficient estimates are conditional on 
market volatility, they will tend to increase significantly following a shock, giving the im-
pression of an increase in cross-market linkages and, therefore, the existence of strong 
financial contagion effects from one stock market to other markets. When this heterosce-
dasticity bias is corrected, as in the case of the unconditional correlation coefficient, a dif-
ferent level of market linkages can exist, which is more compatible with the pre-existing 
conditions and the underlying long-term interdependence between the markets, not con-
tagion. 

The results reported in Section 4 for the stock market–precious metals linkages are 
more compatible with the second case. After correcting the heteroscedasticity bias intro-
duced by the COVID-19 pandemic and the subsequent Ukrainian conflict, the correlation 
levels of gold, silver, platinum, and palladium returns with US stock returns were not 
found to have changed substantially during Phase II. They are more compatible with the 
stable period (Phase I) considered in our analysis, suggesting a continuation of the inter-
dependence levels that existed prior to the pandemic. 

Our methodology and results will be of interest to investors considering the synthesis 
of their portfolios or the adoption of hedging strategies during turbulent periods. For ex-
ample, resisting the temptation to make large changes in the synthesis of their portfolios 
when the underlying cross-market correlations between asset returns have not changed 
significantly, or to construct effective hedge ratios by hedging a long position in US stocks 
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using a short position in a carefully selected precious metal. In this respect, the results in 
Section 4 suggest that gold and palladium can be useful considerations for hedging long 
positions in US stocks. 

We also note two results from the aforementioned literature that are consistent with 
our analysis in Section 4. First, Mensi et al. (2017) found stock markets to be the source 
and precious metals the net recipients of volatility slipovers during financial crises. This 
is consistent with our definition of US stock returns, as the benchmark source financial 
variable in all applications of the unconditional correlation formula in Section 4. 

Second, the results by Uddin et.al. (2020) suggest a similarity in the behaviour of sil-
ver and platinum returns towards US stocks during market downturns and a rather dif-
ferent behaviour in the case of gold, whose relationship with US stocks was found to be 
weaker. These associations are compatible with our graphical analysis in Section 4 where 
silver and platinum are depicted closer together and with US stocks in the two-dimen-
sional configurations, while gold is always located further away. 

5. Conclusions 
In this study, we examined the evolution of correlation estimates between US stocks 

and four precious metal returns (gold, silver, palladium, and platinum) over two phases: 
before and after the outbreak of the COVID-19 pandemic. The later phase was also ex-
tended to include the beginning of the Ukrainian conflict, which coincided with the first 
transition of COVID-19 to endemic status in the USA. Due to the increase in the volatility of 
the US stock market index observed after the outbreak of the COVID-19 pandemic, the het-
eroskedasticity-adjusted unconditional correlation coefficient proposed by Forbes and 
Rigobon (2002) was used to examine the evolution of correlation changes across the two 
phases. In addition, a relevant correlation distance metric was proposed in the context of 
MSA to examine the associations (similarities or dissimilarities) between US stock and 
precious metal returns over the examined period. 

Our findings suggest the existence of an upward heteroscedasticity bias in most cor-
relation estimates due to the increase in market volatility in the post-COVID-19 period. 
When corrected, the correlation levels of gold, silver, platinum, and palladium returns 
with US stock returns were not found to have changed substantially since the COVID-19 
outbreak. 

Furthermore, an MSA of the comovements between the financial returns of US stocks 
and the four precious metals, using the heteroscedasticity-adjusted distance metric, pro-
vided two main insights for investors. First, gold and palladium can provide useful addi-
tions in portfolios that track the US stock market index, because they exhibit less similarity 
to the movements of US stocks. Second, silver and platinum exhibit movements that are 
more synchronized with gold returns but are less dissimilar to US stock returns, compared 
with gold and palladium returns. 
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Appendix A 

Table A1. Conditional correlation matrix: stable period. 

 US Stocks Gold Palladium Platinum Silver 
US stocks 1 –0.115 0.473 0.364 0.182 

Gold –0.115 1 0.372 0.640 0.785 

Palladium 0.473 0.372 1 0.622 0.498 

Platinum 0.364 0.640 0.622 1 0.668 

Silver 0.182 0.785 0.498 0.668 1 

Table A2. Conditional correlation matrix: turbulent period. 

 US Stocks Gold Palladium Platinum Silver 
US stocks 1 0.300 0.305 0.711 0.589 

Gold 0.300 1 0.316 0.398 0.710 

Palladium 0.305 0.316 1 0.425 0.342 

Platinum 0.711 0.398 0.425 1 0.713 

Silver 0.589 0.710 0.342 0.713 1 

Table A3. Unconditional correlation matrix: full period. 

 US Stocks Gold Palladium Platinum Silver 
US stocks 1 0.015 0.248 0.330 0.210 

Gold 0.015 1 0.343 0.558 0.758 

Palladium 0.248 0.343 1 0.534 0.432 

Platinum 0.330 0.558 0.534 1 0.685 

Silver 0.210 0.758 0.432 0.685 1 
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