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Abstract: Measuring the risk aggregation is an important exercise for any risk bearing carrier. It is not
restricted to evaluation of the known portfolio risk position only, and could include complying with
regulatory requirements, diversification, etc. The main difficulty of risk aggregation is creating an
underlying robust probabilistic model. It is an irrefutable fact that the uncertainty in the individual
risks is much lower in its complexity, as compared to modeling the dependence amongst the risks. As
a result, it is often reasonable to assume that individual risks are modeled in a robust fashion, while
the exact dependence remains unknown, yet some of its traits may be made available due to empirical
evidence or “good practice”. Our main contribution is to propose a numerical procedure that enables
the identification of the worst possible dependence scenario, when the risk preferences are modeled
by the conditional value-at-risk in the presence of dependence uncertainty. For portfolios with two
risks, it is known that CVaR ordering coincides with the lower-orthant stochastic ordering of the
underlying bivariate distributions. As a by-product of our analysis, we show that no such extensions
are possible to higher dimensions.

Keywords: risk management; conditional value-at-risk; uncertainty modeling; bilinear optimization;
linear programming; risk aggregation

1. Introduction

Risk aggregation is a well-known strategy to reduce the overall risk held by a financial
institution, insurance company, or any other risk bearing carrier. Risk portfolios are often a
summation of individual risks (or lines of business) and the risk bearing carrier is usually
concerned with evaluating the risk position for this portfolio so that regulatory requirements
or business targets (such as diversification, shareholder value management constraints, etc.)
are met. Within the insurance and banking industries, there are regulatory requirements
that financial institutions need to meet by maintaining an appropriate level of capital at all
times. These calculations take into account multiple sources of risk and all other factors
that contribute to changes in the company’s balance sheet within a specified period of
time. Examples of such regulatory requirements include international Basel II/III banking
supervision guidelines (e.g., see BCBS 2016) and the Swiss Solvency Test that applies to
all Swiss based insurance and reinsurance companies (e.g., see Swiss Solvency Test 2006),
where the risk measurements are performed via the well-known risk measure conditional
value-at-risk (CVaR). This risk measure is introduced in the seminal paper of Rockafellar
and Uryasev (2000) and has shown clear computational advantage in OR applications.A
risk aggregation application in the context of the European Union insurance regulations,
known as Solvency II, is given in Asimit et al. (2016).

Many practical situations show that obtaining full knowledge of the dependence
amongst a group of observed random variables is a very difficult task. It is an irrefutable
fact that when modeling multivariate risks, the estimation error is weighted towards deter-
mining the dependence amongst the risks. Common practice has shown that individual
risks are estimated with higher confidence as compared to the dependence model between
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the variables. Unlike estimating individual risks, fitting the dependence model typically
presents a great challenge, especially due to data scarcity. As a result, decision makers usu-
ally commit to a somewhat arbitrarily chosen parametric model, but these ad hoc choices
lead to inadequate evaluations of the overall risk. Therefore, it may be more preferable to
use qualitative information about the dependence and use a notion of realistic weakest and
strongest dependence models amongst the observed risks instead. For example, knowing
that the risks are positively associated would imply that the independence represents the
weakest possible dependence, etc. Thus, it is more reasonable to assume that we have
reliable models for individual random variables coupled with some partial knowledge of
their association.

Many attempts have been made to resolve the problem of risk valuation under un-
certainty modeling and more specifically under dependence uncertainty. The literature
on this topic is vast and we give only a brief account of the related work. One direc-
tion of research typically pursued in the OR literature is to adapt recent methodologies
from the so-called robust optimization. For example, in robust portfolio optimization,
one typically assumes that a decision maker has some partial information about the joint
distribution function amongst the risks. In order to incorporate the uncertainty, several
notions of the worst-case risk measure have been proposed. For example, El Ghaoui et al.
(2003) and Zymler et al. (2013) discuss this problem in the context of VaR-based optimal
portfolio selection. The same problem is investigated in Zhu and Fukushima (2009) and
Huang et al. (2010), where decisions are made on the worst-case CVaR; a related insurance
setting is discussed in Asimit et al. (2017, 2019) and Balbás et al. (2011), while robust
portfolio selection and related topics are addressed in manuscripts like Blanchet et al. (2017)
or Fabozzi et al. (2010). Some attention has been devoted to computing bounds on CVaR
with moment information. For example, in Bertsimas et al. (2004) sharp explicit bounds
are obtained with the first two moments, and in the work of Bertsimas and Popescu (2002),
where a more general numerical convex-optimization-based approach is obtained. Recall
that robust versions of the above moment-based models may be developed in principle,
relying on the so-called robust optimization techniques (e.g., Ben-Tal et al. 2009). Interesting
connections between chance-constrained and robust optimization in relation to CVaR are
established in Chen et al. (2009). Other risk measures (beyond CVaR) are available in the
literature; e.g., the higher-moment risk measure that is investigated in Gómez et al. (2022).

The main contribution of our paper is to propose a method to evaluate sharp lower
and upper bounds for the CVaR-based aggregate risk level under dependence uncertainty.
Specifically, we assume that bounds on the cumulative multivariate distribution are avail-
able, as well as that we have the full knowledge of the individual risk distributions. Here,
the partial information about dependence is given by the lower-orthant stochastic order-
ing type constraints. Arguably, the most practically relevant examples of such types of
constraints are the so-called positive and negative quadrant dependence models. The
practical advantage of using the above dependence models is that we can test the statistical
significance of such properties (see Gijbels and Sznajder 2013). In other words, the validity
of restricting the range of possible dependence models may be statistically verified using
the observed data. The latter plausible dependence provides us with the main motivation
to include lower-orthant type restrictions in our model.

From the methodogical perspective, our numerical method is based on (convex)
optimization techniques and specifically, bilinear and linear programming (LP). Interestingly,
despite the associated optimization problem being bilinear—and thus non-convex—in
nature, we show that the problem’s objective function still retains a strong structural
property, namely, it is convex in every argument, and in turn, the convexity provides
the basis for efficient computations. Despite a seeming symmetry of the two problems,
evaluating the sharp lower bound on CVaR appears to be more of a challenge, as compared
to computing the sharp upper bound. This is substantiated by both the complexity analysis
of the proposed method, and the numerical results.
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It is known that CVaR respects the so-called lower-orthant stochastic ordering for
two-dimensional portfolios (chapter 6.2.6 of Denuit et al. (2005)). Yet no similar result has
been established or disproved for higher dimensions. As a by-product of our analysis,
using elementary LP techniques, we show that no such extensions are possible, and give
insights as to why this is the case.

The paper is organized as follows. Section 2 presents our model for determining sharp
upper and lower bounds on the CVaR-based aggregate risk level. Sections 3 and 4 describe
the approach used to compute the lower and upper bounds, respectively. Section 5 contains
the numerical experiments and analysis, while Section 6 discusses the behaviour of CVaR
in multivariate settings under the lower-orthant and other orderings. Our final comments
and conclusions are summarized in Section 7.

2. Model Setting

The notation relies on lower case letters t, α, x, . . . for deterministic quantities and
capital letters Z, X, . . . for random variables. Likewise, we use capital letters Fi, Π, . . . to
denote functions. Bold letters such as x, i, . . . and X, . . . are reserved for deterministic and
random vectors, respectively; likewise, we use A, . . . for vector-valued functions. Capital
script letters I ,M, . . . are used for sets.

Let X = (X1, . . . , Xn) denote an n-variate random vector, and let Z = ∑n
i=1 Xi be the

sum of n possibly dependent risks. The VaR of a generic loss variable Z at confidence
level α, VaRα(Z), represents the α-quantile of Z. Mathematically, VaRα(Z) := inf{z ∈ < :
Pr(Z ≤ z) ≥ α}, where inf ∅ = ∞. The CVaR at confidence level α, CVaRα(Z), evaluates
the expected loss amount incurred under the worst 100× (1− α)% loss scenarios of Z.
The CVaR has multiple formulations in the literature (Acerbi and Tasche 2002), but in the
present paper, we only refer to the following representation (Rockafellar and Uryasev 2000),

CVaRα(Z) := VaRα(Z) +
1

1− α
E
(
Z−VaRα(Z)

)
+ = min

t∈<
t +

1
1− α

E(Z− t)+,

where E(·) is the expectation and z+ = max{z, 0}.
Let us assume that we have a portfolio consisting of n risks X = (X1, . . . , Xn). The

cumulative distribution function (c.d.f.) of each individual risk Xi is Fi(·) and is assumed to be
known for all 1 ≤ i ≤ n, and we write Xi ∼ Fi. Moreover, we assume that the dependence
between the risks, i.e., the multivariate distribution F(x) = Pr(X ≤ x) of X, is unknown, but
some prior knowledge about the association amongst risks is available. Namely, the set of
feasible distributions is given by

F =
{

F : F(x) ≤ F(x) ≤ F(x), ∀x ∈ <n, Xi ∼ Fi
}

, (1)

where F and F are some n-dimensional joint c.d.f.’s that define the set of acceptable depen-
dence models. Note that the above assumption provides a lower and upper bound for X
in the lower-orthant stochastic ordering sense. Recall that two random vectors X and Y
in <n are lower-orthant ordered, written X �lo Y, if Pr

(
X ≤ x

)
≤ Pr

(
Y ≤ x

)
for all x ∈ <n.

It is known that the comonotonic1 dependence Fc(x) := mini=1,...,n Fi(xi) gives the sharp
upper bound on the c.d.f. with prescribed marginals Fi. Thus, if there is no upper bound
specified, without a loss in generality we may set F(x) = Fc(x). On the other hand, given
the marginals, it is impossible to construct the sharp lower bound on the c.d.f. for n ≥ 3.
Thus, when the lower bound F is not known a priori, it is not so clear what should be used
in place of F, besides trivial choices.

The main aim of the paper is to compute sharp lower and upper bounds on CVaRα(Z),

inf
F∈F

CVaRα(Z) and sup
F∈F

CVaRα(Z), (2)

where X ∼ F. We approximate the solutions to (2) by assuming Xi’s to be discrete random
variables, i.e., by considering a sample of size mn from our population X. Namely, it is



J. Risk Financial Manag. 2023, 16, 266 4 of 22

assumed that Xi takes the values xi,1 ≤ . . . ≤ xi,m with equal probability 1/m, but we do
not know the joint probability amongst the risks, represented by p.m.f.

pi1,...,in = Pr
Å

X =
(
x1,i1 , . . . , xn,in

)ã
, for all 1 ≤ i1, . . . , in ≤ m.

Note, that if X is a continuous compactly supported random vector, one can use the
above discretization to approximate its distribution to within the desired accuracy by
increasing m. The Fi-equivalent discrete marginal distributions are standardized and
assumed to be uniform. This choice is motivated by the common sampling procedure
using copulas, if parametric models for the marginal distributions are available. It is also
motivated by the practical considerations on availability of historical data. The methods
in the paper can be easily adapted to arbitrary marginals. However, this comes at the
unnecessary expense of further complicating the notation. The c.d.f. bounds F and F are
represented by discrete vectors ß and ß. Likewise, we denote the aggregate risk sample by
z, zi = zi1,...,in = ∑n

j=1 xj,ij , where the multi-index i = (i1, . . . , in) runs over all mn possible
values i ∈ I with ij ∈ {1, . . . , m}. The values of zi are only partially ordered.

Thus, in order to approximate (2), we need to compute

CVaRα := inf
p

min
t∈<

t +
1

1− α ∑
I

(zi − t)+ pi

s.t. ßi ≤ ∑
j≤i

pj ≤ ßi, for all i ∈ I ,

∑
i: ij=k

pi =
1
m

, for all j = 1, . . . , n, k = 1, . . . , m,

∑
I

pi = 1, p ≥ 0,

(3)

and

CVaRα := sup
p

min
t∈<

t +
1

1− α ∑
I

(zi − t)+ pi

s.t. ßi ≤ ∑
j≤i

pj ≤ ßi, for all i ∈ I ,

∑
i: ij=k

pi =
1
m

, for all j = 1, . . . , n, k = 1, . . . , m,

∑
I

pi = 1, p ≥ 0,

(4)

where the multi-index inequalities j ≤ i are interpreted component-wise. Note that the
marginal density constraints ∑i: ij=k pi =

1
m are stated explicitly as part of the formulation,

although, we could absorb these constraints into tighter upper and lower c.d.f. bounds.

3. Computable Lower Bound
3.1. Reduction to Parametric LP

Let us define the value function as

val(t) := inf
p

t +
1

1− α ∑
I

(zi − t)+ pi

s.t. ßi ≤ ∑
j≤i

pj ≤ ßi, for all i ∈ I ,

∑
i: ij=k

pi =
1
m

, for all j = 1, . . . , n, k = 1, . . . , m,

∑
I

pi = 1, p ≥ 0,

(5)
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and note that evaluating val(t) for a fixed t corresponds to solving an LP problem. This is
critical to the design of our computational approach to solving (3), i.e., determining

CVaRα = inf
t∈<

val(t).

Since the solution to a moderately sized LP problem can be typically computed
in reasonable time, to obtain an initial sense of what range CVaRα may fall into, one
may simply compute a few values val(t) for some sample values t1, t2, . . .. We extend
this basic idea by combining it with a few more observations that follow. Recall that
evaluating CVaRα corresponds to solving the so-called bilinear optimization problem,
which is notoriously difficult, due to the inherent non-convexity of the objective with
potentially many local minima.

3.2. Compact Support in t

We now claim that in order to compute CVaRα, it is unnecessary to perform an
exhaustive search over all possible values of t ∈ <.

Theorem 1. Denote t = min
I

zi and t = max
I

zi. Then, the following holds

inf
t∈<

val(t) = min
t∈[t,t]

val(t).

Proof. Assume first that t > t: since (zi − t)+ = 0 for all i, we have val(t) = t and thus, the
value function val(t) is increasing for any t > t.

Consider now the case of fixed t, such that t < t. Let p denote an optimal probability
distribution resolving val(t) at t, and p denote an optimal probability distribution resolving
val(t) at t. Denoting ∆t = t− t ≥ 0, we have

val(t)− val(t) =

Ç
t +

1
1− α ∑

I
(zi − t)+ pi

å
−
Ç

t +
1

1− α ∑
I

(zi − t)+ p
i

å
= −∆t +

1
1− α ∑

I

Ä
(zi − t) pi − (zi − t− ∆t) p

i

ä
= −∆t +

1
1− α ∑

I

Ä
(zi − t) (pi − p

i
) + ∆t p

i

ä
=

α

1− α
∆t +

1
1− α ∑

I
(zi − t) (pi − p

i
)

≥ α

1− α
∆t ≥ 0,

where the last identity follows from the feasibility of p, namely, ∑I p
i
= 1, while the next

to last inequality follows from p being the optimal solution corresponding to t, which in
turn implies

∑
I

(zi − t)+ pi ≤∑
I

(zi − t)+ p
i
.

Therefore, val(t) is decreasing for t < t. Finally, since val(t) is a continuous function
minimized over a compact set, we can replace inf with min.

3.3. Key Properties of the Value Function

Since evaluation of the value function can be reduced to an LP with a parametric
objective, we can establish the next proposition.

Proposition 1. The function val(t) is a piecewise linear, continuous function, concave on every
subinterval [z(`), z(`+1)], where z(`) corresponds to re-indexing of zi values in non-decreasing order
so that z(`) ≤ z(`+1) for all ` = 1, . . . , mn. Furthermore, val(t) has finitely many linear segments.
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Proof. Observe that restricting t ∈ [z(`), z(`+1)], we can write val(t) = t + 1
1−α v(t) with

v(t) := inf
p,s,s

∑
zi≥z(`+1)

(zi − t) pi

s.t. ∑
j≤i

pj − si = ßi, for all i ∈ I ,

∑
j≤i

pj + si = ßi, for all i ∈ I ,

∑
i: ij=k

pi =
1
m

, for all j = 1, . . . , n, k = 1, . . . , m,

∑
I

pi = 1,

p, s, s ≥ 0

(6)

denoting the partial value function. In turn, determining v(t) may easily be recognised as a
linear optimization problem in standard minimisation form

v(t) = min
x

(c + t ∆c)T u

s.t. Au = b,
u ≥ 0.

Note that u = (p; s; s) is a vector of variables of dimension d = 3mn, A : <d → <r is a linear
function encoded as d× r matrix with r = 2mn + mn + 1 rows and b ∈ <r represents the
affine equality constraints stated for v(t). The t-parametric objective c + t ∆c corresponds to

ci =

ß
zi, i : zi ≥ z(`+1),
0 otherwise,

with ∆ci =

ß
−1, i : zi ≥ z(`+1),
0 otherwise,

(7)

where we allow a slight abuse of notation when indexing c and ∆c by the multi-index i.
Clearly, v(t) is a continuous piecewise linear concave function of t. By enumerating

the total number of possible bases, standard LP sensitivity analysis implies that on a given
subinterval t ∈ [z(`), z(`+1)] function v(t), and therefore val(t), consists of at most

(d
r
)

linear
segments. Since we have at most mn − 1 of such subintervals, we conclude that v(t) consists
of at most (mn + 1)

(d
r
)

linear segments, which also includes two end subintervals (−∞, z(1)]
and [z(mn), ∞).

The above bound on the number of linear segments comprising v(t) is very crude. Not
only do we take a very pessimistic bound

(d
r
)

on the number of vertices of a very special
polytope that describes the feasible probability distributions, we also ignore a special
“monotonic” structure in perturbations to the objective vector. Consequently, it is quite
natural to expect the number of such segments to be much smaller.

The above proposition, based on classical sensitivity analysis for LP, albeit correct,
may be misleading while designing a numerical scheme for minimising val(t). Specifically,
the asserted piecewise concavity of val(t) may suggest a potential existence of several
local minima (see Figure 1a). We remedy this in the next theorem, which gives a complete
characterisation of the partial value function. Along the way, we drastically reduce the
upper bound on the number of linear segments comprising val(t).
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Figure 1. Perceived behavior of val(t): (a) strict piecewise concavity, (b) convexity.

Theorem 2. The function v(t) is continuous, non-negative and non-increasing, satisfying v(t) = 0
for t ≥ z(mn) and v′(t) = −1 for t ≤ z(1). Moreover, v(t) is convex on < and linear on every
subinterval [z(`), z(`+1)].

Proof. Continuity and the tail-end behaviour of v(t) are established in the proof of Propo-
sition 1 and Theorem 1. Examining variational formulation (5), we easily note the non-
negativity and monotonicity of the partial value function, with the latter, due to the objective
coefficients (zi − t)+, being monotone in t. Linearity on [z(`), z(`+1)] follows as a conse-
quence of convexity—to be established shortly—and piecewise concavity in Proposition 1.
It remains to show convexity.

We show the convexity property by contradiction. First, introduce

vp(t) := ∑
I

(zi − t)+ pi

to be the partial value function restricted to a given feasible p. Observe that vp is convex,
piecewise linear non-increasing, and its derivative v′p(t), whenever defined, corresponds to
the dot product of p with the corresponding sub-vector of ∆c, as in (7). Thus, v′p(t) is non-
decreasing whenever defined. We also note that as t passes from the interval [z(`−1), z(`)] to
[z(`), z(`+1)], the number of −1 entries, i.e., the non-zeros in ∆c, is reduced by at least one.

If v(t) is strictly concave, there exists a cross-over point t=, characterized by t− <
t= < t+ and the corresponding optimal distributions p− and p+, resolving (6) such that
v−(t=) = v+(t=), with derivatives satisfying v′−(t−)>v′+(t−) and v′−(t+)>v′+(t+), where
v−(t) :=vp− (t) and v+(t) :=vp+ (t). Note that t− and t+ may be chosen close enough to t=

to warrant differentiability of the corresponding piecewise linear v+, v− on [t−, t=) and
(t=, t+]. Furthermore, without a loss in generality, we may assume that both v−(t), v+(t)
have either at most one break-point at z(`) = t= for some ` with t− ∈ (z(`−1), z(`)) and
t+ ∈ (z(`), z(`+1)), or no break-point at all with t−, t+ ∈ (z(`), z(`+1)), as can be seen in
Figure 2. By re-scaling and shifting t we can also assume t= ≡ 0 and −t− = t+ = 1

2 . With
the above notation, we have v(t) = min{v−(t), v+(t)} for t ∈ [−1/2, 1/2] and v′−(t) > v′+(t)
for t ∈ [−1/2, 0)

⋃
(0, 1/2].
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Figure 2. Hypothetical concavity of v(t): (a) z(`) = t=, (b) z(`) 6= t=.

Denote p(τ) = τp− + (1− τ)p+, τ ∈ [0, 1]. Note that p(τ) is feasible since the feasible
region of (6) is convex. Further, let us examine v(τ) := vp(τ)(1/2− τ). By the fundamental
theorem of calculus, we obtain

v(1/2) = v(0) +
∫ 1/2

0
v′τ(τ) dτ = v(t+) +

∫ 1/2

0
v′p(τ)(τ) dτ < v(t=),

where the inequality is due to the fact that |v′p(τ)(τ)| < |v′+(τ)|, for all τ ∈ (0, 1/2), since p−;
consequently, p(τ) carries less probability mass over the support of ∆c at t+ as compared
to p+. Since v(t=) is supposed to be the smallest over all feasible p at t=, the contradiction
is conspicuous. This completes the proof.

3.4. Two Computational Approaches

We now present two computational schemes for computing the sharp lower bound
CVaRα on CVaR given the constraints on the risks’ c.d.f.. The schemes are aimed at illustrat-
ing the advantages of exploiting the inherent structure of Problem 3 and range in order of
complexity, as well as the perceived numerical efficiency. The latter is further substantiated
in Section 5.

3.4.1. Naïve Scheme

Observe that the piecewise concavity of val(t) established in Proposition 1 implies
that the minimum of the value function may only occur at the end points of each interval
[z(`), z(`+1)]. Therefore, it suffices to compute val(zi) for all i and take the minimum value.
This gives rise to the naïve scheme.

Clearly, the naïve scheme requires access to an LP solver and runs in finite time. How-
ever, it requires solving a large number—namely mn—of (6)-type optimization problems,
where the problem dimensions also grow proportional to mn. As a result, the procedure
may become very computationally expensive for even modest values of m and n. Fur-
ther effort can be put towards reducing the computational requirements imposed by the
naïve scheme. For example, the LP problems for evaluating val(t) differ only in the objec-
tive function, and thus, may be well-suited for the so-called warm-start techniques, as in
simplex-type algorithms. In turn, the use of warm-starting may speed up solution times.

3.4.2. Epigraph Scheme

Unlike the naïve scheme, here we aim to take full advantage of the uncovered convexity
of the value function. This not only allows us to greatly reduce the computational efforts
required to determine the exact value CVaRα, but also permits the introduction of an
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alternative termination criterion when only an approximate answer is required within
some given absolute precision ε > 0.

We recall that an epigraph of a convex function can be obtained as an intersection
of half-spaces. In the case of a smooth function the half-spaces correspond to tangent
hyperplanes, and in the case of non-differentiable functions one may use half-spaces defined
by sub-gradients. Thus, given two consecutive values t− < t+ of t with appropriately
defined derivatives val′(t) of val(t), with values v− := val(t−), v+ := val(t+) and v′− :=
val′(t−) < 0, v′+ := val′(t+) > 0, we know that the minimal value val∗ of val(t) corresponds
to some t∗ ∈ [t−, t+]. In addition, we have val∗ ∈ [min(v−, v+), val(t̃)], where

t̃ =
v− − v+ + v′+t+ − v′−t−

v′+ − v′−

is the intersection of the supporting hyperplanes v′− (t− t−) + v− and v′+ (t− t+) + v+.
This can be seen in Figure 3. To refine the interval [t−, t+] and our estimate on val∗, we can
take the mid-point of the interval and adjust either t−, v−, v′− or t+, v+, v′+ accordingly.

Figure 3. Epigraph scheme.

Assuming that the data are given by α, m, n, ß, ß, and z, the scheme may be defined
recursively as a function whose declaration is given below using MATLAB notation

function [t−, t+, v−, v+, v′−, v′+] = Epigraph(t−, t+, v−, v+, v′−, v′+),

and is defined as follows.

1. [Input:] t− < t+, v′− ≤ 0, v′+ ≥ 0, v−, v+, problem data.
2. Set val∗ := min{v−, v+},
3. compute t̃ and v := val(t̃) by solving (5), recovering the optimal probability distribu-

tion p̃,
4. if v = val∗ then return,

5. set v′ := 1 +
1

1− α ∑
I

∆ci p̃i with ∆c corresponding to t̃ as in (7),

6. if v′ ≤ 0 set t− := t̃, v− := v, v′− := v′,
7. if v′ > 0 set t+ := t̃, v+ := v, v′+ := v′,
8. invoke Epigraph(t−, t+, v−, v+, v′−, v′+).
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9. [Output:] val∗ = min
t∈[t− ,t+]

val(t).

Clearly, in order to obtain CVaRα, we need to invoke Epigraph(t−, t+, v−, v+, v′−, v′+)
with initial values t− = t (≡ z(1)) and t+ = t (≡ z(mn)). If one desires to terminate the
procedure once the absolute precision ε is reached, such that val∗ ≤ CVaRα ≤ val∗ + ε,
it suffices to replace the function termination criteria val − v = 0 with min{−v′−(t̃ −
t−), v+(t+ − t̃)} ≤ ε.

For the convexity of val(t) and its tail behaviour from Theorem 2, we know that the
fastest decrease rate of the value function does not exceed

∣∣∣1− 1
1−α

∣∣∣ = α
1−α and therefore,

|val(t)− val(t + ∆t)| ≤ α∆t
1− α

, for all t, ∆t.

Thus, in order to achieve an ε precision, it suffices to have t+ − t− ≤ ε (1−α)
α . In turn,

recalling that at every iteration of the scheme the interval [t−, t+] is halved, we conclude

that the absolute ε precision can be attained in at most log2

(
1
ε ·

α (t−t)
(1−α)

)
recursive calls,

where the dominant work belongs to solving an LP instance of the form (6).
In a nutshell, although the epigraph scheme still relies on solving multiple LP instances

in order to recover CVaRα for fixed n, its worst-case run-time is bounded from above as a
polynomial function of the problem input. Furthermore, when an approximate solution is
sufficient, one would expect the number of calls to the LP solver to be dramatically less than
mn, as compared to the naïve scheme. We also note that the epigraph procedure is defined
recursively only in an attempt to improve clarity of exposition. Clearly, the procedure can
be unrolled into if ... else ... statements with no recursion. Just as with the naïve
scheme, one may try to take advantage of the warm-starting capabilities of an LP solver in
an attempt to speed up the computational times required.

4. Computable Upper Bound

It turns out that despite apparent similarities between Problems (3) and (4), the com-
plexity of evaluating CVaRα is quite different from that of CVaRα. Namely, the calculation
of CVaRα is much simpler. We first establish an essential property that is needed for proving
the main result of this section.

Proposition 2. The max-value function val(t) = t + 1
1−α v(t), where

v(t) := max
p ∑

I
(zi − t)+ pi

s.t. ßi ≤ ∑
j≤i

pj ≤ ßi, for all i ∈ I ,

∑
i: ij=k

pi =
1
m

, for all j = 1, . . . , n, k = 1, . . . , m,

∑
I

pi = 1, p ≥ 0,

is convex in t.

Proof. For fixed non-negative p, the objective function ∑I (zi − t)+ pi is convex in t. In
turn, v(t) is obtained by taking a supremum of convex functions vp(t), indexed by p, and
therefore val(t) is convex as well as a positive weighted sum of t and v(t).

Using convexity, we note that the epigraph-based scheme from Section 3.4.2 can readily
be adapted to computing the sharp upper bound of CVaRα. Furthermore, using classical
LP duality theory, finding the optimal t value corresponding to minimising val(t) may
equivalently be reformulated as solving a linear optimization problem. Let

Mj,k = {i : ij = k, i` = m for all ` 6= j} (8)
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and M =
⋃
j,k

Mj,k denote the set of multi-indices corresponding to sums of marginals,

including the total probability mass. For simplicity, from now on, we assume that the c.d.f.
bounds ß, ß are consistent with marginals, that is, ßi ≤ k

m ≤ ßi for all i ∈ Mj,k where the
marginal index sets are defined as in (8). If not, clearly, the problem of computing val(t)
is infeasible.

For clarity of exposition, we first slightly modify our formulation of v(t) from above.
Noting that the lower and upper bound requirements on the c.d.f. are clearly redundant for
i ∈ M, they may simply be replaced with more restrictive modified bounds ß′, ß

′
, where

ß′i =

®
k
m , i ∈ Mj,k, ∀j, k,
ßi, otherwise,

and ß
′
i =

®
k
m , i ∈ Mj,k, ∀j, k,
ßi, otherwise.

We are now ready to formulate the main result of this section.

Theorem 3. The upper bound defined in (4) can be computed as follows:

CVaRα := min
t,y,y

t +
1

1− α

Ä
−yTß′ + yTß

′ä
s.t. ∑

j≥i
y

j
−∑

j≥i
yj ≤ t− zi, for all i ∈ I ,

∑
j≥i

y
j
−∑

j≥i
yj ≤ 0, for all i ∈ I ,

y, y ≥ 0, t ∈ <,

Proof. Note that for any fixed t, the problem of computing v(t) is equivalent to solving
its dual

v∗(t) := min
y,y
−yTß′ + yTß

′

s.t. ∑
j≥i

y
j
−∑

j≥i
yj ≤ −(zi − t)+, for all i ∈ I ,

y, y ≥ 0,

where by strong LP duality, we know that v∗(t) = v(t). Furthermore, for any dual-feasible
point (y, y), by the weak duality property we have −yTß′ + yTß

′ ≥ v(t).
Noting that the dual-feasible region may equivalently be rewritten as stated in the

theorem, we finally observe that in order to compute the optimal t∗ that satisfies CVaRα =
val(t∗), it suffices to solve the concurrent linear minimisation problem with respect to t and
(y, y).

Finally, once the optimal value t∗ is known, the corresponding optimal values of p can
easily be computed by solving for v(t∗) as a linear maximisation problem, if further desired.

5. Numerical Results

In this section, we provide numerical illustrations of our findings from Sections 3 and 4.
First, we gauge how the computational requirements scale up with the problem dimensions
and identify one critical bottleneck in Section 5.1. To do this, we compare two ways
of implementing our approaches in MATLAB. One primarily relies on CVX with the
embedded open-source solver SDPT3, chosen for the sake of simplicity. The other approach
uses Gurobi Optimization, LLC (2023) and a direct problem formulation, as a potentially
more efficient option. CVX removes the inconvenience of carefully formulating the LP (6) to
near-standard form suitable for Gurobi, while potentially sacrificing some of the efficiencies.
On the other hand, the user-provided direct specification of the underlying LP may be
more of a challenge initially, but potentially gives some computational advantage when
solving the problem. Next, we propose an approach that allows us to circumvent one of the
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main computational obstacles, and illustrate the refined methodology on a real-life inspired
example in Section 5.2.

5.1. Verbatim Implementation

Our first goal is to obtain a sense of how the performance of our method scales up
with problem dimensions, as well as to gauge if the modeling environment and the LP
solver play a role. For this, we use a very modest Alienware laptop with a 2 core Intel i7
U640 CPU running at 1.2 GHz, 4 GB RAM, running Windows 7 x64, MATLAB R2013b,
CVX 2.0, and Gurobi 5.5.

Regardless of the approach, we rely on solving (5) or its variant, where the dimensions
of the problem grow proportional to mn—thus, polynomial in m and exponential in n.
Specifically, for the standard LP form of the partial value evaluation (6), the number of
variables and constraints grow as 3mn and 2mn + mn + 1, respectively, while the number
of non-zeros in the matrix of coefficients describing the affine constraint is roughly 2m2n ·Ä

m+1
2m

än
.2 Consequently, despite the fact that the fraction of non-zero entries in the matrix

of affine coefficients corresponding to (6) decreases exponentially in n, the number of non-
zeros still grows very rapidly with the number of risks. For instance, in case of m = 100 and
n = 3, one should expect to deal with a matrix containing more than 1011 non-zero entries
(of one), making solving such problems on a regular computer workstation prohibitively
expensive. Even with the availability of super-computing resources, one probably has to
resort to very specialized algorithms—e.g., Tardos (1986)—and linear algebra techniques to
exploit matrix sparsity structure efficiently for large values of m and n.

In Table 1 we report the average run-times for estimating sharp upper and lower
bounds for problems with varying n and m. For this and the other numerical experiments,
for each dimension, we generate 30 random problem instances, where Xi sample values
are chosen to be uniform between 0 and 1 for simplicity. CVX refers to only using CVX to
formulate the LP sub-problem and passes it to a selected solver, while tensor-like notation
is used inside the CVX code. CVX+ refers to us formulating the affine constraints of an LP in
vectorized form and letting CVX only pass the data to the solver. Direct refers to us both
formulating the problem and invoking the Gurobi solver directly, bypassing CVX. When
not specified, α = 0.95 and ε = 10−7.

Table 1. Average run-time (in seconds) for naïve and epigraph schemes for small size problems with
ε = 10−10.

SDPT3 Gurobi

Naïve Epigraph Naïve Epigraph

n m CVX CVX+ CVX CVX+ CVX CVX+ Direct CVX CVX+ Direct

2 2 2.59 2.53 6.71 6.77 1.41 1.38 0.10 6.80 6.66 0.27
4 9.26 8.38 17.04 16.16 4.06 3.80 0.19 8.01 7.52 0.33
6 21.85 18.49 18.79 16.85 8.76 8.03 0.36 8.28 7.40 0.38
8 42.94 35.09 20.75 17.76 16.13 13.97 0.84 8.51 7.41 0.50
10 77.72 61.51 22.35 18.25 26.60 22.32 1.76 9.20 7.70 0.73
12 149.49 117.61 29.06 25.27 41.82 33.68 3.57 9.95 8.17 1.11
14 264.68 200.38 35.92 31.02 63.71 49.53 7.29 10.59 8.40 1.66

3 3 16.05 13.67 19.68 17.10 6.51 6.11 0.29 8.04 7.59 0.37
4 42.80 35.11 22.57 18.86 15.36 14.05 0.83 8.46 7.70 0.53
5 109.92 87.24 27.32 22.98 32.05 28.60 2.57 9.18 8.23 0.95
6 299.76 224.36 39.94 33.52 61.86 53.93 8.40 10.06 8.90 1.91

Our first goal is to understand how the proposed methods scale with dimensions. As
expected, the computational cost escalates very rapidly when dimensions m, and especially
n, increase. We observe that the run-time heavily depends on the LP solver. For Gurobi,
here we used the simplex option, while experimenting with the barrier gave inferior results
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on this dataset; we suspect that the latter can be attributed to being able to take advantage
of a simplex warm-start. Even when no top-of-the-line commercial solver is available, one
can compute some bounds with n < 3 in reasonable time for small values of m.

We also note that, in general using CVX, as opposed to directly formulating the
problem and feeding it into a solver, poses some processing time overhead, especially for
smaller problems. While formulating the matrix of affine constraints, we rely on MATLAB
loops, which may potentially be sped up. Solving with n = 2 and m = 50 to within an
ε = 10−7 precision by using the epigraph scheme, MATLAB takes about 100 s to form a
single LP matrix of the coefficients in the standard form, while solving all the subsequent
LP problems takes roughly another 150 s.

For estimating the lower bound on CVaRα, between the two schemes, the epigraph-
based method is a clear winner over the naïve approach. The solution times grow with n
and m (see Tables 1 and 2), as well as the desired precision ε (see Table 3b). By comparing the
results in Tables 2 and 4, we conclude that computing the sharp upper bound is generally
cheaper, as compared to the lower bound. When computing an exact sharp upper bound,
direct LP embedding is preferred.

Table 2. Average run-time (in seconds) for the best lower bound estimation scheme—epigraph-based
with direct Gurobi—for small to medium size problems with ε = 10−7, with a run-time limit of
15 min.

n \m 3 6 9 12 15 20 30 40 50 60

2 0.24 0.30 0.48 0.91 1.71 4.76 28.08 93.44 240.52 543.52
3 0.29 1.62 16.87 114.93 600.53 - - - - -

Table 3. Average run-time (in seconds) for Gurobi-based epigraph scheme with respect to (a) α, with
ε = 10−5, and (b) ε.

(a) (b)

n m \ α 0.1 0.9 0.99 n m \ ε 10−3 10−5 10−7

2 20 3.47 3.93 4.21 2 20 3.47 3.96 4.56
30 20.36 23.36 25.61 30 19.24 22.29 27.53
40 68.34 74.08 85.97 40 64.46 79.07 92.04

3 6 1.16 1.37 1.46 3 6 1.16 1.35 1.62
9 11.83 13.90 14.47 9 12.22 14.14 16.84
12 77.88 95.16 100.65 12 81.13 96.21 122.45

Table 4. Average run-time (in seconds) for the upper bound using Gurobi-based epigraph and direct
LP embedding methods, with ε = 10−10, with a run-time limit of 15 min.

Method n \m 3 6 9 12 20 30 40 50 60

Epigraph 2 0.32 0.35 0.60 1.14 5.88 35.60 139.0 354.4 688.6
Direct LP 0.05 0.07 0.13 0.33 2.64 12.05 39.2 98.4 218.1

Epigraph 3 1.94 21.7 172.5 802.2 - - - - -
Direct LP 0.67 7.41 44.6 190.9 - - - - -

5.2. Stylized Practice-Inspired Example

Computing CVaR sharp bounds under given marginals and lower-orthant stochastic
ordering bounds on joint c.d.f.’s, and in particular sharp lower bound, entails solving a non-
convex (bilinear) optimization problem of potentially very high dimensionality. Namely,
we seek to determine the extreme values of mn variables representing the c.d.f. When
attempting to scale up the model sizes n and m, we are faced with an obvious memory
requirement issue. For instance, solving for n = 3, m = 100 in (3) entails formulating
a model with over 1011 non-zeros that requires almost 1000 GB of RAM if we operate



J. Risk Financial Manag. 2023, 16, 266 14 of 22

in standard double-precision arithmetic. The RAM requirement grows as m2n and it is
reasonable to expect a significant growth in the computational effort required to solve the
model as well.

However, it turns out that one could produce a much sparser equivalent representation
of lower and upper bound optimization models, allowing solving for sharp bounds with
n = 3, m = 100 sized models in a reasonable time, i.e., a couple of hours, on a reasonable
hardware, i.e., a multi-core station with enough RAM. Next, we present this refined
setup, along with a more practical illustration of our approach. The example is partly
based on work carried out outside of this manuscript, and has been further stylized to
avoid breaching any possible non-disclosure agreements. We focus on the lower bound
computation as it is more challenging; the upper bound evaluation can be refined in a
similar manner.

Assume an insurance company with a portfolio of three risks, located in (1) New
York (NY), (2) Miami (FL) and (3) Houston (TX), for which the policy covers economic
damages to certain buildings caused by hurricanes in these regions. The underwriter makes
decisions based on the hurricane intensity estimates that in turn are predicted based on an
atmospheric internal risk model. If Xk with k ∈ {1, 2, 3} is the economic damage for the
k-th risk in dollars, we know that Xk is Pareto(αk, λk), so that the c.d.f. along with the first
two moments are

F(x) = 1−
Å

λ

x + λ

ãα

, x ≥ 0, EX =
λ

α− 1
, VarX =

αλ2

(α− 2)(α− 1)2 ,

with

α1 = 5, α2 = 2.1, α3 = 2.7, λ1 = 7.92× 106, λ2 = 1.11× 107, λ3 = 7.36× 106

resulting in expected losses of USD 1.98 million, USD 10.07 million and USD 4.33 million,
respectively. Further, for each risk, the coefficient of variation (CV), a well-known measure
of risk, is 1.29, 4.58, and 1.96, so indeed the assets are risky, as expected. A large CV is
expected for coverage in more risky regions.

The underwriter has empirical evidence (based on atmospheric observational data) to
identify the marginal risk distributions, but does not have the knowledge to create a spatial
dependence model across the risks located in different regions. Geographical-dependent
ratings would be hardily available even to world-leading rating agencies. Therefore, the
underwriter has to rely on the available domain knowledge to come up with aggregate
risk estimates CVaRα(X1 + X2 + X3) based on the best possible information about the
risk position.

It is clear that Xk’s are not negatively associated, and thus, a lower bound on the joint
distribution, in terms of the lower-orthant (LO) stochastic ordering, can be given by the
independence model,

F(x1, x2, x3) = F1(x1)F2(x2)F3(x3),

where Fk is the c.d.f. of Xk, k = 1, 2, 3. The upper bound on the joint distribution, in terms
of LO, assumes that the NY economic damages are independent of the other two, while
economic damages from Miami and Houston could be strongly positive dependent, i.e.,
comonotonic, and therefore

F(x1, x2, x3) = F1(x1) min(F2(x2), F3(x3)).

In terms of our CVaR lower bound formulation (3), the above can be encoded via
discretizing the individual risks with some fixed m, so that xi,1 ≤ . . . ≤ xi,m, i = 1, 2, 3
correspond to Pareto distribution sample values or inverse Pareto-c.d.f.’s at mid-points
j = (j− 1/2)/m, with

ßi1,i2,i3 =
i1
m
× i2

m
× i3

m
, ßi1,i2,i3 =

i1
m
×max

Å
i2
m

,
i3
m

ã
.
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Our objective here is to evaluate the lower bound, specifically, CVaR.8 for n = 3, m = 100.
Using a sparse reformulation of (3), which we discuss next, this objective indeed can

be achieved in a reasonable computation time, here, in about 2 h, or 7554 s to be precise,
yielding CVaR.8 = 40.6 mn, corresponding to t∗ = 20, 914, 036, with the bound computed
to within the relative precision of 2.5× 10−7. For this set of computational experiments
we move to a more powerful machine, with an AMD EPYC 7313P 16-core processor and
256 GB RAM, running Ubuntu 22.04. To solve the subsequent LPs, we use Gurobi 10.0.1,
where the model was implemented using Gurobi’s Python API, and benchmarked using
Python 3.7. We want to emphasize that the chief enabling factor is the sparse reformulation
that reduces the number of non-zeros in the model by a square root, e.g., going from 1011

to about 106 for n = 3, m = 100, allowing the formulation of the model in RAM as well as
permitting vastly faster computations, which is further improved by moving to a powerful
computer server. The code can be found on GitHub, as per Zinchenko (2023).

A number of further computational experiments were performed with varying sparsi-
fied model dimensions for both n and m and the run-times were recorded. A model with
n = 3, m = 50 could now be solved in about 550 s, while n = 3, m = 150 is the current
computational limit for the above machine. The solve time scales super-linearly with the
problem dimensions. For lower dimensional models with n = 2, as before, the run-times
look more favourable; for instance n = 2, m = 1000 could be solved in 808 s.

The sparse reformulation of (3) is built on a pivotal observation that joint c.d.f.’s can
be defined recursively, using inclusion–exclusion formulas. Namely, if we introduce mn

auxiliary variables for the c.d.f. to represent

ßi := ∑
j≤i

pj,

we can express the c.d.f. bound constraints as upper and lower bounds on ß, and more
critically, define the c.d.f. quantities recursively. Namely, for n = 2 we have

ßi − pi = ßi1−1 + ßi2−1 − ßi1−1,i2−1,

and for n = 3,

ßi − pi = ßi1−1 + ßi2−1 + ßi3−1 − ßi1−1,i2−1 − ßi1−1,i3−1 − ßi2−1,i3−1 + ßi1−1,i2−1,i3−1,

where i = (i1, i2, i3) and ßi1−1 is a shorthand notation for ß(i1−1,i2,i3) and if some sub-index
becomes negative, we replace the corresponding c.d.f. entry with 0. This necessitates only
5 and 9 zeros per constraint, respectively, as opposed to an average of mn/2n in the original
model formulation carried out verbatim. To further promote sparsity, the marginals can
be reformulated in terms of the c.d.f. auxiliary variables, for instance, for the first risk we
can write

ß(j,m,m) = j/m, j = 1, . . . , m.

Thus, even though we gain another mn variables in our formulation, the revised non-zero
count grows as O(2nmn), as compared to the original O(m2n/2n). The construction can
easily be extended and implemented to any n.

While for n = 3, moving beyond m = 100 becomes prohibitively expensive, an
argument can be made that from a practical point of view perhaps this is also not so critical.
It is hard to imagine a situation where the empirical marginals are known so precisely
that it would necessitate spelling out marginal c.d.f. constraints in finer than 0.01(= 1/m)
granularity. It could also be more important to distill the extreme dependence trends for
the unknown multivariate c.d.f. rather than try to zero down on the very last digits of
CVaR bounds, and as such, our approach could provide a viable exploratory tool.
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6. A Special Case and Its Higher-Dimensional Variants

In this section we investigate the question of whether CVaR ordering may be consistent
with the ordering of the underlying distributions for higher-dimensional portfolios, i.e.,
n ≥ 3. We say that two n-dimensional random vectors X(1), X(2) have identical marginals if
Pr(X(1)

i ≤ x) = Pr(X(2)
i ≤ x) for all i = 1, . . . , n and x ∈ <. We first provide an alternative

proof to a well-known result that CVaR respects the so-called lower-orthant stochastic
ordering for n = 2 (Proposition 6.2.9. of Denuit et al. (2005)).

Theorem 4. Let n = 2 and X(1) and X(2) be two compactly supported random vectors with identical
marginals and corresponding aggregate risks Z(1) and Z(2). If X(1) �lo X(2), then for any α ∈ (0, 1)
we have that CVaRα

(
Z(1)) ≤ CVaRα

(
Z(2)).

Although the claim may be extended to a wide class of other risk measures, the previously
known proofs of the above theorem rely on the fairly exotic techniques from convex analysis.
The theorem itself becomes interesting in view of the potential computational savings it
may provide, when comparing the aggregate risks of bivariate distributions with identical
marginals, satisfying the lower-order stochastic ordering.

A natural question is whether such an ordering is preserved in higher dimensions,
n ≥ 3. We show that no such extension exists. In fact, one may argue that even the above
result with n = 2 is unnatural and goes against the intuition of what should happen. To
substantiate the latter point of view, we

• give an alternative and self-contained proof of the classical result from Theorem 4,
• state several potential extensions of such a result to higher dimensions, and
• provide counter-examples to show that no such extensions are true for n ≥ 3.

6.1. An Alternative Proof for n = 2

We start by recalling the inclusion–exclusion type criterion (for example, see Billingsley
(1995)), that characterizes a c.d.f.. The criterion ensures that the probability mass accumu-
lated within any hypercube is non-negative, and is commonly referred to as the rectangle
inequality.

For fixed n, consider a right-continuous non-decreasing F : <n → <, such that
limxi→−∞ F(x) = 0 for all i = 1, . . . , n, and limx1,...,xn→∞ F(x) = 1, F is a c.d.f. if and only if

2

∑
j1=1
· · ·

2

∑
jn=1

(−1)j1+···+jn F(ζ1,j1 , ζ2,j2 , . . . , ζk,jn ) ≥ 0,

for all ζi,1 < ζi,2, i = 1, . . . , n.
In particular, the rectangle inequality guarantees the existence of a probability mass

function (pmf) given a candidate non-decreasing step-like function on <n. From now
on, we consider an n-dimensional discrete random vector with values (x1,i1 , . . . , xn,in ),
1 ≤ i1, . . . , in ≤ m, placed on an m×m× · · · ×m rectangular grid, and the corresponding
pmf pi, i ∈ I . Thus, for n = 2 the above inequalities become

0 ≤ F(ζ1,2, ζ2,2)︸ ︷︷ ︸
φ2,2

− F(ζ1,1, ζ2,2)︸ ︷︷ ︸
φ1,2

− F(ζ1,2, ζ2,1)︸ ︷︷ ︸
φ2,1

+ F(ζ1,1, ζ2,1)︸ ︷︷ ︸
φ1,1

,

and for n = 3 we have

0 ≤ F(ζ1,2, ζ2,2, ζ3,2)︸ ︷︷ ︸
φ2,2,2

− F(ζ1,1, ζ2,2, ζ3,2)︸ ︷︷ ︸
φ1,2,2

− F(ζ1,2, ζ2,1, ζ3,2)︸ ︷︷ ︸
φ2,1,2

− F(ζ1,2, ζ2,2, ζ3,1)︸ ︷︷ ︸
φ2,2,1

+ F(ζ1,1, ζ2,1, ζ3,2)︸ ︷︷ ︸
φ1,1,2

+ F(ζ1,1, ζ2,2, ζ3,1)︸ ︷︷ ︸
φ1,2,1

+ F(ζ1,2, ζ2,1, ζ3,1)︸ ︷︷ ︸
φ2,1,1

− F(ζ1,1, ζ2,1, ζ3,1)︸ ︷︷ ︸
φ1,1,1

,
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where ζi,ji values correspond to the atoms on the grid, that is, ζi,1 = xi,ki
and ζi,2 = xi,k′i

,
with ki < k′i, i = 1, 2, 3. The latter expressions can be abridged to

0 ≤ φ2,2 − φ1,2 − φ2,1 + φ1,1, (9)

and

0 ≤ φ2,2,2 − φ1,2,2 − φ2,1,2 − φ2,2,1 + φ1,1,2 + φ1,2,1 + φ2,1,1 − φ1,1,1 (10)

introducing φj1,j2,... = F(ζ1,j1 , ζ2,j2 , . . .). The summation sign pattern for values of F, or
equivalently φi1,i2,..., may be best illustrated graphically, as seen in Figure 4.

The following elementary, yet critical, observation can be made and is given as Propo-
sition 3.

Proposition 3. Along with pmf p ∈ <mn
, consider the c.d.f. ß ∈ <mn

and the survival function
s ∈ <mn

, defined by the corresponding linear transformations

Π : p 7→ ß, defined as ßi = ∑
j≤i

pj and S : p 7→ s, defined as si = ∑
j≥i

pj.

Then, for any z ∈ <mn
we have

pTz = ∑
I

pi zi =
Ä

Π−1z
äT

(Sp) =
Ä

S−1z
äT

(Πp).

The proof of the above proposition, although somewhat tedious, simply relies on accounting
for the indices in the summation ∑

I
pi zi. We also note that for n = 2, the c.d.f. ordering

of two distributions with identical marginals is equivalent to the ordering of the survival
functions.

Figure 4. Rectangle inequality summation sign pattern.

Lemma 1. Let the two bivariate discrete random variables X(1) and X(2) have identical marginals
and the corresponding c.d.f. ß(1), ß(2). Then, ß(1)

i ≤ ß(2)
i , ∀i, if and only if s(1)

i ≤ s(2)
i , ∀i.

The proof is a straightforward implication of the inclusion–exclusion type fact that

Pr
(
X1 > x1, X2 > x2

)
= 1− Pr

(
X1 ≤ x1

)
− Pr

(
X2 ≤ x2

)
+ Pr

(
X1 ≤ x1, X2 ≤ x2

)
.

Finally, we are now able to prove Theorem 4.
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Proof of Theorem 4. The sub-problem (6) can be re-parameterized using the survival func-
tion si,

v(t) = inf
s

Ä
Π−1(z− t)+

äT
s

Å
≡ inf

p
(z− t)T

+ S−1Sp
ã

s.t. Si ≤ si ≤ Si, for all i ∈ I ,

si =
m− k + 1

m
, for all i = (1, k) or (k, 1), k = 1, . . . , m,

s(1,1) = 1,
S−1s ≥ 0,

(11)

where the survival function bounds Si, Si may easily be computed applying the inclusion–
exclusion type formula similar to that in Lemma 1.

We now make a critical observation, that Π−1(z− t)+ ≥ 0 for all t. From the definition
of aggregate risk values z, we observe that Π−1(z− t)+ ≥ 0 if and only if the rectangle
inequality (9) holds for all

φ1,1 =
(
x1,i1 + x2,i2 − t

)
+ ≡

(
z(i1,i2) − t

)
+

, φ1,2 =
Ä

x1,i1 + x2,i′2
− t
ä
+
≡
Ä

z(i1,i′2) − t
ä
+

,

φ2,1 =
Ä

x1,i′1
+ x2,i2 − t

ä
+
≡
Ä

z(i′1,i2) − t
ä
+

, φ2,2 =
Ä

x1,i′1
+ x2,i′2

− t
ä
+
≡
Ä

z(i′1,i′2) − t
ä
+

,

with 1 ≤ i1 < i′1 ≤ m, 1 ≤ i2 < i′2 ≤ m and any t. Since x1,i1 ≤ x1,i′1
and x2,i2 ≤ x2,i′2

, we
also have partial ordering of ζ values, namely

φ1,1 ≤ φ1,2 ≤ φ2,2 and φ1,1 ≤ φ2,1 ≤ φ2,2.

The range of all t values may clearly be partitioned into T− = (−∞, z(i1,i2)], T = (z(i1,i2), z(i′1,i′2))
and T+ = [z(i′1,i′2), ∞). Therefore, there are three possible cases.

(a) t ∈ T−: rectangle inequality (9) clearly holds as

0 =
(
x1,i1 + x2,i2 − t

)
−
Ä

x1,i1 + x2,i′2
− t
ä
−
Ä

x1,i′1
+ x2,i2 − t

ä
+
Ä

x1,i′1
+ x2,i′2

− t
ä

.

(b) t ∈ T : the validity of the rectangle inequality may easily be established by assuming,
without a loss in generality, that z(i1,i′2) ≤ z(i′1,i2) and considering further sub-cases
depending on where the value of t falls with respect to z subintervals. For example, if
t ∈ (z(i1,i2), z(i1,i′2)], then φ1,1 > z(i1,i2) − t, and thus, the rectangle inequality results in
positive mass. That is,

0 <
(
x1,i1 + x2,i2 − t

)
+ −
Ä

x1,i1 + x2,i′2
− t
ä
−
Ä

x1,i′1
+ x2,i2 − t

ä
+
Ä

x1,i′1
+ x2,i′2

− t
ä

.

(c) t ∈ T+: clearly the inequality holds as all φ values are 0.

Therefore, Π−1(z− t)+ ≥ 0 indeed holds.
To complete the proof, consider problem (11), where S and S correspond to X(1) and

X(2), respectively. Due to the non-negativity of the objective coefficients Π−1(z− t)+ in (11),
clearly CVaRα corresponds to X(1). Similarly, considering a variant of (11) to evaluate
the upper CVaRα bound, we conclude that CVaRα corresponds to X(2). The fact that
CVaRα ≤ CVaRα completes the proof.

6.2. A Few Possible Generalizations and Some Counter-Examples

We first provide the definitions of some stochastic ordering and for two multivariate
risks X(1), X(2) ∈ <n we define

1. upper-orthant ordering X(1) �uo X(2) if Pr(X(1) > x) ≤ Pr(X(2) > x) for all x ∈ <n;
2. lower-orthant ordering X(1) �lo X(2) if Pr(X(1) ≤ x) ≤ Pr(X(2) ≤ x) for all x ∈ <n;
3. concordance ordering X(1) �co X(2) if X(1) �uo X(2) and X(1) �lo X(2);
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4. persistent ordering X(1) �po X(2) if X(1) �uo X(2) and X(1) �lo X(2).

Note that, due to Lemma 1, persistent ordering for n = 2 results in identical distri-
butions, and is therefore not interesting to be investigated for the bivariate case. Recall
from the proof of Theorem 4, that for n = 2, the persistence of CVaR ordering relies on
the implied upper-orthant stochastic ordering of the respective risks. Consequently, in
search of an extension of such a result to n = 3, the following question appears to be
a natural place to start: Is it true that for trivariate distributions X(1) �uo X(2), we have
CVaRα

(
Z(1)) ≤ CVaRα

(
Z(2)) for all α ∈ (0, 1), with Z(1), Z(2) being the corresponding

aggregate risks?
From now on, we fix n = 3 and the marginals of X(1), X(2) to be uniform. The key to

constructing a counter-example to the above is the failure of the rectangle inequality (10)
over (z− t)+ values. In turn, this results in a re-parameterized three-dimensional analogue
of (11) that has both positive and negative objective coefficients Π−1(z − t)+ for some
suitably chosen t. Specifically, consider the only relevant CVaR estimation values of t that
correspond to zi, i ∈ I , in accordance with Theorem 2. We claim that for carefully chosen
z, we can pick two values t+ and t± such that Π−1(z − t+)+ ≥ 0, while Π−1(z − t±)+
contains both positive and negative entries. As a consequence of Π−1(z − t+)+ being
sign-indeterminant, when estimating CVaRα, CVaRα with bounds S, S corresponding to
the respective distributions X(1), X(2), it is natural to expect that we may end up having
CVaRα < CVaRα for some values of α as well as CVaRα > CVaRα for other values of
α. From here, it may simply suffice to pick “correct” scaling constants α in extremal
characterisations of CVaR.

To make this precise, consider the set of risk values for m = 2 and m = 3 in Table 5,
with aggregate risk values depicted on the hypercube lattice in Figure 5. Take t+ = 0,
t± = 1. Clearly, rectangle inequality (10) holds at t+ and results in negative mass at t±, due
to the fact that (φ1,1,1 − t)+ > φ1,1,1 − t.

Table 5. Trivariate risk sample values.

Risk xi,1 xi,2 xi,3

i = 1 0 100 200
i = 2 0 10 20
i = 3 0 1 2

��

��

��

� �

Figure 5. Trivariate aggregate risk values with m = 2.
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Now, we can use z values to produce a desired counter-example for upper-orthant
ordering. To do so, we can form an LP problem to maximize the difference between two
partial value-type estimates ∑I (z− t)+ p(1) and ∑I (z− t)+ p(2). We subject both pmfs p(1)

and p(2) to have identical marginals, and the resulting survival functions s(1) = Sp(1) and
s(2) = Sp(2) to satisfy the upper-orthant ordering, i.e., s(1) ≤ s(2). The last problem can be
solved for all t = zi, i ∈ I , to extract an example.

A similar exercise can be carried out for the other stochastic orderings. Thus, for the
sake of brevity, we give only a summary of our findings in Tables 6 and 7. In order to
verify the results, it suffices to perform a direct calculation. For instance, with respect to
the upper-orthant ordering, observe that Z(1) takes values 0, 11, 101, and 110, and Z(2)

takes values 1, 10, 100, and 111 all with equal probabilities of one-quarter. Consequently,
CVaR.1

(
Z(1)) = 61 2

3 and CVaR.1
(
Z(2)) = 61 5

9 . Further, one can verify that CVaRα
(
Z(1)) >

(<)CVaRα
(
Z(2)) holds for any α < (>).5.

Table 6. Cases in which CVaRα
(
Z(1)) > CVaRα

(
Z(2)).

Ordering α i p(i)
(1,1,1) p(i)

(2,1,1) p(i)
(1,2,1) p(i)

(2,2,1) p(i)
(1,1,2) p(i)

(2,1,2) p(i)
(1,2,2) p(i)

(2,2,2)

�uo 0.1 1 1/4 - - 1/4 - 1/4 1/4 -
2 - 1/4 1/4 - 1/4 - - 1/4

�lo 0.9 1 - 1/4 1/4 - 1/4 - - 1/4
2 1/4 - - 1/4 - 1/4 1/4 -

�po 0.1 1 1/4 - - 1/4 - 1/4 1/4 -
2 - 1/4 1/4 - 1/4 - - 1/4

Table 7. Cases in which CVaRα
(
Z(1)) < CVaRα

(
Z(2)).

Ordering α i p(i)
(1,1,1) p(i)

(2,1,1) p(i)
(1,2,1) p(i)

(2,2,1) p(i)
(1,1,2) p(i)

(2,1,2) p(i)
(1,2,2) p(i)

(2,2,2)

�uo 0.9 1 1/4 - - 1/4 - 1/4 1/4 -
2 - 1/4 1/4 - 1/4 - - 1/4

�lo 0.1 1 - 1/4 1/4 - 1/4 - - 1/4
2 1/4 - - 1/4 - 1/4 1/4 -

�po 0.9 1 1/4 - - 1/4 - 1/4 1/4 -
2 - 1/4 1/4 - 1/4 - - 1/4

Interestingly, counter-examples to lower/upper-orthant and persistent orderings re-
quire a distribution supported at vertices of a single hypercube, that is, m = 2. On the other
hand, the concordant ordering appears to require more degrees of freedom, e.g., m = 3.
Note that in the latter case, due to the risks being potentially supported on mn = 27 vertices,
we present the example in a “sparse” format, as seen in Table 8.

Table 8. Trivariate concordant risks with CVaR.5(Z(1)) > CVaR.5(Z(2)) and CVaR.9
(
Z(1)) <

CVaR.9
(
Z(2)).

i (2,1,1) (3,1,1) (2,3,1) (3,3,1) (1,2,2) (2,1,3) (3,1,3) (2,3,3) (3,3,3)

zi 100 200 120 220 11 102 202 122 222

p(1)
i 1/6 - - 1/6 1/3 - 1/6 1/6 -

p(2)
i - 1/6 1/6 - 1/3 1/6 - - 1/6

7. Conclusions

The problem of finding the entire spectrum of values for CVaR of a sum of dependent
random variables under dependence uncertainty could be approached in various ways.
Under restrictive assumptions, analytical approaches are implementable, but the bounds
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are often loose, and occasionally, not sharp. Even if the sharpness issue is not present, the
lower and upper bounds are typically attained under dependence models that are difficult
to justify as feasible in practice, especially for portfolios consisting of many risks, since such
extreme dependence models are not realistic.

Our contribution is two-fold. Firstly, we provide a first-in-its-class numerical method
for constrained CVaR estimation, when the marginal distributions are known while only
the bounds are available for the joint distribution. The latter setting is backed up by
many observational data, where the dependence structure is rarely computable even if
multivariate observational data are available. As a result, the lower and upper sharp
bounds of the CVaR-based aggregate risk can be found. We analyse the complexity of
the proposed methods for calculating these bounds, as well as substantiate our findings
via numerical illustrations. Our approach trivially generalizes to non-uniform marginals.
Despite the fact that the computational cost increases very rapidly with the number of risks,
we believe that the method may still be used as a viable exploratory tool when dealing with
a relatively large risk portfolio. Finally, we show how the run-times may be significantly
improved, by exploiting the very special structure of the underlying linear optimization
problems at the formulation stage.

Secondly, it is known that CVaR respects the so-called lower-orthant stochastic or-
dering for two-dimensional portfolios. Yet, no similar result has yet been established
or disproved for higher dimensions. As a by-product of our analysis, using elementary
LP techniques, we show that no such extensions are possible. Specifically, we construct
trivariate counter-examples that demonstrate a lack of aggregate risk monotonicity under
upper, lower-orthant, concordant, and persistent stochastic orderings. We also give a
self-contained alternative proof for the bivariate risk case, and point out the exact reason
why higher-dimensional extensions are not possible.
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Notes
1 For a multivariate vector (X1, . . . , Xn) comonotonicity formally is defined as follows: there exists a random vector Z and

non-decreasing functions fk for all 1 ≤ k ≤ n such that Pr(Xk = fk(Z)) = 1 for all 1 ≤ k ≤ n.
2 Intuitively, on average, for a uniform random integer number between 1 and m, exactly m+1

2m · 100% of integers in 1, . . . , m are less
than or equal to the chosen number. Observing that the c.d.f. constraints have non-zeros at exactly such “lesser” sub-indices
along each dimension, a proof can be established by induction.
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