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Abstract: The variance–covariance matrix is a multi-dimensional array of numbers, containing
information about the individual variabilities and the pairwise linear dependence of a set of variables.
However, the matrix itself is difficult to represent in a concise way, particularly in the context of
multivariate autoregressive conditional heteroskedastic models. The common practice is to report the
plots of k(k− 1)/2 time-varying pairwise conditional covariances, where k is the number of markets
(or assets) considered; thus, when k = 10, there will be 45 graphs. We suggest a scalar measure of
overall variabilities (and dependences) by summarizing all the elements in a variance–covariance
matrix into a single quantity. The determinant of the covariance matrix Σ, called the generalized
variance, can be used as a measure of overall spread of the multivariate distribution. Similarly, the
positive square root of the determinant |R| of the correlation matrix, called the scatter coefficient,
will be a measure of linear independence among the random variables, while collective correlation
+(1− |R|)1/2 will be an overall measure of linear dependence. In an empirical application to the six
Asian market returns, these statistics perform the intended roles successfully. In addition, these are
shown to be able to reveal and explain the empirical facts that cannot be uncovered by the traditional
methods. In particular, we show that both the contagion and interdependence (among the national equity
markets) are present and could be quantitatively measured in contrast to previous studies, which
revealed only market interdependence.

Keywords: generalized variance; collective correlation; scatter coefficient; multivariate GARCH
models

1. Introduction

In the field of empirical finance, multivariate generalized autoregressive conditional
heteroskedastic (GARCH) models have been widely used (for example, see Bauwens
et al. (2006) and Silvennoinen and Terasvirta (2009) for surveys). Multivariate extension
of the univariate GARCH model is desirable, considering the growing interest on inter-
relationships between different financial markets. However, unlike the univariate GARCH
case where we have scalar sequence of conditional variances, say, {ht : t = 1, 2, · · · , T},
in the multivariate case (say, with k markets), we have to deal with a sequence of k× k
variance–covariance (or simply variance, hereafter) matrices {Ht : t = 1, 2, · · · , T}. When
we have a sequence of matrices {Ht}, it is very hard to get an idea of the overall volatility,
and to make comparisons. For example, comparison of the conditional variance matrices of
Asian and European markets is not so immediate. Likewise, correlations of the multivariate
system are also given in a matrix form, which makes it difficult to analyze the changes of
the overall market interdependence.

Previous empirical literature relied on pairwise comparisons. When we consider the k
market returns, there are k(k− 1)/2 pairwise correlation coefficients. Solnik et al. (1996)
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plotted a series of pairwise time varying correlations to show the general increase of the inter-
market dependence over the period from 1958 to 1995. To measure the comovements among
the markets, Caporale et al. (2005); Engle and Sheppard (2001) relied on the matrix-form
tables of correlation values and multiple plots of pairwise correlations. Recently, Siddiqui
et al. (2022) studied the contagion effect from the developed markets to the emerging
markets by comparing numerous pairwise correlations before and after the COVID-19
pandemic. The problem of these studies is that, for models with time-varying correlations,
a few of correlation coefficients may behave differently from others even when it is strongly
believed that most markets should move in unison responding to a market condition
such as a global financial crisis or the COVID-19 pandemic. It is highly probable that the
individual correlation elements may move differently from the general pattern, reflecting
country-specific factors or the different degree of spillover effect on each market. The
conflicting time-movement of the k(k− 1)/2 pairwise-correlation coefficients would not
allow us to draw a definite conclusion. Therefore, the inference on the problems such as the
existence of contagion or market comovement, which are very important issues particularly
during the turbulent-market periods, might not be convincing enough.

In this paper, we propose to use a single measure of overall variabilities or dependences
by summarizing all the elements in a variance (or a correlation) matrix into a scalar quantity.
The variance and correlation matrices contain a k× k array of numbers, representing all the
information about the individual variabilities and the pairwise covariabilities; however,
they are difficult to interpret in a concise way. Therefore, summarizing the information
contained in the variance (or correlation) matrix into a single number is desirable for easy
interpretation of the overall variance (or correlation) inherent in the multivariate system.

The determinant of the variance matrix, called the generalized variance, can be used
as a measure of overall spread of a multivariate distribution. The generalized variance
extracts the information about the system-wise variability from the variance matrix and
has a nice geometric and economic interpretation. Similarly, the positive square root of the
determinant of the correlation matrix R, called the scatter coefficient, is a measure of linear
independence among the random variables, while collective correlation +(1− |R|)1/2 provides
a measure of overall dependence. These measures are not new. Almost a century earlier,
Frisch (1929) introduced these simple and natural algebraic tools. He stated (p. 48) these
measures reveal “the most essential features of the statistical materials at hand”. Wilks
(1932) discussed the sampling distributions of some of these measures when the sampling
was from a multivariate normal population.

We demonstrate the usefulness of these variance (or correlation) measures using
33 years’ (1985–2017) weekly data from six Asian stock markets: Japan, Hong Kong,
Singapore, Korea, Thailand, and Indonesia. Empirical results show that these measures
are able to offer objective statistical evidences to the issues discussed in the literature,
particularly about the 1997 Asian financial crisis. For example, the collective correlations,
measuring regional market comovement, were found to move up to one level higher after
the Asian crisis. Considering the fact that financial liberalizations in east Asia was led
by the Asian crisis, this founding corroborates Quinn and Voth (2008), who stated that
emerging markets’ comovements increase after stock market liberalizations. In addition, the
generalized variance combined with the multivariate GARCH model successfully exhibits
extreme volatility during major events, such as the gulf war in late 1990, the Asian financial
crisis in 1997, and the US subprime crisis in 2008, and its effects on Asian markets.

The scalar measures summarizing the volatilities and correlations of the multivariate
system can be useful tools in many research areas of economics and finance. For example,
these measures can be straightforwardly applied to the issue of market comovements dur-
ing turbulent periods. This issue is important for both portfolio managers and regulators,
since international diversification benefits seem to decrease when they are most needed,
i.e., during periods of market turbulence.

These statistics can also be practical tools for fund managers investing in multiple
assets. The single-quantity measures of volatilities and correlations of many assets will pro-
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duce clear measurements of the size of portfolio diversification effects and risk. Especially
the scalar measures applied to the conditional covariance (or correlation) matrix estimated
from multivariate GARCH models produce an indicator that will instantaneously track the
portfolio risk over time.

The layout of the rest of the paper is as follows. Section 2 formally introduces scalar
measures termed as generalized variance and collective correlation, respectively, as mea-
sures of overall variability and linear dependence. Section 3 presents empirical applications.
Finally, Section 4 offers some concluding remarks.

2. Generalized Variance and Collective Correlation

For the univariate case, the scalar variance σ2 is used to measure the variation in
the underlying variable. When we have k variables, the variation is described by a k× k
variance matrix Σ = ((σij))i,j=1,··· ,k, which contains k variance and k(k− 1)/2 covariance
terms. It is often desirable to summarize the information contained in Σ with a single
numerical value. One choice for this scalar measure is the determinant, |Σ|, which plays in
k dimensions the role played by σ2 in one dimension. Frisch (1929, p. 53) called |Σ|1/2 the
collective standard deviation, which reduces to σ when k = 1. Wilks (1932, p. 476) termed |Σ|
the generalized variance of the distribution. In the statistics literature, the term “generalized
variance” is quite familiar (for instance, see Cramér (1946, p. 301); Giri (1977, p. 125) and
Serfling (1980, p. 139)) and we will call it that way. The usefulness of |Σ| as a measure of
overall spread of the distribution is best explained by the geometrical fact that |Σ|measures,
as we will discuss shortly, the hypervolume that the distribution of the random variables
occupies in the k-dimensional space.

While the determinant of the variance matrix Σ measures the variability of the multi-
variate system, the determinant of the correlation matrix R can be used as a scalar measure
of the linear independence. Frisch (1929, p. 51) termed the positive square root of |R| the collec-
tive scatter coefficient, and the positive square root of 1− |R| the collective correlation coefficient.
Note that the collective correlation coefficient reduces to the simple correlation coefficient ρ
when k = 2. For general k, using the decomposition Σ = ΛRΛ, Λ = diag(σ1, σ2, · · · , σk),
the determinant |R|may be written as:

|R| = |Σ|
σ2

1 σ2
2 · · · σ2

k
. (1)

Just like the univariate variance σ2, the generalized variance depends on the units of
measurements. On the other hand, as it is clear from (1), the scatter coefficient is unit-free
and hence may be used as an overall measure of linear independence in the k dimension.

2.1. Statistical Interpretation of Generalized Variance

The generalized variance can be interpreted using the concepts of principal component
analysis. We can write:

Σ = UΛU′, (2)

where U = [u1 · · · uk] is an orthonormal matrix of eigenvectors and Λ = diag(λ1, · · · , λk)
is a diagonal matrix of eigenvalues of Σ. As we know, the eigenvectors u1, · · · uk are also the
principal components of the matrix Σ. The eigenvalues λ1 ≥ · · · ≥ λk ≥ 0 are nonnegative
since Σ is positive semidefinite. For a simple illustration, let us consider Figure 1, the scatter
plots of the normal random numbers with ellipses of 95% confidence interval, when the
variance matrices are, respectively, S1, S2, S3, and S4:

S1 =

(
3 2
2 3

)
, S2 =

(
3 −2
−2 3

)
, S3 =

(
5 0
0 1

)
, S4 =

(√
5 0

0
√

5

)
. (3)

The eigenvalues of S1, S2, and S3 are the same, namely, λ1 = 5 and λ2 = 1, while for S4,
λ1 = λ2 =

√
5. The eigenvalues λ1, λ2 represent the distances from the center to the surface
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of the ellipsoid, while the eigenvectors u1, u2 provide the directional information of the
distribution. In other words, λ1 and λ2 tell us how the dataset is spread out along the
principal components, which are the eigenvectors.
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Figure 1. The scatter plots of random numbers from the normal distributions with ellipses of 95%
confidence interval. The covariance matrices S1, S2, S3, and S4 defined in (3) were used for the graphs
(i), (ii), (iii), and (iv), respectively.

Generalized variance (GVAR) summarizes the distances in all directions

GVAR = |Σ| =
k

∏
i=1

λi,

thus giving us a scalar quantity in place of k(k + 1)/2 distinct elements. It is not surprising
that GVAR is computed only with the eigenvalues, disregarding the eigenvectors (which
convey the information about positive/negative correlation, as in Figure 1), since it mea-
sures the size of overall pure variability of the multivariate system, not the directions of its
movements.

It is, however, desirable to complement |Σ| with additional information about the
system variation. As shown above, the eigenvalues decompose the overall variability in k
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directions. Reporting the individual values λ1, λ2, · · · , λk along with GVAR will therefore
be useful for obtaining a better and broader picture of variability.

2.2. Statistical Properties of the Generalized Variance

The GVAR has an undesirable property that it depends on the units of measurement.
By partitioning the k× k dimensional matrix Σ (now denoted as Σk), we can write:

|Σk| =
∣∣∣∣ Σk−1 σ1,··· ,k−1;k
σ′k;1,··· ,k−1 σ2

k

∣∣∣∣
= |Σk−1|(σ2

k − σ′k;1,··· ,k−1Σ−1
k−1σ1,··· ,k−1;k).

Using the formula for the multiple correlation coefficient Rk;1···k−1 (see Anderson (1984,
p. 39) for details),

Rk;1···k−1 =

√
σ′k;1,··· ,k−1Σ−1

k−1σ1,··· ,k−1;k

σk
,

the determinant |Σk| can now be expressed as:

|Σk| = |Σk−1|σ2
k (1− R2

k;1···k−1). (4)

Thus, we can make |Σk| greater (or smaller) than |Σk−1| by choosing the units of the kth
variable Yk in such a way that V(Yk|Y1,··· ,k−1) = σ2

k (1− R2
k:1···k−1) is greater (or smaller)

than one.
The generalized variance, however, is invariant under rotation. It does not change

by the multiplication of the variance matrix with a rotational matrix L whose determinant
is 1, since |LΣ| = |L||Σ| = |Σ|. The matrices S2, S3, and S4 can be obtained from S1 by
premultiplying, respectively, with the rotational matrices L2, L3, and L4:

L2 =

(
13/5 −12/5
−12/5 13/5

)
, L3 =

(
3 −2
−2/5 3/5

)
, L4 =

(
3/
√

5 −2/
√

5
−2/
√

5 3/
√

5

)
.

Even though the four populations corresponding to Si(i = 1, 2, 3, 4) differ in their shape,
the areas (i.e., the determinants) of the ellipses in Figure 1 covering 95% of the scattered
points (assuming bivariate normality) are the same. This result is not surprising, given
that GVAR measures the overall variance of the multivariate system, disregarding the
distributional shape.

We now discuss an important result relating to the determinants of two variance
matrices Σ1 and Σ2 (see Horn and Johnson (1985, p. 471)), which will further strengthen
the importance of generalized variance as a measure of overall variability.

Proposition 1. Let Σ1 and Σ2 be the two variance matrices, of which Σ2 is nonsingular. Then,
Σ2 ≥ Σ1 (i.e., Σ2 − Σ1 is positive semidefinite) implies |Σ2| ≥ |Σ1|.

Note that the reverse of this result may not be true, which can be easily seen by the
following simple counter-example. Taking

Σ1 =

(
2 1
1 2

)
and Σ2 =

(
2 0
0 2

)
,

we have |Σ2| ≥ |Σ1|; however, Σ2 − Σ1 is not positive semidefinite. Therefore, the positive
semidefiniteness of Σ2 − Σ1 is a sufficient (but not a necessary) condition for “more” vari-
ability. As a test for parameter stability, Rigobon (2003) proposed the determinant of the
change in the variance matrix (DCVM) defined as:

DCVM =
|Σ̂2 − Σ̂1|

σ̂
, (5)
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where Σ̂2 and Σ̂1 are the estimated variance matrices of asset returns, respectively, for the
periods 2 and 1, and σ̂ is the relevant standard error. Dungey et al. (2004) went one step
further to claim that if the volatility increases during period 2, then DCVM > 0. However,
given our above discussion, volatility during period 2 can be larger even when DCVM < 0.
Proposition 1 clearly shows that a relevant quantity to consider should be |Σ̂2| − |Σ̂1| scaled
by an appropriate standard error.

2.3. Scatter Coefficient

Frisch (1929)’s scatter coefficient, denoted as |Rk|1/2 for k variables, is a measure of the
degree of “non-singularity” of the distribution. It will reach its maximum when any two
vectors of observations (yi1, · · · , yin)

′ and (yj1, · · · , yjn)
′ (i 6= j) are orthogonal, or in other

words, the variables Yi and Yj are independent for all i, j = 1, · · · , k. On the other hand, it
will be smaller when two or more of these vectors are oblique. Using (1) and by repeated
application of Equation (4), we have:

|Rk|1/2 = (1− R2
k:1···k−1)

1/2(1− R2
k−1:1···k−2)

1/2 · · · (1− R2
2:1)

1/2, (6)

where the ith term (i = 1, 2, · · · , k− 1) on the right hand side represents the proportion
of unexplained variation in a regression of yk−i+1 on yk−i, yk−i−1, · · · , y1. Relationship (6)
prompted Frisch (1929, p. 55) to comment, “The coefficient of scatter for a set of variables is
never greater than the coefficient of scatter for a subset contained in the set”.

As an opposite quantity of the scatter coefficient, the collective correlation (CCOR)

CCOR = (1− |Rk|)1/2

can be used as a measure of the strength of linear dependence. This measure is invariant
to the shape of the scattered observations. For example, in Figure 1, diagrams (i) and (ii)
have the same CCOR, 2/3, while for (iii) and (iv), it is obviously zero. This result is natural,
considering that CCOR measures the strength, not the direction, of overall dependence.

2.4. Modifications of GVAR and CCOR

The practical problem of GVAR is that its numerical value grows too big with the
dimension k. Secondly, the variability in distributions of different dimensions cannot be
compared with GVAR. To resolve these problems, it is desirable to average the eigenvalues
λ1, · · · , λk, rather than simply multiplying them. Peña and Rodriguez (2003) proposed the
geometric mean of eigenvalues as the effective variance (EVAR):

EVAR = |Σk|1/k = (σ2
1 σ2

2 · · · σ2
k |Rk|)1/k =

(
k

∏
i=1

λi

)1/k

. (7)

It can also be interpreted as the average length of the side of a hypercube whose volume is
equal to |Σk|. We suggest the generalized standard deviation, GSD, and effective standard
deviation, ESD:

GSD = GVAR1/2, ESD = EVAR1/2 . (8)

Especially ESD is very helpful for understanding the overall variability since it has the
same scale of the individual variables.

Similarly, to get around the problem that CCOR = (1− |Rk|)1/2 always increases with
the additional variable(s), Peña and Rodriguez (2003) proposed the following measure,
which we will call an effective correlation (ECOR) coefficient:

ECOR = 1− |Rk|1/k = 1−
(

k

∏
i=1

γi

)1/k

, (9)

where γis are the eigenvalues of the correlation matrix Rk.
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3. An Empirical Application

Scalar summaries of all the variance–covariances and correlations in the multivariate
system can be conveniently applied to many research areas in economics and finance. For
example, these measures can be straightforwardly applied to the comovement phenomenon,
often observed in the international financial markets and one of the most actively discussed
topics in financial economics. Previous literature on the inter-market dependence employed
numerous t-tests on the possible change of many pairwise correlations between markets.
However, the measure summarizing all the correlations into a single number will be a
convenient tool to provide a more definite answer to whether the market comovements
increased or not.

As the last three decades have witnesses a series of financial crises all over the world,
many economists and policy makers were interested in understanding if and how the nega-
tive shocks are transmitted across borders. They used a plethora of empirical methodologies
to test for market comovements due to contagion: cross-market correlation coefficients,
GARCH models, and direct estimation of specific transmission mechanisms. However, the
most straightforward and most widely employed approach to test for market comovements
is the use of cross-market correlation coefficients. Calvo and Reinhart (1996) found a rise
in correlation between returns on equities and Brady bonds for Asian and Latin Amer-
ican emerging markets after the Mexican crisis. Bekaert et al. (2016) used equity return
correlations among 58 countries to show a substantial increase in global comovements.
Recently, Tilfani et al. (2020) studied temporal variation of detrended cross-correlation
coefficients between stock markets of the Eurozone countries. The authors found high
levels of comovements between Germany and the EU countries after the sovereign debt
crisis, although the Brexit decision reduced those connections.

On the other hand, Forbes and Rigobon (2002) and Rigobon (2019) argued that the
correlation test is biased due to the heteroskedasticity of asset returns. They showed that
once the bias is adjusted, the evidence of contagion disappears in the Asian crisis of 1997,
the Mexican crisis of 1994, and the US stock market crash of 1987. In response to Forbes
and Rigobon’s argument, Bartram and Wang (2005) and Corsetti et al. (2005) claimed that
the adjustment of Forbes and Rigobon (2002) produces serious biases favoring the null
hypothesis of “no contagion”. The dynamic conditional correlation (DCC) GARCH model
has been widely used to study time-varying cross-market correlations. Caporale et al. (2005)
and Chiang et al. (2007) used the DCC-GARCH model to investigate contagion existence
between the Asian stock markets. Gjika and Horvath (2013) argued for the stronger market
comovements of Central Europe vis–à–vis the euro area, using the time-varying correlations
estimated with the DCC-GARCH model.

Most of the testing methodologies mentioned above, focusing on the correlation among
national stock markets, ended up with many pairwise comparisons of each of the individual
correlation coefficients, presenting difficulties in reconciling conflicting movements. In
most cases, the correlation coefficients between the markets even in the same region do
not move in a unison pattern. Therefore, a definite conclusion would be difficult to attain.
Scalar measures of volatility and correlation can help resolve this problem by directly
measuring the changes in overall comovement among all the countries.

In this section, we will discuss the convenience and general applicability of the sug-
gested measures using data on six Asian stock market returns. Specifically, we will demon-
strate the changes of the regional volatility and the strength of the regional comovement, as
opposed to the individual variances and correlations. GVAR and CCOR applied to the
conditional variance (or correlation) matrix estimated from multivariate GARCH models
produce indicators that are shown to be able to track the time variation in regional market
volatilities and correlations.

3.1. Data and Descriptive Statistics

We used weekly (Wednesday close) stock return data, retrieved from Bloomberg, for six
Asian markets: Japan (Nikkei225), Hong Kong (HangSeng), Singapore (STI), Korea (KOSPI),
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Thailand (SET), and Indonesia (JSX). The return series were calculated as 100.0 times log
price differences in the local currency. The sample ran from 16 January 1985 to 29 March
2017, yielding 1531 observations. If any Wednesday observation was missing, Thursday’s
index (Tuesday’s index if Thursday is still missing) was used. If the market was closed
from Tuesday to Thursday, then the observation for that week was recorded as missing.

Table 1 reports the summary statistics for each country. Asian markets exhibited a
positive average return during the sample period. As expected, the mature markets such
as Japan, Hong Kong, and Singapore had the smaller standard deviation. Significant non-
normality was confirmed by the Jacque–Bera (JB) test statistics. The Ljung–Box Q-statistics
with five lags indicated a significant serial dependence of returns for Singapore, Korea,
Thailand, and Indonesia and a lack of it for Japan and Hong Kong. The squared returns, as
evident from the values of Q2(5), have strong serial correlation for all countries, indicating
the presence of nonlinear dependence and conditional heteroskedasticity.

Table 1. Descriptive statistics of weekly returns on Asian stock indices. The table reports descriptive
statistics for six Asian stock markets, Japan (Nikkei 225), Hong Kong (HangSeng), Singapore (STI),
Korea (KOSPI), Thailand (SET), and Indonesia (JSX). We used weekly (Wednesday close) returns from
16 January 1985 to 29 March 2017, yielding 1531 observations. The pre-crisis period and post-crisis
period are 16 January 1985 to 24 December 1997 and 14 January 1998 to 29 March 2017, respectively,
which gives 613 and 918 observations, respectively.

Japan Hong Kong Singapore Korea Thailand Indonesia

Full Sample Period

mean 0.036 0.193 0.093 0.127 0.114 0.190
standard deviation 2.972 3.305 2.866 3.614 3.570 3.273
skewness −0.213 −0.519 −0.092 −0.126 −0.175 −0.076
kurtosis 4.772 5.787 6.258 6.681 5.830 8.207
JB test 213.41 ** 567.19 ** 682.83 ** 872.28 ** 521.43 ** 1738.36 **
Q(5) 1.49 3.37 15.70 ** 24.27 ** 24.53 ** 51.13 **
Q2(5) 137.97 ** 228.65 ** 181.13 ** 394.65 ** 199.25 ** 322.97 **

Pre-Crisis

mean 0.054 0.355 0.143 0.115 0.134 0.146
standard deviation 2.774 3.273 2.901 3.403 3.707 2.912
skewness −0.375 −1.047 −0.455 −0.274 −0.519 0.426
kurtosis 5.143 7.150 5.689 7.468 5.165 8.983
JB test 133.50 ** 557.27 ** 208.50 ** 523.28 ** 149.24 ** 941.81 **
Q(5) 10.83 8.68 3.07 9.45 18.03 ** 72.60 **
Q2(5) 143.18 ** 48.96 ** 69.45 ** 122.03 ** 95.20 ** 123.60 **

Post-Crisis

mean 0.025 0.085 0.060 0.135 0.101 0.219
standard deviation 3.098 3.324 2.845 3.751 3.477 3.495
skewness −0.132 −0.181 0.164 −0.052 0.102 −0.276
kurtosis 4.532 5.038 6.685 6.227 6.357 7.657
JB test 93.62 ** 165.58 ** 527.53 ** 402.10 ** 436.15 ** 847.27 **
Q(5) 3.50 6.63 14.50 * 18.20 ** 13.36 * 19.62 **
Q2(5) 39.50 ** 241.15 ** 119.93 ** 212.87 ** 119.63 ** 189.86 **

* and ** indicate statistical significance at the 5% and 1% levels, respectively.

In the post-crisis period, the stock markets of Korea, Thailand, and Indonesia per-
formed much better in terms of average return than the mature markets. Inference on
the distributional properties such as the non-normality and the heteroskedasticity did not
change over the two subperiods. One particularly distinctive feature between subperiods
is that the individual volatility of most markets increased after the crisis, except Thailand,
which exhibited slightly lower volatility.
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3.2. Market Comovements and Volatility

Prior to studying the dynamic aspects of the regional volatility and dependence, we
studied the changes in overall volatility and comovement of the Asian markets between
the periods 1985–1997 and 1998–2017. Table 2 presents the changes in overall measures of
regional volatility and comovement during the pre-crisis and post-crisis periods. All the
volatility measures indicate a substantial decrease in the overall volatility in the post-crisis
period compared to the pre-crisis period. The decrease of the regional volatility in the
post-crisis period clearly contradicts the fact, found in Table 1, that the standard deviation
of most market returns actually increased after the crisis.

This seemingly inconsistent result is not surprising, considering that the generalized
variance is essentially the volume of the ellipsoid covering the market return data. Before
the crisis, the six market returns are less correlated and hence more scattered around the
six-dimensional space, so that the ellipsoid they form is more round in shape. Contrastingly,
the market data in the post-crisis period constitute the more elongated ellipsoid, reflecting a
closer interdependence among the markets. Therefore, although each stock market became
more volatile in the post-crisis period, their strongly concentrated movements after the
crisis elongated the ellipsoid covering the data and shrank the volume of the ellipsoid,
leading to a decrease in the regional volatility.

A significant increase of the overall correlation in the recent decade was confirmed
by both the collective correlation (CCOR), (1− |R|)1/2, and effective correlation (ECOR).
The effective correlation demonstrated a more noticeable increase from 0.12 to 0.38 after
the crisis.

Table 2. Volatility and correlation in the periods 1985–1997 and 1998–2017.

Periods 1985–1997 1998–2011
# of Obs 613 631

Volatility Correlation Volatility Correlation

GVAR 4.309× 105 - 1.002× 105 -
GSD 656.43 - 316.57 -

EVAR 8.69 - 6.82 -
ESD 2.95 - 2.61 -

CCOR - 0.73 - 0.97
ECOR - 0.12 - 0.38

We now turn to the issue of the link between the volatility and correlation across
national markets, which is another important issue in international finance literature.
Correlations between equity markets are often claimed to increase during the periods of
market turbulences. To examine whether the regional comovement was stronger in the
volatile period than in the tranquil period, we need to split the sample into the volatile and
stable periods. Each week of the market returns were assigned to the volatile and tranquil
periods by the regional volatility on that week.

For this dating procedure, the weekly volatility of each market was first estimated
with AR(1) with GARCH(1,1) model: ’Each weeks of’:

yit = µi + θiyit−1 + εit, (10)

where:

εit|It−1 ∼ N(0, hit) (11)

hit = ωi + αiε
2
i,t−1 + βihi,t−1, (12)

for i = 1, 2, · · · , 6 countries, with It−1 denoting the past information set. The estimation
results are reported in Table 3.
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Table 3. Estimation results.

µ̂ θ̂ ω̂i α̂i β̂i

Japan 0.161 −0.007 0.672 0.149 0.783
(2.22) (−0.24) (1.95) (4.43) (15.81)

Hong Kong 0.261 0.024 0.495 0.135 0.821
(3.50) (0.88) (2.69) (4.53) (22.08)

Singapore 0.135 0.054 0.134 0.096 0.892
(2.10) (1.82) (1.55) (3.61) (26.91)

Korea 0.192 0.008 0.147 0.142 0.857
(2.89) (0.29) (1.77) (4.53) (28.99)

Thailand 0.181 0.064 0.242 0.123 0.864
(2.16) (2.31) (1.95) (3.87) (23.93)

Indonesia 0.196 0.132 0.058 0.104 0.895
(2.84) (4.20) (1.24) (6.28) (50.41)

The t-values are given in parentheses.

To measure the regional volatility for dating volatile and tranquil periods, we used
the geometric average of the product of individual conditional variances to define the total
variance, TVARt:

TVARt = (h1t · · · h6t)
1/6, (13)

and the total standard deviation, TSDt = TVAR1/2
t . The GVAR is not a proper summary of

the regional volatility for this study, because it contains the information about the market
comovement. The weeks in which the total standard deviation TSDt was in excess of
a particular threshold were dated as the volatile periods. The remaining periods were
assigned to the tranquil periods. We selected two threshold values: 3.0 and 3.5.

Table 4 reports the correlation measures in the tranquil and volatile periods. The col-
lective correlation measures CCOR and ECOR clearly indicate that the market comovement
became stronger in the volatile periods. The difference of collective correlations between
volatile and tranquil periods became wider as the threshold (for classifying volatile obser-
vations) became higher from 3.0 to 3.5. This demonstrates that the scalar measures are very
useful for providing definite evidence that the market comovement becomes stronger with
the severity of the regional volatility.

Table 4. Changes in correlation between volatile and tranquil periods.

Threshold Values for TSD 3.0 3.5

Periods Tranquil Volatile Tranquil Volatile
Number of Obs 967 564 1208 323

CCOR 0.845 0.950 0.853 0.968
ECOR 0.189 0.322 0.195 0.369

3.3. Instantaneous Measures of the Regional Volatility and Correlation

We now demonstrate that the generalized variance and collective correlation, when
combined with the multivariate GARCH model, can provide the time variation in overall
volatilities and correlations of multiple markets. Among many recent multivariate GARCH
models, we used the dynamic conditional correlation (DCC) MGARCH of Engle (2002) and
Tse and Tsui (2002).

In the DCC-MGARCH model of Engle (2002), the conditional variance matrix Ht of
the error term, εt = (ε1t, ε2t, · · · , εkt)

′ in the mean Equation (10), is decomposed as follows:

Ht = DtRtDt, (14)
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where the matrix Dt = diag(
√

h1t · · ·
√

hkt) is constructed with the conditional variance
hit of the univariate GARCH as in Equation (12) and the dynamic conditional correlation
matrix Rt is written as:

Rt = diag(1/
√

q11,t · · · 1/
√

qkk,t) Qt diag(1/
√

q11,t · · · 1/
√

qkk,t). (15)

The k× k symmetric positive definite matrix Qt is given by

Qt = (1− a− b)Q̄ + aut−1u′t−1 + bQt−1, (16)

where uit = εit/
√

hi,t denotes the standardized residual, and the matrix Q̄ is the uncondi-
tional covariance matrix of ut.

The GARCH coefficients of Qt in (16) were estimated to be â = 0.023 (5.94),
b̂ = 0.968 (138.58), where the figures in the parentheses are the t-values. This provides
strong evidence of time-varying conditional correlations. The pairwise conditional corre-
lations between market returns are plotted in Figure 2. The stronger comovements in the
post-crisis period can be visually confirmed in most pairs of countries, but it is not obvious
in a few pairs such as for Hong Kong–Thailand and Singapore–Thailand. Therefore, it is
not straightforward to draw any definite conclusion by looking at the movements of so
many pairwise correlations.
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Figure 2. Movements of pairwise conditional correlations among six Asian stock market returns.

In Figure 3, the plot of GSDt (the standard deviation version of GVARt) distinctly
shows the events of extreme volatility, such as the Asian crisis in 1997 and the recent
subprime crisis in US (2008–2010). The medium-scale volatile events are overshadowed by
the extremely high volatility peak of both crises. By contrast, the geometric average version
ESDt has a much smaller range (from 2.0 to 6.0), and reveals other episodes of turbulence
more clearly. For example, even the damaging impacts from the Mexican Peso crisis in 1994
and the Argentine financial crisis beginning in 2000 can be detected from the two smaller
sharp kinks in ESDt, while these were somewhat obscured in the graph of GSDt.

The plot of collective correlation (CCORt) in Figure 4 confirms the upward drift of
the regional correlation over the entire sample period while displaying substantial up
and down irregularities. In the second plot of Figure 4, the pattern of increasing regional
correlation is more pronounced when displayed using the geometric average version, i.e.,
the effective correlation (ECORt).
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Figure 3. The estimated generalized standard deviation (GSDt) and effective standard deviation
(ESDt) of the six Asian stock returns. GSDt and ESDt were calculated by |Ht|1/2 and |Ht|1/2k,
respectively. The conditional covariance matrices Ht were estimated by DCC-GARCH.
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Figure 4. The estimated dependence measures of the six Asian stock market returns. CCORt and
ECORt were calculated by

√
|Rt| and 2k

√
|Rt|, respectively. The correlation matrices Rt were estimated

by DCC-GARCH.

Let us now study the relationship between market comovement and volatility. Figure 5
suggests graphical evidence that market comovement measured by CCORt becomes
stronger during the periods of higher TSDt. In addition, for a more rigorous test of
contagion, defined by Forbes and Rigobon (2002) as “a significant increase in cross-market
linkages after a shock to one country (or group of countries)”, we calculated the lead-lag
relationship between the volatility and market comovement. In Figure 6, we plot the
cross serial-correlations between the volatility TSDt+j and regional comovement ECORt at
lag/lead j = −20,−18, · · · ,+20. We notice a strong positive correlation between the lagged
volatility shock TSDt and the regional dependence ECORt. When lead values of TSDt+j are
considered, the serial correlations becomes much weaker. This provides strong evidence
for the existence of contagion.
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Figure 5. Top graph is the total standard deviation (TSDt = (TVARt)
1/2) of six Asian stock re-

turns. Total variance (TVARt) was calculated by (h1t · · · h6t)
1/6, where the conditional variance hit

(i = 1, · · · , 6) was retrieved from the DCC-GARCH estimation. Bottom graph is the collective corre-
lation CCORt, computed as (1− |Rt|)1/2, where the conditional correlation matrix Rt was obtained
from the DCC-GARCH estimation.
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Figure 6. The cross serial-correlation between the regional volatility and the regional dependence:
corr(TSDt+j, ECORt), j = −20,−18, · · · , 20.

4. Conclusions

This paper is a first attempt to apply the concepts of generalized variance and collective
correlation to financial data. These two statistics, respectively, provide simple measures
of the overall variability and the dependence of a multivariate system by converting
k(k + 1)/2 numbers in the variance and correlation matrices to scalars. Both measures have
intuitive geometric interpretations, and have much potential for further usefulness through
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their close relationships with principal component analysis. Some modifications on the
generalized variance and collective correlation are recommended. For the generalized
variance, we showed that by taking a geometric average it is possible to compare the results
for two (or more) populations of different dimensions. Thus, using our technique, one can
compare the overall market volatilities of two regions such as Asia and Europe of which
the number of financial markets are different.

The scalar measures introduced in this paper performed the intended roles successfully
in an empirical application to the six Asian market returns and, in addition, were shown to
be able to reveal empirical facts which could not be uncovered by the traditional methods.
Particularly, we showed that both the contagion and interdependence between the national
equity markets could be confirmed more clearly. Moreover, the generality of the statistics
proposed in this paper can be applied to any field in economics and finance, where the
scalar measures of overall variability and dependence are needed.

There is a limitation of the use of scalar measures of overall volatilities presented in
this paper. It would be nice to have the standard errors of our measures so that proper
statistical inference can be conducted. It would not be an easy task to develop a rigorous
methodology for inference on generalized variance and scatter coefficients in a multivariate
GARCH setup. We would like to tackle this difficult problem in our follow-up research.

Author Contributions: Conceptualization, A.K.B.; methodology, A.K.B. and S.K.; software, S.K.;
formal analysis, A.K.B. and S.K.; data curation, S.K.; writing—original draft preparation, S.K.;
writing—review and editing, A.K.B. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data will be made available upon request.

Conflicts of Interest: The authors declare no conflict of interest.

References
Anderson, Theodore Wilbur. 1984. An Introduction to Multivariate Statistical Analysis, 2nd ed. New York: John Wiley & Sons.
Bartram, Sohnke M., and Yaw-Huei Wang. 2005. Another look at the relationship between cross-market correlation and volatility.

Finance Research Letters 2: 75–88. [CrossRef]
Bauwens, Luc, Sebastien Laurent, and Jeroen V. K. Rombouts. 2006. Multivariate GARCH Models: A Survey. Journal of Applied

Econometrics 21: 79–110. [CrossRef]
Bekaert, Geert, Campbell R. Harvey, Andrea Kiguel, and Xiaozheng Wang. 2016. Globalization and Asset Returns. Annual Review of

Financial Economics 8: 221–88. [CrossRef]
Calvo, Sarah, and Carmen M. Reinhart. 1996. Capital flows to Latin America: Is there evidence of contagion effects? In Private

Capital Flows to Emerging Markets After the Mexican Crisis. Edited by Guillermo Calvo, Morris Goldstein and Eduard Hochreiter.
Washington, DC: Institute for International Economics.

Caporale, Guglielmo Maria, Andrea Cipollini, and Nicola Spagnolo. 2005. Testing for contagion: A conditional correlation analysis.
Journal of Empirical Finance 3: 476–89. [CrossRef]

Chiang, Thomas C., Bang Nam Jeon, and Huimin Li. 2007. Dynamic correlation analysis of financial contagion: Evidence from Asian
markets. Journal of International Money and Finance 26: 1206–28. [CrossRef]

Corsetti, Giancarlo, Marcello Pericoli, and Massimo Sbracia. 2005. ‘Some contagion, some interdependence’: More pitfalls in tests of
financial contagion. Journal of International Money and Finance 24: 1177–99. [CrossRef]

Cramér, Harold. 1946. Mathematical Methods of Statistics. Princeton: Princeton University Press.
Dungey, Mardi, Renee Fry, Brenda Gonzalez-Hermosillo, and Vance Martin. 2004. Empirical Modeling of Contagion: A Review of

Methodologies. IMF Working Papers 04/78. Washington: International Monetary Fund.
Engle, Robert F. 2002. Dynamic conditional correlation—A simple class of multivariate GARCH models. Journal of Business and

Economic Statistics 20: 339–50. [CrossRef]
Engle, Robert F., and Kevin Sheppard. 2001. Theoretical and Empirical Properties of Dynamic Conditional Correlation Multivariate GARCH.

NBER Working Paper No. 8554. Cambridge: National Bureau of Economic Research.
Forbes, Kristin J., and Roberto Rigobon. 2002. No contagion, Only Interdependence: Measuring Stock Market Comovements. The

Journal of Fiance 57: 2223–61. [CrossRef]
Frisch, Ragnar. 1929. Correlation and Scatter in Statistical Variables. Nordic Statistical Journal 8: 36–102.
Giri, Narayan C. 1977. Multivariate Statistical Inference. New York: Academic Press.

http://doi.org/10.1016/j.frl.2005.01.002
http://dx.doi.org/10.1002/jae.842
http://dx.doi.org/10.1146/annurev-financial-121415-032905
http://dx.doi.org/10.1016/j.jempfin.2004.02.005
http://dx.doi.org/10.1016/j.jimonfin.2007.06.005
http://dx.doi.org/10.1016/j.jimonfin.2005.08.012
http://dx.doi.org/10.1198/073500102288618487
http://dx.doi.org/10.1111/0022-1082.00494


J. Risk Financial Manag. 2023, 16, 212 16 of 16

Gjika, Dritan, and Roman Horvath. 2013. Stock market comovements in Central Europe: Evidence from the asymmetric DCC model.
Economic Modelling 33: 55–64. [CrossRef]

Horn, Roger A., and Charles R. Johnson. 1985. Matrix Analysis. Cambridge: Cambridge University Press.
Peña, Daniel, and Julio Rodriguez. 2003. Descriptive measures of multivariate scatter and linear dependence. Journal of Multivariate

Analysis 85: 361–74. [CrossRef]
Quinn, Dennis P., and Hans-Joachim Voth. 2008. A Century of Global Equity Market Correlations. American Economic Review 98:

535–40. [CrossRef]
Rigobon, Roberto. 2003. On the Measurement of the International Propogation of Shock: Is the Transmission Stable? Journal of

International Economics 61: 261–83. [CrossRef]
Rigobon, Roberto. 2019. Contagion, Spillover, and Interdependence. Economía 19: 69–100. [CrossRef]
Serfling, Robert J. 1980. Approximation Theorems of Mathematical Statistics. New York: John Wiley & Sons.
Siddiqui, Taufeeque Ahmad, Mazia Fatima Khan, Mohammad Naushad, and Abdul Malik Syed. 2022. Cross-market Correlations and

Financial Contagion from Developed to Emerging Economies: A Case of COVID-19 Pandemic. Economies 10: 147–58. [CrossRef]
Silvennoinen, Annastiina, and Timo Terasvirta. 2009. Multivariate GARCH Models. In Handbook of Financial Time Series. Edited by

Thomas Mikosch, Jens-Peter Kreiß, Richard A. Davis and Torben Gustav Andersen. Berlin/Heidelberg: Springer.
Solnik, Bruno, Cyril Boucrelle, and Yann Le Fur. 1996. International Market Correlation and Volatility. Financial Analysts Journal 52:

17–34. [CrossRef]
Tilfani, Oussama, Paulo Ferreira, Andreia Dionisio, and My Youssef El Boukfaoui. 2020. EU Stock Markets vs. Germany, UK and

US: Analysis of Dynamic Comovements Using Time-Varying DCCA Correlation Coefficients. Journal of Risk and Financial
Management 13: 91–113. [CrossRef]

Tse, Yiu Kuen, and Albert K. C. Tsui. 2002. A multivariate GARCH model with time-varying correlations. Journal of Business and
Economic Statistics 20: 351–62. [CrossRef]

Wilks, Samuel S. 1932. Certain generalizations in the analysis of variance. Biometrika 24: 471–94. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.econmod.2013.03.015
http://dx.doi.org/10.1016/S0047-259X(02)00061-1
http://dx.doi.org/10.1257/aer.98.2.535
http://dx.doi.org/10.1016/S0022-1996(03)00007-2
http://dx.doi.org/10.1353/eco.2019.0002
http://dx.doi.org/10.3390/economies10060147
http://dx.doi.org/10.2469/faj.v52.n5.2021
http://dx.doi.org/10.3390/jrfm13050091
http://dx.doi.org/10.1198/073500102288618496
http://dx.doi.org/10.1093/biomet/24.3-4.471

	Introduction
	Generalized Variance and Collective Correlation
	Statistical Interpretation of Generalized Variance
	Statistical Properties of the Generalized Variance
	Scatter Coefficient
	Modifications of GVAR and CCOR

	An Empirical Application
	Data and Descriptive Statistics
	Market Comovements and Volatility
	Instantaneous Measures of the Regional Volatility and Correlation

	Conclusions
	References

