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Abstract: This study introduces a non-parametric methodology for estimating expected frequencies
of defaults and other credit events. The methodology allows for an independent estimation of a
credit-quality variable, referred to as a default rank variable. In a subsequent step, the relationship
between the rank variable and the expected default frequency is established. This analysis can be
achieved by initially determining the functional dependence between the rank variable and the
expected tail default frequencies representing the average default frequencies of entities ranked
lower than a given rank value. The expected default frequency can then be derived from a simple
linear integral equation. We propose a prototype model for public corporations which establishes
generalized logistic function dependencies between the distance-to-default rank variable and the
expected default frequencies in the log–log space. This relationship applies to public corporations
across different credit rating categories.
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1. Introduction

Analysis of the credit risk of bond portfolios requires estimation of the frequency and
severity of potential credit events involving the bond issuer entities. Severity estimation
involves assessing the extent of losses incurred in a credit event. Expected frequencies
represent probability estimates of these credit events occurring. To estimate the expected
default frequencies (EDFs), analysts often turn to average historical default rates within
agency credit rating categories, which are often adjusted for credit cycles. For instance,
Gupton et al. (1997) utilized this method to determine the default component in a portfolio’s
loss distribution. One notable advantage of this approach is the widespread availability
of agency ratings for various types of issuers, including public and private corporations,
sovereign entities, and municipalities. Rating agencies possess extensive experience in
assessing the creditworthiness of diverse issuers and have access to non-public information;
however, a drawback of the rating-based approach is its failure to account for variations
in the credit quality among entities with the same rating. In essence, while credit ratings
provide the average EDF, they do not elucidate the variability within the EDFs of the rating
categories. Over the years, various methods that are independent of agency ratings for
estimating EDFs have emerged. In the realm of corporate issuers, Chava and Jarrow (2004)
employed a hazard rate to estimate expected bankruptcy frequencies, while Campbell
et al. (2008) utilized a logistic model. The KMV model, discussed by Kealhofer (2003a),
uses a distance-to-default (DD) metric as an explanatory variable for modeling public
corporate EDFs. A notable advantage of this approach is that DD is a simple metric
that has impressive power to rank firms according to their default risk (see, e.g., Bharath
and Shumway (2008)). For sovereign entities, an approach utilizing a metric similar to
DD was developed by Gray et al. (2007) and in Gapen et al. (2008). Another significant
source of credit risk originates from the credit rating transitions of bond issuer entities.
Similar to the analysis of default risk, historical average transition rates between agency
credit rating categories are commonly employed in this analysis. In addition, similar to
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the case of default risk, this approach does not account for the variations among entities
within these categories. To address this issue, econometric models are often introduced,
incorporating a credit-quality variable for issuers with a fixed rating. These models derive
transition probabilities that depend on the initial value and dynamics of this variable. This
approach is discussed in detail by Frey and McNeil (2003). A model that utilizes DD as the
credit-quality variable was presented by Gordy and Heitfield (2001).

The statistical techniques used to model EDFs can be categorized as parametric and
nonparametric models. Parametric models, such as the hazard rate and logistic models, pro-
vide precise functional inferences about how EDFs depend on covariates. While specifying
the EDF as a logistic function of covariates is conceptually simple, the choice of the logistic
function may not optimally reflect the data. Other parametric models face similar issues.
The philosophy behind the KMV model differs from this. The DD metric is specialized to
become an optimal variable for ranking corporations based on their credit quality. A subse-
quent problem to address is finding the EDF function, which represents the relationship
between the entity specific DD variable and the associated EDF. The precise form of KMV’s
DD or the EDF function is not publicly known. While there is a significant amount of
literature available on finding a DD metric that aligns well with the KMV model, there has
been minimal focus on making inferences about the shape of the EDF function. Interested
readers can find discussions about the KMV’s DD in references by Duffie and Singleton
(2003), Kealhofer (2003a), Bharath and Shumway (2008), and Jessen and Lando (2015).

This study introduces a novel econometric methodology for nonparametric inference
about EDFs. The approach begins by identifying a credit-quality variable, referred to as
the rank variable, which enables the ranking of entities from the most likely to experience
a default event to least likely. The subsequent step involves an initial estimation of the
expected tail default frequencies (ETDFs) for all rank values. These ETDFs represent the
average default frequencies of entities ranked lower than a reference rank value r. The
ETDFs are linked to the EDFs through a simple Volterra integral equation of the first kind.
Under a mild differentiability condition regarding the specification of the ETDFs, the EDFs
can be determined analytically from this relationship. The estimation is initially performed
for the ETDFs instead of EDFs because the ETDF estimator allows larger samples and as
such results in smaller estimation errors. This methodology can be applied to estimate the
expected credit rating transition frequencies as well. This modeling approach separates the
task of finding the rank variable from the process of finding the EDF estimates. This sets
it apart from common frequency estimation techniques, such as the logistic models often
used in frequency modeling.

In this paper, we study public corporations in more detail. We construct a prototype
model that elucidates the relationship between the DD rank variable and EDFs within
various credit rating categories for these corporations. These models specifically shed
light on the variations in EDFs among corporations sharing the same credit rating. Public
corporations are a natural domain of application, as the problem of ranking these entities
according to their credit quality has been extensively studied. Empirical analysis supports
the use of the DD metric as the rank variable, as suggested by Kealhofer (2003a), Bharath
and Shumway (2008), and Jessen and Lando (2015). The challenge in establishing the
relationship between the DD and EDFs primarily lies in the substantial data requirements.
Notably, defaults among investment-grade-rated corporations are very infrequent. Suc-
cessfully modeling this dependence requires a historical dataset encompassing corporate
defaults and additional market observables spanning several decades. Obtaining such com-
prehensive datasets can prove challenging. The prototype model we propose addresses this
issue by incorporating specific assumptions about EDFs in order to employ a data reduction
strategy. We critically analyze these assumptions and discuss a strategy to weaken their
impact. With data reduction in place, the models yield a logistic function-based relationship
between DDs and EDFs in the log–log space for each rating category. EDFs can fluctuate
within rating-specific upper and lower bounds. The variability among log-EDFs for differ-
ent corporations within these bounds is governed by the logistic function’s dependency on
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log-DDs. This prototype model may be considered as a statistical template for the credit
event frequency modeling under this paradigm. This manuscript explains in detail how to
estimate a model specified in this way.

The EDF finds essential applications in estimating risk metrics for portfolios exposed
to credit risk and in valuing securities with values that are dependent on the likelihoods
of future defaults. Under the minimal requirements outlined by Basel II, the portfolio’s
expected loss is to be analyzed using an annual horizon. The EDF serves as a fundamental
component in calculating the expected loss, as explained by Crouhy et al. (2000) and
Stephanou and Mendoza (2005). Corporate bond valuation models that use EDFs to
measure the credit contribution in the price (i.e., the credit spread) are discussed in Bohn
(2000), Kealhofer (2003b), and Denzler et al. (2006). Credit default swap pricing using
the EDF is explained in Hull and White (2000). In addition, Berndt et al. (2018) used the
EDF to measure the credit risk premium in credit market securities. Within a credit rating
category, the ranking of entities in terms of their credit quality offers valuable insights
into the relative disparities in credit quality among different issuers, going beyond their
credit ratings. This ranking helps in identifying entities that are likely to face credit rating
downgrades or upgrades. Credit transitions in risk management have been discussed by
McNeil et al. (2005).

The general modeling framework, which is the novel theory contribution of this
manuscript, is introduced in Section 2. Subsequently, in Section 3 we construct prototype
EDF models for public corporations across various credit ratings. The objective of Section 2
is to elucidate, under reasonable assumptions, the types of dependencies that are expected
from the general framework. This exploration leads to a novel insight into the logistic
log–DD and log–EDF relationships. Finally, the conclusion touches upon potential future
directions for this methodology.

2. Rank Estimators for Expected Default Frequencies

In this section we consider time dependent populations of bond issuer entities. Each
population is determined by its credit rating, and the members represent the entities that are
assigned this rating at all times during their membership. An example of such a population
could be all B-rated global corporates. To improve readability, we do not keep referring to
the credit rating at all times, and it is implicitly assumed that the populations under study
have a fixed rating. The populations are assigned the default experience variable D, which
takes a the value of 1 if the entity defaults within the model risk horizon and a value of 0
otherwise. In addition, the populations are assigned the standard economic observables.
It is assumed that each population has the default ranking variable R, which is a random
variable with respect to the population’s probability law, and has the ability that in the set
of all observables1 it minimizes the error ε defined by

ε(X) = E
(

1(X1 > X2) · 1(D1 > D2)
)

, (1)

where (X1, D1) and (X2, D2) are two independent pairs and E is the expected value with
respect to the population’s probability law. This means that if R is replaced with another
random observable Q, then ε(Q) ≥ ε(R). In an experiment where a pair of elements is
selected randomly and repeatedly from the population, and in a long enough experiment,
betting on those with higher default rank minimizes the number of selections which
experience a default within the risk horizons.

The rank R provides us with the information about the variation of the expected
default experience in the population. Conceptually, the EDF at the rank value r is equal
to the expected default experience under the condition that R = r. However, estimating
this conditional expectation directly from observed samples is problematic; in an empirical
sample, the slice R = r typically has 0 or 1 data point. To make the estimation of the EDF
as a function of the rank more convenient, we define the expected tail default frequency
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(ETDF) for the rank value r as the expected default experience under the condition that the
default rank is lower than r, i.e.,

ETDF(r) = E(D : R < r).

The EDF is a function of the rank variable and the solution of the integral equation

ETDF(r) =
1

F (r)

∫ r

−∞
EDF(x)P ({R ∈ dx}) = 1

F (r)

∫ r

−∞
EDF(x)f (x)dx, (2)

where f and F are the density and cumulative distribution function of the rank vari-
able, respectively.2 The EDF represents the real-world default probability. The following
immediate questions arise:

1. How can one find the rank variable?
2. Does the choice of the rank variable depend on the credit rating?
3. What is the functional relationship between the rank variable and the EDF?
4. Does this relationship depend on the credit rating?

Let us now consider an observed sample that could be a large collection of B-rated
corporations in a quarterly frequency over several decades. If the risk horizon is one year,
then the latest time in the sample has to be at least one year earlier than the modeling time,
otherwise the default experience cannot be defined properly. Now, we are looking for the
variable that minimizes the error

ε(X) = ∑
(a,b)∈∆

(
1(X(a) > X(b)) · 1(D(a) > D(b))

)
,

where ∆ is the upper diagonal of the Cartesian product S× S while S is the sample (i.e., the
sum runs over all distinct pairs of S). The variable that minimizes the error is referred to as
the (default) rank variable. The solution of this problem for all rating categories provides
the answers to Questions 1 and 2 above.

When the rank variable R has been selected, one can proceed to estimate the ETDF
associated with R. Suppose that F is the empirical distribution function of the rank R. The
ETDF can be estimated at any observed value r in the sample using

ETDF(r) =
1

F (r)
· 1

N ∑
{i:R(i)<r}

D(i) (3)

where N is the sample size and the sum runs over all the indexes for which the rank value
R(i) is lower than r. The next step is to make an inference about ETDF as a continuous
function of R and fit the parameters of the dependency. If the distribution function F and
ETDF can be represented as differentiable functions, then the integral Equation (2) has
the solution

EDF(x) =
1

f (x)
d

dx
(F (x) · ETDF(x)).

This provides an answer to Question 3 raised above. Repeating the entire procedure over
all credit rating categories provides the answer to Question 4.

Alternatively, one could try to estimate the R and EDF dependence directly. In this
case, the data sample can be partitioned into groups based on the increasing rank values.
For instance, the data could be partitioned into N equal size groups, then the average
default experience in each group computed to estimate the group-level EDFs. However, it
is unclear how to assign the rank values among the groups in order to establish a discrete
R–EDF dependence. One possible choice could be to assign the group median R-values
with the group EDFs; however, this inference makes sense only if the EDF behaves as a
uniform variable in each group, and this information is not available. Alternatively, one
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could choose a large number of groups N such that there is not much variation in R within
the groups and the problem of assigning R-values with the groups diminishes. However,
in this case the group sample sizes become smaller and the estimation errors larger. These
problems are solved in the ETDF approach. The ETDF estimator at any given value of
R separates the sample into two portions and explicitly assigns the R-value used in the
separation with the ETDF. In addition, the estimator uses an increasing window which is
advantageous for the sample sizes. For instance, half of the ETDFs are now estimated from
a sample that has a size at least half that of the full sample size.

At first sight, the problem of finding the rank variable seems extremely heavy compu-
tationally. For instance, a sample of 10,000 corporations over three decades at a quarterly
frequency would consist of more than a million sample points. Summing over the product
of distinct pairs in such a large sample is a highly time consuming computation. However,
the crux here is that it is only necessary to take a sum over the pairs where one corporation
experiences a default within the risk horizon. In addition, while defaults are common
in the speculative grade (BB and below), the actual number of corporations with these
ratings is comparable small. The samples of investment grade corporations (BBB and
above), in particular BBB, are considerably larger; however, there are only a small number
of corporations that experience a default. For example, Kraemer et al. (2022) reported
2536 speculative-grade defaults and 88 investment-grade defaults over a period of 41
years. These defaults are then distributed to each rating, ensuring that the sample sizes of
defaulted corporations do not grow too large.

3. A Minimally Data-Intensive Model
3.1. Modeling Strategy

This section introduces a simple strategy for estimating the relationship between a DD
metric, which serves as a rank variable, and the EDF for public corporations. In particular,
we focus on comprehending how to specify the EDF or ETDF as functions of the DD, and
provide answers to the questions 1–4 from Section 2.

The DD metric for a horizon of one year is defined following the standardized ap-
proach (see e.g., Bharath and Shumway (2008)) by setting

DD =
1
σ

(
log
(A

L

)
+ µ− 1

2
σ2
)

(4)

where A is the total asset value, L is the book value of the short-term debt plus half of the
long-term debt, σ is the asset volatility, and µ is the asset drift. The values of A, σ, and µ are
not directly observable. Under the standard structural modeling approach, the asset value
is estimated as the value of the underlying asset in a call option that represents the equity
maturing at the one-year model horizon with a strike equal to the debt L. This relation
depends on both A and σ. To estimate A and σ simultaneously, we need to introduce
an additional relation between the equity volatility and the asset volatility. Following
Kealhofer (2003a) and Vassalou and Xing (2004), we can establish this with an iterative
algorithm that is explained in the Appendix A. This procedure does not depend on the drift
µ, as the option pricing formula lives in the risk-neutral space. It is customary to estimate
asset the drift by setting µ = r + πa, where πa is the asset risk premium. The US one-month
treasure rate is used as a proxy for the short rate over the full universe, and based on the
study by Zhan et al. (2009), πa is set to be 0.0343 for the A-rated-, 0.0355 for BBB-rated-, and
0.0270 for speculative-rated corporations.

Previous authors have used different strategies to calibrate the parameters of the DD.
For instance, the debt may be chosen to be the face value of the full balance sheet debt,
leading to lower asset-to-debt ratios and shorted distance to defaults. However, as was
demonstrated by Bharath and Shumway (2008) and Jessen and Lando (2015), the ability of
the DD as a default rank variable lies in its functional description, and the ability to rank
corporations in their default risk is robust against minor changes in the specification.
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The origin of the DD concept is in the structural credit risk modeling presented by
Merton (1974), which applies stochastic analysis in the study of solvency of public corpo-
rates (see Duffie and Singleton (2003) for a review of this paradigm). This theory suggests
that DD alone fully determines the default probabilities, and as such has the ability to rank
the entities according to their default likelihoods. Later empirical studies have found that
the power of the DD metric to rank corporations by their default probability is impressive
(see e.g., Bharath and Shumway (2008)). We impose the following hypothesis that is deeply
rooted in theoretical study, and which is reasonable based on empirical studies.

• Hypothesis I: the DD in (4) is the default rank variable for the public corporates.

Now, with Hypothesis I, we are left with the problem of assigning the relationship
between the rank variable and the EDFs. To this end, we impose the following hypothesis
regarding the EDFs.

• Hypothesis II: the mean annual default rates are sufficient statistics for the EDF in
each credit rating category.

Hypothesis II states that all of the variation in the population’s default experience can
be explained using the annual average default rates alone. This hypothesis is not entirely
realistic, and should be considered as an approximation. The empirical default rates are
highly time-dependent, and the highest values are clustered around the recession in the
1990s, the burst of the dot-com bubble in the early 2000s, the financial crises in 2008, and
the crisis caused by the COVID-19 pandemic in 2020. The market observables, such as the
volatility or the value of out-of-the-money puts, react strongly to these crises, and it should
be expected that a large portion of the time series variation of the default experience is
systematic. However, the summary statistics hide the information in the cross-sections of
the population. Therefore, with the data reduction based on Hypothesis II, we are dealing
with the trade-off between the increased uncertainty in fitting the EDF and the ability
to model the EDF using a minimally sized publicly available dataset that provides the
necessary data over several decades.

When combined, these two hypotheses state that the systematic component in the EDF
can be explained using the DD in (4), and that it is sufficient to investigate the summary
of annual default rates to establish the relation between the DD and the EDF. Note that
the DD ranks the corporations from the worst credit quality to the best, while the EDF is
decreasing in the DD. Now, we can construct the empirical distribution for the EDFs, in
which the 90-percentile represents the EDF of the firm that has a credit quality worse than
90% of the population. We can construct the empirical distribution for the DDs as well, in
which the 10th percentile represents the DD of the firm that has a credit quality worse than
90% of the population. Thus, the combined hypotheses suggest matching the q-quantiles of
the EDFs with the 1− q-quantiles of the DDs. Now, we can proceed to construct the model
as follows:

1. The empirical distribution of DDs, representing the distribution of the rank variable
of the underlying population, is estimated from an empirical sample of DDs.

2. The empirical distribution of the EDFs is estimated from the summary statistics of
historical annual default rates.

3. A quantile matching strategy is applied to establish a relation between DD and EDF.
This results in the correspondence DD 7→ EDF as a discrete function with a domain
determined by the chosen quantile points in the EDF axis.

4. The discrete function from the previous step is approximated using a differentiable
function.

It is instructive to ‘invert the axes’ of the usual CDF function by setting the CDF to be
the x-coordinate and the EDF the be y-coordinate. The CDF value x in the empirical EDF
distribution is replaced with the corresponding 1− x quantile of the DD distribution for
each distinct x. Then, the resulting discrete relationship is approximated by a differential
one. By construction, the DD and EDF dependence holds over the full domain of the
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empirically observed DDs, i.e., no data reduction along the DD dimension is performed. In
addition, because Hypothesis II concerns the EDF directly, there is no need to construct the
ETDF as an intermediate step. The quantile matching strategy is common tool, especially
in severity modeling. For instance, Albrecher et al. (2017) provides an overview of how to
apply this in the case of re-insurance claims.

3.2. Distance-to-Default

The DD in (4) is computed over a large panel of corporations at a quarterly frequency.
The price and balance sheet data comprise publicly available data from exchanges in North
America, South America, Europe, Asia and Australia. The sample contains large-, medium-
and small-cap corporations; for instance, the corporations listed in Pink sheets are included.
The credit ratings are S&P ratings, which are publicly available from 2010 under SEC
Regulation 17g-7.

The sample that we use to represent the population of public corporates consists
of 2045 rated corporations between March 2011 and December 2022. In total, there are
54,965 data points. Table 1 summarizes the percentiles for the DDs in the sample for the
investigated rating categories.

Table 1. Percentiles of the DD values.

Percentile CCC B BB BBB A

5th percentile 0.18 1.10 2.23 3.08 3.52
25th percentile 0.88 2.33 4.15 5.68 6.58
50th percentile 1.62 3.55 5.98 8.44 9.79
75th percentile 2.35 5.28 8.25 11.55 13.68
95th percentile 4.07 9.11 12.45 17.25 21.35

The investment grade rating categories that are included are A and BBB, while the
speculative grade categories are BB, B, and the CCC category, which comprises all corpora-
tions with a rating of CCC or below but does not include corporations that have announced
a default (i.e., the D category). It is important to note that there is a good amount of overlap
in the DD values between different ratings. For instance, the 75th percentile in CCC, the
25th percentile in B, and the 5th percentile in BB are roughly equivalent.

The time series medians of the log–DD for investment-grade and speculative-grade
corporations are depicted in Figure 1.
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The average month has the log-DD equal to 1.65 in the case of investment grade, and 2.20 in the
case of speculative grade. The values are slightly stressed in 2012 as a result of the European
sovereign debt crisis, after which the values increase. In 2015 and 2016 there is a slow decline as
a result of the stock market selloff. In 2020 the median DD reaches its lowest point in the dataset
as a consequence of the Covid-19 pandemic.

3.3 Expected Default Frequency

The goal of this subsection is to estimate the EDF distributions under Hypothesis II. The mean
annual default rates, computed by the rating agencies, are the average default frequencies in
different calendar years. The annual default rates are computed for different rating categories. We
use the S&P summary from Kraemer et al. (2022) where the default rates are computed for 41
years from 1981 to 2021. The same rating categories are used as in Subsection 3.2.

Assuming the data reduction formulated in Hypothesis II, we are left with the samples of 41
datapoints in each rating category. Now, consider the subsamples for each rating category in which
the years of 0 default rates are removed. After ordering these subsamples from the lowest default
rate years to the highest, we observe that the log-default rates suggest strong linear dependence.
In the CCC and B categories there is just one year with 0 default rate (this is 1981 when no CCC
corporates defaulted). Naturally, the frequency of 0 default rate years becomes higher when the
rating gets higher. The years with 0 default rate are problematic because it is unrealistic to assume
that the EDF distribution reaches 0 value.

We approach by first constructing empirical distribution functions for the sample of log-default
rates in each rating category. The 0 values in the default rates have formally the log-default rate
value equal to �8. The steps of the empirical distribution functions are depicted in Exhibit 3.
Next, uniform distribution functions are fitted on the empirical distributions over the domains

7

Figure 1. Median log–DD time series.

The average month has a log–DD equal to 2.20 in the case of investment-grade cor-
porations and 1.65 in the case of speculative-grade corporations. The values are slightly
stressed in 2012 as a result of the European sovereign debt crisis, after which the values
increase. In 2015 and 2016 there is a slow decline as a result of the stock market selloff.



J. Risk Financial Manag. 2023, 16, 444 8 of 17

In 2020, the median DD reaches its lowest point in the dataset as a consequence of the
COVID-19 pandemic.

3.3. Expected Default Frequency

The goal of this subsection is to estimate the EDF distributions under Hypothesis II.
The mean annual default rates, which are computed by the rating agencies, are the average
default frequencies in different calendar years. The annual default rates are computed for
different rating categories. Here, we use the S&P summary from Kraemer et al. (2022),
where the default rates are computed for the 41 years from 1981 to 2021. We use the same
rating categories as in Section 3.2.

Assuming the data reduction formulated in Hypothesis II, we are left with the samples
of 41 datapoints in each rating category. Now, we consider the subsamples for each rating
category in which the years with default rates of 0 are removed. After ordering these
subsamples from the years with the lowest default rates to those with the highest, it can
be observed that the log-default rates suggest strong linear dependence. In the CCC and
B categories there is just one year with a default rate of 0 (this is 1981, when no CCC
corporations defaulted). Naturally, the frequency of such years becomes higher when the
rating grows. The years with 0 default rate are problematic, as it is unrealistic to assume
that the EDF distribution reaches 0 value.

We approach this by first constructing empirical distribution functions for the sample
of log-default rates in each rating category. The 0 values in the default rates formally have
a log-default rate value equal to −∞. The steps of the empirical distribution functions
are depicted in Figure 2. Next, uniform distribution functions are fitted on the empirical
distributions over the domains where the log-default rates have finite values. The line
estimator used for this is the mean square error estimator. The solid lines depicted in
Figure 2 are the fitted dependencies.
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

�6.0

�4.0

�2.0

0.0

2.0

4.0

CDF

L
og

-d
ef
au

lt
ra
te

(i
n
p
ct

u
n
it
s) CCC B BB BBB A

Exhibit 3. Expected Default Frequencies.

The dashed parts of the regression lines represent the values of the CDF which are inferred by
means of extrapolation over the domains of 0 rates. The resulting EDF distributions are log-
uniform distributions. This strategy automatically replaces the zeros in the empirical distribution
with nonzero values in the log-uniform distribution. One should keep in mind that the linear
extrapolation is done in the log-space, and after the transformation to the standard coordinates,
the zeros are replaced with numbers that are very small compared to the sample means. In fact, the
extrapolation has quite nonignificant effect, and the means and variations of the fitted distribution
are close to the corresponding values in the empirical distribution. The A category is an exception
and the log-uniform distribution mean overestimates the empirical distribution mean. This is a
case because there are so few years with nonzero default rates. Exhibit 4 presents the means
and standard deviations of the default rates in the empirical distribution and in the log-uniform
distribution, the minimum and maximum default rates in the log-uniform distribution (EDFÓ and
EDFÓ), and the R2-values.

Variable CCC B BB BBB A
Sample mean 24.6 4.09 0.84 0.19 0.05
Fitted mean 24.4 3.99 0.79 0.19 0.07
Sample stdev 11.9 3.25 0.99 0.25 0.10
Fitted stdev 11.8 3.21 0.80 0.24 0.09

EDFÓ 9.12 0.63 0.065 0.006 0.002

EDFÒ 51.1 12.5 3.15 0.99 0.35

logpEDFÓq 2.21 -0.45 -2.74 -5.05 -6.41

logpEDFÒq 3.93 2.52 1.15 -0.013 -1.04
R-squared 0.95 0.94 0.95 0.92 0.87

Exhibit 4. Summary of the empirical and fitted log-uniform distributions. The means, stdevs and
the EDF bounds are in percentage units.

The log-uniform distributions will be referred to as the EDF distributions. They are fully
determined by the values EDFÓ and EDFÒ (or their logarithms). The ETDF associated with the
EDF is defined over the uniform domain r0, 1s by

ETDFpxq �
1

βx

�
exppα� βxq � exppαq

	
, (5)

where α is the intercept and β is the slope. The intercept is denoted by logpEDFÓq in Exhibit 4,
and the slope can be recovered by solving logpEDFÒq � logpEDFÓq. At first sight, the x Ñ 0 limit
seems problematic, however, with an application of L’Hopital’s rule one finds that ETDF behaves
well around the origin and the limit is equal to exppαq.

8

Figure 2. Expected default frequencies.

The dashed parts of the regression lines represent the values of the CDF, which
are inferred by means of extrapolation over the domains of 0 rates. The resulting EDF
distributions are log-uniform distributions. This strategy automatically replaces the zeros
in the empirical distribution with nonzero values in the log-uniform distribution. It should
be kept in mind that the linear extrapolation is performed in the log-space, and after the
transformation to the standard coordinates the zeros are replaced with numbers that are
very small compared to the sample means. In fact, the extrapolation has a quite insignificant
effect, and the means and variations of the fitted distribution are close to the corresponding
values in the empirical distribution. The A category is an exception, as the log-uniform
distribution mean overestimates the empirical distribution mean. This is the case because
there are very few years with nonzero default rates. Table 2 presents the means and



J. Risk Financial Manag. 2023, 16, 444 9 of 17

standard deviations of the default rates in the empirical distribution and in the log-uniform
distribution, the minimum and maximum default rates in the log-uniform distribution
(EDF↓ and EDF↓), and the R2-values.

Table 2. Summary of the empirical and fitted log-uniform distributions. The means, standard
deviations, and EDF bounds are shown in percentage units.

Variable CCC B BB BBB A

Sample mean 24.6 4.09 0.84 0.19 0.05
Fitted mean 24.4 3.99 0.79 0.19 0.07

Sample stdev 11.9 3.25 0.99 0.25 0.10
Fitted stdev 11.8 3.21 0.80 0.24 0.09

EDF↓ 9.12 0.63 0.065 0.006 0.002
EDF↑ 51.1 12.5 3.15 0.99 0.35

log(EDF↓) 2.21 −0.45 −2.74 −5.05 −6.41
log(EDF↑) 3.93 2.52 1.15 −0.013 −1.04

R-squared 0.95 0.94 0.95 0.92 0.87

The log-uniform distributions are referred to as the EDF distributions. They are fully
determined by the values EDF↓ and EDF↑ (or their logarithms). The ETDF associated with
the EDF is defined over the uniform domain [0, 1] by

ETDF(x) =
1

βx

(
exp(α + βx)− exp(α)

)
, (5)

where α is the intercept and β is the slope. The intercept is denoted by log(EDF↓) in Table 2,
while the slope can be recovered by solving log(EDF↑)− log(EDF↓). At first sight, the
x → 0 limit seems problematic; however, with an application of L’Hopital’s rule, we find
that ETDF behaves well around the origin and that the limit is equal to exp(α).

The observation that the log–EDF distribution function is well estimated by a linear
line is natural. It has been demonstrated by Cappon et al. (2018) that the logarithms of
the average default rates computed over several decades are almost perfectly linearly
dependent on the credit rating (with the credit ratings considered as numerical values with
equal length displacements). Thus, the average default experience grows exponentially
worse as the rating declines. Here, we observe that the same is true for a fixed rating in
time; the annual average default experience grows exponentially worse with respect to the
ranking of the years along the default rates. With Hypothesis II, we move another step
forward and assume that this holds for the full population.

3.4. Model Specification

The remaining task is to parse together the DD distribution and the EDF distribution
by matching the quantiles. The values x of the log–EDF CDF (the x-coordinate values in
Figure 2) are replaced with the 1− x quantiles in the empirical log–DD distribution function
F . Thus, we impose the relationship

log(EDF(F −1(1− x))) = log(EDF↓) + (log(EDF↑)− log(EDF↓))x. (6)

Recall that log(EDF↑) − log(EDF↓) is the slope for the linear line in Figure 2. The log-
coordinates for the DD are used for convenience. We could alternatively apply quantile
matching on the empirical DD distribution and then move to the log–DD coordinates,
which leads to the same relationship between log–DD and log–EDF, as the quantiles of the
empirical log-DD distribution are equal to the logarithms of the quantiles of the empirical
DD-distribution.
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Figure 3 depicts the relationship from (6) in the log–log space for all of the considered
rating categories.

The observation that the log-EDF distribution function is well estimated by a linear line is
natural. It is demonstrated by Cappon et al. (2018) that the logarithms of the average default
rates computed over several decades are almost perfectly linearly dependent on the credit rating
(the credit ratings are considered as numerical values with equal length displacements). So, the
average default experience gets exponentially worse as the rating declines. Here we observed that
the same is true for a fixed rating in time: the annual average default experience gets exponentially
worse with respect to the ranking of the years along the default rates. With Hypothesis II we go
one step forward and assume that this holds for the full population.

3.4 Model Specification

The remaining task is to parse together the DD distribution and the EDF distribution by matching
the quantiles. The values x of the log-EDF CDF (x-coordinate values in Exhibit 3) are replaced
with the 1 � x quantiles in the empirical log-DD distribution function F . Thus, we impose the
relationship

logpEDFpF �1p1� xqqq � logpEDFÓq � plogpEDFÒq � logpEDFÓqqx. (6)

Recall that logpEDFÒq� logpEDFÓq is the slope for the linear line in Exhibit 3. The log-coordinates
for the DD are used for convenience. We could alternatively apply the quantile matching on the
empirical DD distribution and then move to the log-DD coordinates, which leads to the same rela-
tionship between log-DD and log-EDF because the quantiles of the empirical log-DD distribution
are equal to the logarithms of the quantiles of the empirical DD-distribution.

Exhibit 5 depicts the relationship (6) in the log-log space for all the rating categories considered.
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Exhibit 5. Relationship between log-DD and log-EDF.

The marks depict the matched quantiles. The lines represent graphs of generalized logistic functions
that are fitted on the matched quantiles by minimizing the root mean square error. The solid lines
are used over the log-DD values in the empirical sample and the dashed lines are extrapolated
using the fitted generalized logistic functions. In each case, these functions explain the dependence
with good accuracy. The generalized logistic functions are defined by

logpEDFpDDqq � logpEDFÒq �
logpEDFÓq � logpEDFÒq

1� eQ�B�logpDDq
. (7)

This function is a logistic function whose range has been transformed to the open interval between
EDFÓ and EDFÒ. The fitted parameters are available in Exhibit 6 and the values of EDFÓ and
EDFÒ in Exhibit 4.

Parameter CCC B BB BBB A
Q 1.05 3.58 5.94 6.91 7.15
B 2.27 2.74 3.28 3.22 3.10

Exhibit 6. Fitted parameters for the generalized logistic functions.
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Figure 3. Relationship between log–DD and log–EDF.

The marks depict the matched quantiles. The lines represent graphs of generalized
logistic functions that are fitted on the matched quantiles by minimizing the root mean
square error. The solid lines are used over the log–DD values in the empirical sample, while
the dashed lines are extrapolated using the fitted generalized logistic functions. In each
case, these functions explain the dependence with good accuracy. The generalized logistic
functions are defined by

log(EDF(DD)) = log(EDF↑) +
log(EDF↓)− log(EDF↑)

1 + eQ−B·log(DD)
. (7)

This function is a logistic function with a range that has been transformed to the open
interval between EDF↓ and EDF↑. The fitted parameters are available in Table 3 and the
values of EDF↓ and EDF↑ in Table 2.

Table 3. Fitted parameters for the generalized logistic functions.

Parameter CCC B BB BBB A

Q 1.05 3.58 5.94 6.91 7.15
B 2.27 2.74 3.28 3.22 3.10

The functional form of the DD–EDF dependence is

EDF(DD) = EDF↑ · exp
( log(EDF↓)− log(EDF↑)

1 + eQ−B·log(DD)

)
.

The EDF curves stabilize towards the minimum EDFs over the tails with increasing DDs.
The EDFs are strongly positive-sloping (in relative terms) as the DD shortens, and they
stabilize towards the maximum values. The regions of steep sloping are rating-dependent.
This behaviour is depicted in Figure 4.

At any point in the DD axis, the predicted EDF values are with respect to the credit
ratings; a higher EDF is always assigned in a case with a lower rating. Under rating
transitions, a new inference about the default risk can be made based on the DD value and
the newly selected EDF curve. In this respect, the model behavior is similar to the spread
risk model based on credit spread curves. Table 4 presents the EDF values for various DDs,
the low and high limits of the EDFs, the means, and the standard deviations.
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The functional form of the DD-EDF dependence is

EDFpDDq � EDFÒ � exp
� logpEDFÓq � logpEDFÒq

1� eQ�B�logpDDq

	
.

The EDF curves stabilize towards the minimum EDFs over the tails with increasing DDs. The
EDFs are strongly positive sloping (in relative terms) as the DD shortens, and they also stabilize
towards the maximum values. The region of steep sloping are rating-dependent. This behaviour
is depicted in Exhibit 7.
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Exhibit 7. Relationship between DD and EDF.

At any point in the DD axis, the predicted EDF values respect the credit ratings: a higher EDF
is always assigned with a lower rating. Under rating transitions, a new inference about the default
risk is made based on the DD value and the newly selected EDF curve. In this respect, the model
behavior is similar to the spread risk model based on credit spread curves. Exhibit 8 presents the
EDF values for various DDs, the low- and high-limits of the EDFs, the means and the standard
deviations.

Rating High-limit DD 1 DD 2 DD 4 DD 6 DD 8 DD 10 Low-limit Mean Stdev
CCC 51.1 33.2 17.4 11.0 9.86 9.50 9.35 9.12 24.4 11.8
B 12.5 11.5 7.82 2.38 1.18 0.87 0.76 0.63 3.99 3.21
BB 3.15 3.12 2.86 1.46 0.48 0.20 0.12 0.06 0.79 0.80
BBB 0.99 0.98 0.94 0.66 0.29 0.10 0.04 0.006 0.19 0.24
A 0.35 0.35 0.34 0.26 0.14 0.06 0.02 0.002 0.07 0.09

Exhibit 8. Summary of selected EDF values, means and standard deviations in percentage units.

3.5 Sensitivity to the Parameters

In Subsection 3.3 we argued that the EDFs have a log-uniform distribution. This was obtained in
an analysis of annual default rate summaries, which was justified by Hypothesis II. The resulting
EDF had the mean close to the average empirical default rate. In the following analysis, we alter
the parameters of the linear functions explaining the log-EDF distributions depicted in Exhibit
3. Specifically, we investigate how the relation between the log-EDF and log-DD behave under
such changes. The parameters of the linear dependencies are shifted such that the EDF mean
remain fixed but the variation changes. The uniform distribution for the log-EDF is specified by
the bounds logpEDFÓq and logpEDFÒq. It seems natural to widen (or narrow) these bounds by the
same constant x from both sides. This, however, alters the mean of the EDFs. We can stabilize
the mean by also shifting the new bounds by another constant s which is determined to keep the
mean EDF static. So, we are using a transformation of type

logpEDFÓq ÞÑ logpEDFÓq � x� s and logpEDFÒq ÞÑ logpEDFÒq � x� s,

10

Figure 4. Relationship between DD and EDF.

Table 4. Summary of selected EDF values, means, and standard deviations in percentage units.

Rating High-Limit DD 1 DD 2 DD 4 DD 6 DD 8 DD 10 Low-Limit Mean Stdev

CCC 51.1 33.2 17.4 11.0 9.86 9.50 9.35 9.12 24.4 11.8

B 12.5 11.5 7.82 2.38 1.18 0.87 0.76 0.63 3.99 3.21

BB 3.15 3.12 2.86 1.46 0.48 0.20 0.12 0.06 0.79 0.80

BBB 0.99 0.98 0.94 0.66 0.29 0.10 0.04 0.006 0.19 0.24

A 0.35 0.35 0.34 0.26 0.14 0.06 0.02 0.002 0.07 0.09

3.5. Sensitivity to the Parameters

In Section 3.3, we argued that the EDFs have a log-uniform distribution. This was
obtained through an analysis of annual default rate summaries, which was justified by
Hypothesis II. The resulting EDF had a mean close to the average empirical default rate.
In the following analysis, we alter the parameters of the linear functions explaining the
log-EDF distributions depicted in Figure 2. Specifically, we investigate how the relation
between the log–EDF and log–DD behave under such changes. The parameters of the
linear dependencies are shifted such that the EDF mean remains fixed while the variation
changes. The uniform distribution for the log–EDF is specified by the bounds log(EDF↓)
and log(EDF↑). It seems natural to widen (or narrow) these bounds by the same constant x
from both sides. This, however, alters the mean of the EDFs. We can stabilize the mean by
shifting the new bounds by another constant s determined in such a way as to keep the
mean EDF static. Thus, here we are using a transformation of type

log(EDF↓) 7→ log(EDF↓)− x + s and log(EDF↑) 7→ log(EDF↑) + x + s,

where x > 0 if we widen the bounds (i.e., increase the variance) and x < 0 if we narrow the
bounds (i.e., decrease the variance).

In the following, we focus on the B-rating category. We can choose to shift the value
x (and adjust s to keep the mean static) as long as we reach an increase in the standard
deviation of the EDF by 20%, then do the same to achieve a decrease in the standard
deviation by −20%. The parameter values are x = 0.35, s = −0.17 in the former case and
x = −0.33 and s = 0.13 in the latter. Figure 5 presents how this influences the points chosen
for quantile matching.
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where x ¡ 0 if we widen the bounds (i.e., increase the variance) and x   0, if we narrow the bounds
(i.e., decrease the variance).

In the following we focus on the B-rating category. We can choose to shift the value x (and
adjust s to keep the mean static) for as long as we reach an increase in the standard deviation of
the EDF by 20%, and then do the same to achieve a decrease in standard deviation by �20%. The
parameter values are x � 0.35, s � �0.17 in the former case, and x � �0.33 and s � 0.13 in the
latter case. Exhibit 9 presents how the points chosen for the quantile matching are influenced by
this.
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Exhibit 9. B-category log-DD and log-EDF dependencies.

The lines in Exhibit 9 are graphs of generalized logistic functions with parameters estimated by
minimizing the root mean square error between the chosen quantile points and the logistic function.
The parameters, and the means and standard deviations of the EDF are presented in Exhibit 10.

Hypothesis Mean Stdev Rel-stdev Q B EDFÓ EDFÒ

Low-stdev 3.99 2.57 0.8σ 3.58 2.74 1.00 10.3
Baseline 3.99 3.21 σ 3.58 2.74 0.63 12.5
High-stdev 3.99 3.86 1.2σ 3.58 2.74 0.38 15.1

Exhibit 10. Summary of model implied statistics and model parameters (B-category).

The DD-EDF relationships in the standard coordinates are depicted in Exhibit 11.

11

Figure 5. B-category log–DD and log–EDF dependencies.

The lines in Figure 5 are graphs of generalized logistic functions with parameters
estimated by minimizing the root mean square error between the quantile matching points
and the logistic function. The parameters, means, and standard deviations of the EDF are
presented in Table 5.

Table 5. Summary of model implied statistics and model parameters (B-category).

Hypothesis Mean Stdev Rel-Stdev Q B EDF↓ EDF↑

Low-stdev 3.99 2.57 0.8σ 3.58 2.74 1.00 10.3
Baseline 3.99 3.21 σ 3.58 2.74 0.63 12.5
High-stdev 3.99 3.86 1.2σ 3.58 2.74 0.38 15.1

The DD–EDF relationships in the standard coordinates are depicted in Figure 6.
Table 5 suggest first that the EDF mean is invariant under the shifts (which is con-

trolled), and second that the parameters B and Q are invariant. Why is this the case? In
the relation from (6), we can write F −1(1− x) = log(DD) and 1− x = F (log(DD)), which
results in

log(EDF(DD)) = log(EDF↓) + (log(EDF↑)− log(EDF↓))(1− F (log(DD))) (8)

= log(EDF↑) + (log(EDF↓)− log(EDF↑))F (log(DD))

where F is the empirical log–DD distribution. Now, the sum of square errors in fitting the
parameters Q and B in (7) to this function over the quantile matching points is proportional
to the square of log(EDF↑)− log(EDF↓) and to the sum of square errors when matching the
logistic function 1/(1 + exp(Q− B · log(DD))) to F (log(DD)). Only the latter component
has dependence on Q and B. The latter component does not have dependence on the EDF
distribution, and is fully derived using the DD sample. Therefore, the optimal values for B
and Q are not dependent on log(EDF↑) or log(EDF↓). Another interesting remark here is
that the log–DD sample is well explained by a logistic distribution in each rating category.
In the standard notation, the CDF and PDF of the logistic distributions are defined by

L(x) =
1

1 + exp(−(x− µ)/s)
and l (x) =

exp(−(x− µ)/s)
s(1 + exp(−(x− µ)/s))2
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where µ = Q/B and s = 1/B. Figure 7 depicts the CDF and PDF for the B-category. The
marks in the CDF plot are empirical distribution values.
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Exhibit 11. B-category DD and EDF dependencies.

Exhibit 10 suggest that not only the EDF mean is invariant under the shifts (which is controlled),
but also the parameters B and Q are invariant. Why is this the case? In the relation (6) we can
write F �1p1� xq � DD and 1� x � F pDDq which results in

logpEDFpDDqq � logpEDFÓq � plogpEDFÒq � logpEDFÓqqp1� F pDDqq (8)

� logpEDFÒq � plogpEDFÓq � logpEDFÒqqF pDDq

where F is the empirical log-DD distribution. Now, the sum of square errors in fitting the parame-
ters Q and B in (7) to this function over the quantile matching points is proportional to the square
of logpEDFÒq � logpEDFÓq and to the sum of square errors when matching the logistic function
1{p1� exppQ�B � logpDDqqq to F pDDq. Only the latter component has dependence on Q and B.
The latter component does not have dependence on the EDF distribution, and is fully derived by
the DD sample. Therefore, the optimal values for B and Q are not dependent on logpEDFÒq or
logpEDFÓq. Another interesting remark here is that the DD sample is well explained by a logistic
distribution in each rating category. In the standard notation, the CDF and PDF of the logistic
distributions are defined by

F pxq �
1

1� expp�px� µq{sq
and f pxq �

expp�px� µq{sq

sp1� expp�px� µq{sqq2

where µ � Q{B and s � 1{B. Exhibit 12 depicts the CDF and PDF for the B-category. The
marks in the CDF plot are empirical distribution values.
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Figure 6. B-category DD and EDF dependencies.
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Exhibit 11. B-category DD and EDF dependencies.

Exhibit 10 suggest that not only the EDF mean is invariant under the shifts (which is controlled),
but also the parameters B and Q are invariant. Why is this the case? In the relation (6) we can
write F �1p1� xq � DD and 1� x � F pDDq which results in

logpEDFpDDqq � logpEDFÓq � plogpEDFÒq � logpEDFÓqqp1� F pDDqq (8)

� logpEDFÒq � plogpEDFÓq � logpEDFÒqqF pDDq

where F is the empirical log-DD distribution. Now, the sum of square errors in fitting the parame-
ters Q and B in (7) to this function over the quantile matching points is proportional to the square
of logpEDFÒq � logpEDFÓq and to the sum of square errors when matching the logistic function
1{p1� exppQ�B � logpDDqqq to F pDDq. Only the latter component has dependence on Q and B.
The latter component does not have dependence on the EDF distribution, and is fully derived by
the DD sample. Therefore, the optimal values for B and Q are not dependent on logpEDFÒq or
logpEDFÓq. Another interesting remark here is that the DD sample is well explained by a logistic
distribution in each rating category. In the standard notation, the CDF and PDF of the logistic
distributions are defined by

F pxq �
1

1� expp�px� µq{sq
and f pxq �

expp�px� µq{sq

sp1� expp�px� µq{sqq2

where µ � Q{B and s � 1{B. Exhibit 12 depicts the CDF and PDF for the B-category. The
marks in the CDF plot are empirical distribution values.
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Figure 7. CDF and PDF functions for the logistic distribution of log–DDs in B category.

The respective maximum absolute distances between the empirical log–DD distribu-
tion and the logistic approximation are 0.04, 0.04, 0.04, 0.03, and 0.07 for the categories A,
BBB, BB, B, and CCC.

Based on the observations made in this subsection, Hypothesis II can be relaxed with-
out altering the model specification. The assumption that the log–EDF distribution is linear,
with unknown parameters EDF↓ and EDF↑, leads to a generalized logistic dependency
between log–DD and log–EDF in an EDF model of public corporations based on the DD
rank estimator. Thus, under the linear hypothesis concerning the log–EDF distribution, it is
only necessary to address the following problem:

• How can the minimum and maximum EDFs in each rating category be determined?

4. Discussion

The conventional method for modeling the EDFs often entails using agency credit
ratings as a measure of entity credit quality and assigning historical average default rates
to each rating in order to establish the EDFs. Another common strategy is to make a
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parametric inference about the EDFs, often assuming that the EDF is a logistic function of
a credit quality variable. These considerations prompt us to pose the following question:
How is it possible to systematically explain the EDFs without relying on strong parametric
assumptions about the EDF function? We propose that the problem of finding the EDF
function can be divided into two separate steps. The first problem, which can be solved
independently of the second, involves identifying the credit rank variable. The rank
estimator seeks a variable that ranks entities from the most vulnerable to default to the
least vulnerable. The second step requires a non-parametric strategy for estimating the
EDF dependency on the chosen rank variable. In the estimation of the EDF, we introduce a
new variable called ETDF, which offers the advantage of accommodating larger sample
sizes than the typical EDF estimator. The resulting ETDF is a discrete function of the rank
variable. The EDF is related to the ETDF through an integral equation. To solve for the
EDF, the ETDF must be approximated using a differentiable function. This approximation
entails selecting a function from the space of all differentiable functions, which requires a
certain degree of judgment, which this is where the non-parametric inference is required.

The second part of this study delves into a model that can be considered a prototype
within the framework outlined earlier. The entities under consideration are public corpo-
rations. This choice is very convenient for studying this paradigm, as many studies have
concluded from empirical analysis that the DD variable is a strong candidate for the rank
variable. We then argue that, for each credit rating category, the EDF can be represented
as an exponential function over a uniform sample that is ordered by credit quality. In
other words, over a uniform domain, the expected default experience grows exponentially
worse as the credit quality of the issuer decreases. This concept finds support in the time
series behavior of historical default rates, allowing the EDF over the uniform sample to be
inferred from the default rate summaries. It is often easier to work with the linear functions,
and as such we represent the log–EDF as a function that increases linearly as the credit
quality improves. Next, we apply the hypothesis that the DD has the ability to rank the
sample in credit quality, which allows us to use quantile matching and present the log–EDF
as a discrete function of the DD. However, it turns out that it is easier to approximate the
log–EDF with a differentiable function when the log–DD is used as the rank variable (note
that log(DD) and DD rank the sample accordingly). Through data visualization and a
trial-and-error approach, it was found that the dependence between log–DD and log–EDF
can be approximated accurately using the generalized logistic functions. The EDF function
of the DD is presented in (8). The ETDF associated with this model is presented in (5). This
prototype model has convenient properties. For instance, we have noted that to specify
the EDF function it is sufficient to first determine two parameters (the upper and lower
EDF limits), then solve the remaining parameters by estimating the logistic distribution for
the log–DDs.

The idea of separating the task of finding the rank variable from the estimation of
the EDF function is known from the KMV approach to EDF modeling, as discussed by
Kealhofer (2003a) and Duffie and Singleton (2003). However, the details on the DD and
the EDF function in these papers have not not published. In this study, we propose a
non-parametric strategy to find the EDF function. The prototype model outlined earlier
paves the way for a novel form of inference concerning EDFs. This specification differs
from the usual parametric models used in credit risk modeling, such as the logistic and
hazard rate models (as seen in the works of Chava and Jarrow (2004) and Campbell et al.
(2008)), as well as structural models such as Gordy and Heitfield (2001). In the latter
case, the EDF is typically represented as a normal distribution function (sometimes a fat-
tailed distribution function) of the rank variable. The logistic models assume that the EDF
itself can be explained as a logistic function of some covariates. Here, we argue that the
log–EDF can be explained as a generalized logistic function of the log–DD. The logistic
function in this relation arises because the log–DD distribution can be explained using the
logistic distribution.
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The primary limitation of this study lies in the small dataset used for the prototype
model. This limitation led us to formulate a hypothesis regarding the EDFs rather than
estimating the frequencies on the issuer level empirical default experience data. In a more
expansive empirical study, it would be possible to estimate the ETDF by initially fitting the
empirical ETDFs over the uniform domain using the estimator defined in (3). Subsequently,
the parameters of the ETDFs associated with the log-uniform model could be fitted to these
empirical ETDFs using (5). Another limitation to note is that this study did not introduce
an out-of-sample test to assess performance.

A potential extension of the prototype model could involve estimating the expected
credit rating transition frequencies for public corporates using DD as the rank variable.
Now, the same inferences about the expected credit transition frequencies can be made as in
the analysis of defaults above. In particular, to estimate the model over the uniform domain
one would estimate the parameters of the expected tail frequency using the straightforward
modification of (3) for the transition frequencies, followed by finding the model parameters
by fitting (5). The associated expected transition frequency can be explained with the
exponential function. The expected transition frequency as a function of DD has the
same specification as (8), where F is the distribution function of the log(DD)s. Beyond
public corporations, this strategy to estimate the EDF can be used to estimate the expected
frequencies of other credit events and to estimate credit event-related frequencies for non-
corporate issuers. A metric similar to DD has been used to analyze the credit risk of
sovereign entities. The framework introduced in this manuscript could potentially be used
to analyze EDFs in this domain as well.

5. Conclusions

In this paper, we have introduced a generic modeling strategy for EDFs. This strategy
consist of two steps: first, a rank variable is selected which allows for ranking the bond
issuer entities from the most likely to default to the least likely; second, the EDF can be
recovered by fitting the ETDF on the ranked sample, then solving a simple integral equation
for the EDF. The remainder of the manuscript produces details of prototype models for
the EDFs of public corporations across multiple rating categories. In this prototype, a data
reduction hypothesis regarding the EDFs has been put in place, leading to the inference
that the EDF distribution is log-uniform. We found by studying the time series of historical
default rates that the log-uniform distribution for the EDFs seems very reasonable. In a
subsequent step, we found that if we explain the variation of the EDFs using the DDs,
this leads to a generalized logistic function dependency between the log–DD and log–
EDF. We further analyzed the sample of DDs and found that the reason that the quantile
matching strategy gives rise to an approximate logistic dependency is that the empirical DD
distributions are well approximated by the logistic distributions. In addition, we introduce
the estimators needed to fit this prototype model.
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Appendix A

This appendix describes the algorithm for estimating asset value and asset volatility.

1. The standard deviation of the daily stock returns over a one-year historical window is
used as the initial prior for the asset volatility.

2. The time series of the asset values is solved by inverting the Black–Scholes call option
pricing formula with the option values equal to the market capitalizations with a strike
equal to the debt estimate over the annual window. The debt estimate is kept constant
over the window. The asset volatility used in this step is solved in the previous step
of the iteration.



J. Risk Financial Manag. 2023, 16, 444 16 of 17

3. The standard deviation of the asset returns estimated using the asset prices from the
previous step is selected as the new asset volatility estimate.

4. Steps 2 and 3 are repeated until the asset volatility stabilizes. The criteria for stabiliza-
tion is that the change from the previous estimate has a magnitude less than 0.0001.

5. The final asset value is solved by inverting the call option pricing formula for the
option value equal to the most recent market capitalization and the asset volatility
equal to the stabilized volatility. The stabilized volatility is then used as the final
asset volatility.

This algorithm is executed for each corporation and at each point of time in the panel dataset.

Notes
1 For the ranking variable, being an observable is not the crucial point. For instance, the rank could depend on implied volatilities.

However, unlike the default experience D, the ranking variable can only use the information available at the time associated
with it.

2 How to justify this definition of EDF? From the definitions of ETDF and conditional expectation, it follows that

ETDF(r) =
E(D · 1({R < r}))

P ({R < r}) =
1

F (r)
E(D · 1({R < r})),

where 1({R < r}) denotes the indicator function for the event {R < r} happening. The set (−∞, r] can be partitioned to N
disjoint blocks, denoted by Ci. If the selected partition is fine enough, then

ETDF(r) =
1

F (r)

N

∑
i=1

E(D · 1({R ∈ Ci})) ≈
1

F (r)

N

∑
i=1

E(Di) · E(1({R ∈ Ci})),

where E(Di) is the expected value of the default variable when R ∈ Ci, which can be approximated as a constant if the partition
for R is selected to be fine (i.e., R can be approximated as a constant in each block). This justifies the breakdown of the expected
value. The remaining expectation E(1({R ∈ Ci})) is equal to P ({R ∈ Ci}), and in the limit where the block sizes approach zero
we recover the (2).
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