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Abstract: This article studies the connectedness between economic sectors of the Polish stock market.
The sectors that are considered are the following: banks, basic materials, chemicals, construction, de-
velopers, energy, food, and oil and gas. The analysis of the connectedness among sectors is conducted
from a statistical and dynamic perspective. Using the time-varying parameter vector autoregression
(TVP-VAR) method, the intensity, direction and variation of volatility spillover between the economic
sectors are studied. Two samples are analysed, the first one being from 1 January 2013 to 12 December
2019, which corresponds to the period before the pandemic caused by COVID-19, and the second
one being from 1 January 2020 to 2 December 2021, which corresponds to the period during the
pandemic. A series of results are obtained. First, the connectedness between the economic sectors
varies depends on the time. Second, the connectedness between the sectors was stronger during
the crisis caused by the outbreak of COVID-19 rather than before the crisis. The volatility of each
sector was also primarily due to their own volatility. Thirdly, the banking sector was the main sector
with respect to volatility spillover. The results that are obtained are important for making the right
decisions regarding financial stability under crisis circumstances, when considering development
strategies for some economic sectors but also in portfolio management for performing diversification
and risk-mitigation strategies.

Keywords: spillover volatility; sector connectedness; stock market; TVP-VAR

1. Introduction

The global financial crisis of 2008 led to increased volatility in financial markets.
Economic and financial integration, as well as financial liberalization, are some of the
factors that have led to an increase in return and volatility spillover in financial markets
(Mensi et al. 2021). In addition, financial difficulties caused by political instability, sovereign
debt insolvency and recessions are spreading very quickly to other countries (Andries, and
Galasan 2020; Bot,oc and Anton 2020). Return and volatility spillover in stock markets is
a complex topic that has attracted the attention of researchers and allows for studies of
the connectedness between economic sectors (Chakrabarty et al. 2015; Chirilă et al. 2015;
Lupu and Lupu 2009; Lupu et al. 2021). Volatility spillovers between different categories of
financial markets (Antonakakis et al. 2018; Yao et al. 2022; Gabauer 2021), from the same
financial markets in different geographical areas (Škrinjarić 2019; Škrinjarić and Šego 2020)
or from different categories of economies (Spulbar et al. 2020) are being studied. In the
above-mentioned research, special attention is given to the study of volatility spillover or to
the connectedness between different sectors of a stock market (Fasanya et al. 2021; Hassan
and Malik 2007; Kouki et al. 2011; Shahzad et al. 2021a; Ngene 2021).

Knowledge of sectoral connectedness within stock markets is of real interest for port-
folio management, macroeconomic analysis and policy makers. Identifying volatility
spillover patterns between stocks from different economic sectors allows the portfolio
manager to make portfolio diversification decisions in a timely manner for efficient man-
agement. In addition, identifying the main sectors with volatility spillover strengthens
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policy makers’ decisions to reduce overall market risk and helps develop specific economic
sectors by providing knowledge about which sectors influence the targeted sector.

Thus, this study fits into the broader framework of the sustainable development of an
economy to the extent that the development of some economic sectors of a country must
consider the influence of other economic sectors of the same country. This study allows for
the identification of the connectedness between the economic sectors of Poland; therefore,
these results can be used to strengthen economic development policies.

The analysis of spillovers across markets has acquired a new dimension through the
methodology of Diebold and Yilmaz (2008, 2012). In addition to identifying variations
over time of the return spillover and risk, this methodology allows for the identification
of the extent to which this spillover is achieved. The results that were obtained allow for
comparisons to be made. In addition, the outbreak of an economic and financial crisis led
to an increase in research on returns and volatility spillover between different markets,
because an increase in spillover has been identified during these periods. The health crisis,
caused by the outbreak of COVID-19, also grounded this research.

The results that were obtained following the study of volatility spillover are not
similar. There are several studies that confirm the financial sector to be the main sector
with volatility spillover. An analysis of sectoral connectedness was conducted on the US
stock market by Costa et al. (2021) before and during the crisis caused by the outbreak of
COVID-19. Through their results, they confirmed an increase in volatility spillover across
sectors during the crisis. The energy sector was a net receiver both before and during the
COVID-19 crisis, but it was the most connected in the system of studied sectors. The main
sector with volatility spillover was the financial sector.

The connectedness between six industry sectors in the US stock market was also stud-
ied by Liu et al. (2021). The results that were obtained show that the financial sector and the
technology sector were the main sectors with volatility spillover. In many situations, the net
volatility spillover also changes its direction during financial crises and recession periods.

Shahzad et al. (2021a) studied the impact of quantile return spillovers on equity sectors.
This method allows for the study of extreme returns, which indicate critical periods that
the stock market undergoes. The results that were obtained confirm that the pandemic
caused by COVID-19 determined that the restructuring of the connectedness between
sectors was stronger in the bulk of the distribution in comparison with the tails of the
distribution, where there were extreme returns. A difference compared to the previous
financial and economic crises was also noticed for the financial sector, which became an
information receiver.

Tail-dependency networks were tackled by Le et al. (2021) in a study of 51 international
assets (spot exchange, commodities, equity indices, UST bonds and Bitcoin). In this study,
conducted for the period of 1 January 2019–30 April 2020, a stronger asymmetry effect
was observed for left tails for equities and commodities. In one study, Bouri et al. (2021b)
discussed the connectedness between the returns for gold, crude oil, MSCI World, the USD
index and the bond index for the period before the pandemic (19 August 2011–13 January
2020) and during the pandemic 13 January 2020–12 May 2020. Before the pandemic, if
MSCI World and the USD index (stock indexes) had the most important volatility spillovers,
then during the COVID-19 pandemic, bonds became the main assets with a volatility
spillover effect.

The financial sector was identified as being the main sector with volatility spillover,
alongside the energy sector, in the network of eleven sectors of the Australian stock market
(Choi et al. 2021). The technology and telecommunication service sectors were the main
recipients of volatility. Wu et al. (2019) studied the volatility spillover across stock market
sectors in China from 7 January 2000 to 10 May 2018. The results were based on both graph
theory and Diebold and Yilmaz’s (2014) methodology, confirming that the industrial sector
was the main sector with volatility spillover. This study also confirmed the time-varying
volatility spillover. Shahzad et al. (2021b) also studied volatility spillover between the
Chinese stock sectors during the COVID-19 pandemic by taking into account the period of
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2 January 2019–30 September 2020. The 1-min sampling frequency allowed the study of the
downside semivariance and upside semivariance. The results confirm the variance in time
and the asymmetry of volatility spillover.

Chatziantoniou et al. (2020) studied volatility spillover across sectors in the Indian
stock market. The authors concluded that volatility spillover increases during periods of
economic, financial and health crises, but also during the 2014 Indian elections and the
2016 demonetization period. They also found that shocks start mostly from the cyclical
sectors and reach non-cyclical sectors. Thus, the sectors with net volatility spillover are
basic materials, industry, finance, and consumer spending and the sectors receiving net
volatility are telecommunications, information technology, healthcare and consumer goods.

The importance of studying the economic sectors of the stock exchanges is highlighted
by the study performed by Bouri et al. (2021a). The authors studied the impact of three
governmental decisions for reducing the pandemic’s effects in New Zealand: the stimulus
package, lockdown and the travel ban. These governmental policies determined a different
response on the stock market depending on each sector.

Considering previous research, we can formulate the following research hypotheses:

H1. The intensity and direction of connectedness between economic sectors vary over time.

H2. The connectedness between economic sectors is stronger during the health crisis caused by the
outbreak of COVID-19.

H3. The financial sector is the main sector with volatility spillover to other economic sectors, thus
influencing the development of most economic sectors.

Identifying a deficiency in volatility spillover research in Central and Eastern Eu-
ropean stock markets prompted this research. Therefore, this study addresses sectoral
connectedness in one of the most developed stock markets in Central and Eastern Europe:
Poland. The study provides new insights into the independence of an economic activity
sector by adding to and extending the existing research literature. The volatility of stock
prices in an economic sector expresses the way in which a shock, or new information, is
integrated into stock prices, thus providing the possibility of identifying useful patterns
in studying the characteristics and evolution of stock market sectors. The results will also
provide important information when identifying the vulnerability of economic sectors.

The context of the health crisis caused by the outbreak of COVID-19 allowed for a
comparative study of some changes that appeared in the connectedness between listed
shares from different economic sectors before and during the crisis. Therefore, this study
compares the situation of the volatility connectedness between sectoral indices before
the outbreak of the health crisis and during it. The methodology proposed by Diebold
and Yilmaz (2008), with subsequent additions made by Diebold and Yilmaz (2012, 2014),
enables the quantification of volatility spillover, thus ensuring the possibility to make the
comparisons. In this study, we will use the time-varying parameter vector autoregressions
(TVP-VAR) methodology of Antonakakis et al. (2020), which is an improved version of the
one proposed by Diebold and Yilmaz (2014).

The rest of the paper is organized as follows: Section 2 presents the Polish stock market;
Section 3 covers the econometric methodology; and Section 4 presents the used data and
the empirical steps. These are followed by the empirical results and conclusions.

2. Polish Stock Market

In the year 2004, major CE states such as Poland, Hungary, the Czech Republic and
Slovakia, became EU members. It is for this reason that the Polish stock market is studied
alongside that of Hungary and the Czech Republic whenever the emerging CE markets are
analysed (Scheicher 2001; Li and Majerowska 2008; Syriopoulos 2007). The stock markets
from these countries registered much more rapid development than the average of the
developed countries in the EU, even if their economic situation was not a favorable one
(Havlik 2003). We considered the stock market from Poland because it is one of the most
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representative emerging markets for Central and Eastern Europe. This is also proved by
the fact that it is the only country in this area for which sectoral indices are calculated.

Malinowska (2021) studied 238 companies listed on the Warsaw Stock Exchange, the
stock market from Poland, during 2007–2015. The conclusion was that the effects of the
economic and financial crisis were noticed in the companies’ policies for future investments.
The corporations’ profits were not affected but during the period analysed, both the stock
return and the future growth of companies decreased. Even if the crisis did not affect the
Polish market, the result confirms the lack of adequacy of the local banking sector.

Chirilă et al. (2015) studied the volatility spillover between the stock markets from
Central and Eastern Europe. The Polish stock market is more influenced by the shocks of
its own market than by the shocks of the Euro zone market. This result is also confirmed by
the study performed by Sucháček et al. (2021), who analysed the effect of the 2007–2009
economic and financial crisis on the integration of CE stock markets. The authors reached
the conclusion that the volatility of the Polish stock market was more influenced by local
factors than by external ones. The crisis did not significantly influence the integration of
the Polish stock market into the USA and European stock markets.

On the Polish stock market, the number of listed companies registered a continuous
decrease since 2015. As shown in Figure 1, the highest descending slope was recorded
during 2016–2020, when 54 companies disappeared. The decrease in the number of listed
companies in the year 2021, in comparison with 2020, is very low, with a decrease of only
three companies. The decrease in the capitalization of the Polish stock market can be
noticed continuously during 2017–2020, with a decrease of 95,000 million Euros. In the year
2021, the capitalization of the market increased by approximately 50,000 million Euros.
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Figure 1. The evolution of the number of listed stocks and the capitalization of the stock market in
Poland. Note: Performed by the authors based on the data from the Polish stock market (www.gpw.pl,
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In order to determine the structure of the capitalization of the stock market according
to different economic sectors, we took into consideration the capitalization of each stock
composing the sectoral indices. The data were taken from the website www.investing.com,
accessed on 14 June 2022. The results obtained are presented in Figure 2 below.
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Based on these data, it can be noticed that the banking sector has a very high weight
of 50.79%, followed by the energy sector (18.55%) and the oil and gas sector (11.33%).

3. Methods

The spillover assessment using the methodology proposed by Diebold and Yilmaz
(2008, 2012, 2014) is widely used for estimating volatility spillover. However, the spillover
dynamics based on a VAR model are influenced by the chosen size for the rolling-window,
extreme values, mismatch for high-frequency data and information loss caused by the
rolling-window. The removal of these disadvantages was achieved by using TVP-VAR
presented by Antonakakis et al. (2020). This study uses the latter methodology. We will go
through several stages: (a) identifying the descriptive characteristics of the volatility indices
of the Polish stock market’s sectors, (b) testing the stationarity of the sectors’ volatility
series, (c) estimating the vector autoregressive (VAR) model, and (d) forecasting the error
variance decomposition for the quantification of volatility spillover (TVP-VAR).

A vector-autoregressive model, VAR, is estimated and the variance decomposition
matrix is determined. This allows the quantification of directional and net spillovers
(connectedness) between stock market sectors.

The estimated VAR model can be written as follows:

xt = ∑p
i=1 ϕixt−1 + εt, (1)

where xt is the vector of endogenous variables, ϕi is the autoregressive coefficient matrix,
and εt is the vector of error terms.

Relation (1) can be written as a moving average as follows:

xt = ∑∞
i=1 Ajεt, (2)

Aj = ϕ1 Aj−1 + ϕ2 Aj−2 + · · ·+ ϕp Aj−p,

where Aj is the coefficient matrix, A0 is the identity matrix and A0 = 0 for j < 0.
The moving average coefficients are used for variance decomposition. The variance of

the H-step-ahead forecast error is decomposed into the variances determined by the shocks
of the system in the VAR(p) model.

www.investing.com
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The contribution of variable x to the H-step-ahead generalized forecasting error vari-
ance for variable i, based on the generalized VAR of Koop et al. (1996) and Pesaran and
Shin (1998), can be calculated as follows:

θ
g
ij(H) =

σ−1
jj ∑H−1

h=0 (e′i Ah ∑ ej)
2

∑H−1
h=0 (e′i Ah ∑ A′hej)

, (3)

where σjj is the standard deviation of the error variable in equation j, and ei is the vector
taking the value 1 for element i and zero otherwise.

The generalized forecast error variance shares are thus obtained by normalization:

θ̃
g
ij(H) =

θij(H)

∑n
j=1 θij(H)

, (4)

thus, ∑n
j=1 θ̃ij(H) = 1 and ∑n

i,j=1 θ̃ij(H) = N.
The measurement of pairwise directional connectedness, at horizon H, from j to i is

achieved based on the following formula:

Si←j(H) = θ̃ij(H) (5)

The measurement of net pairwise directional connectedness is achieved based on the
following formula:

Sij(H) = Si←j(H)− Sj→i(H) (6)

The directional volatility connectedness received by sector i from all other sectors j (FROM):

Si←·(H) =
∑N

j=1, j 6=i θ̃ij(H)

∑N
i,j=1 θ̃ij(H)

·100 =
∑N

j=1, j 6=i θ̃ij(H)

N
·100 (7)

The directional volatility connectedness transmitted by sector i to all other sectors j (TO):

S·←i(H) =
∑N

i=1, j 6=i θ̃ij(H)

∑N
i,j=1 θ̃ij(H)

·100 =
∑N

i=1, j 6=i θ̃ij(H)

N
·100, (8)

The net total directional spillover for sector i:

Si(H) = S·←i(H)− Si←·(H), (9)

The total spillover index:

S(H) =
S·←i(H)

N
=

Si←·(H)

N
, (10)

4. Data and Empirical Steps

For the study of the volatility spillover between shares of different economic sectors
traded on the Polish stock exchange, the period from 1 January 2013 to 2 December 2021
is considered. This time frame allows studying volatility spillover before the outbreak of
the health crisis caused by COVID-19 (without taking into consideration the period of the
global financial crisis of 2008–2009 and the European sovereign debt crisis, 2010–2012) and
also allows us to study the volatility spillover between sectors during the health crisis. The
period considered is based on the research conducted by Costa et al. (2021), which had the
same start date for the sample, and the sample stops earlier, on 31 December 2020. Daily
returns determined based on sectoral indices will allow the performance quantification of
each of the economic sectors we analysed.
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The data used are the daily values of the sectoral stock indices calculated on this stock
market including banks, basic materials, chemicals, construction, developers, energy, food,
and oil and gas. They are considered high-frequency, daily data for several reasons. First,
financial markets are known to immediately incorporate the information that emerges in
the market into asset prices. Thus, the closing prices of the sectoral indices will reflect all
the news or changes that occur during the day in the economic sector. Secondly, the daily
closing prices of the sectoral indices also reflect the expectations regarding the evolution of
the business sector.

The return rate for each business sector is calculated based on the following formula:

ri,t = ln
(

Ii,t

Ii,t−1

)
·100, (11)

where ri,t is the log-return for the economic sector i at time t. Ii,t and Ii,t−1 are the values of
the sectoral index i, at time t and t − 1, respectively.

Consistent with the studies of Antonakakis et al. (2018), Corbet et al. (2020) and
Costa et al. (2021) for determining the volatility of the i-index price, we will use the
following formula:

Vi,t = |ln Ii,t − ln Ii,t−1|, (12)

For each index, 2327 daily returns and volatilities were determined. This study carries
out a comparison between the volatility spillover situation before and after the outbreak of
COVID-19. Therefore, two sampling units are considered: the first sample unit covers the
period from 1 January 2013 to 31 December 2019 (here, we also determined 1825 values for
returns and volatility) and the second sample unit covers the period from 1 January 2020 to
2 December 2021 (502 values for returns and volatility). The samples are in compliance with
the choice of samples performed by Costa et al. (2021) and Akhtaruzzaman et al. (2020).

The stages that we will go through in achieving the proposed general objective are
the following: (a) performing a descriptive analysis of the variables studied, (b) testing
the stationarity of the variables to allow moving onto the next stage, (c) estimating the
TVP-VAR model, and (d) conducting error variance decomposition. The results will allow
for the prediction of the components according to the shocks of the studied component and
the other components.

5. Empirical Results
5.1. Preliminary Analysis

Figure 3 shows the evolution of the return and of the value of the sectoral indices
during the analysed period. A different evolution of these economic sectors can be observed,
which suggests the possibility of diversifying a portfolio by buying stocks with different
fields of activity. We also note an increase in stock market volatility from all sectors at the
end of 2019 at the same time as the outbreak of COVID-19.

The estimation of descriptive statistical indicators for the volatility of sectoral indices,
presented in Table 1, shows that the basic materials and chemicals sectors had the highest
average risk before the health crisis. However, after the outbreak of COVID-19, the highest
level of average risk appears to be in the basic materials and energy sectors as shown in
Table 2. The distributions of the volatilities of all sectors also show asymmetry and skews
that deviate from a normal distribution, a result confirmed by the Jarque-Berra test.
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represent the returns as well as the values of the sectoral indices of banks, basic materials, chemicals, 
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Table 1. Indicators of the descriptive statistics of volatility for the period of 1 January 2013–31
December 2019.

Banks Basic
Materials Chemicals Construction Developers Energy Food Oil and Gas

Mean 0.009031 0.013779 0.011371 0.007420 0.005962 0.010875 0.008590 0.011226

Median 0.006854 0.010157 0.008710 0.005549 0.004714 0.008481 0.006492 0.008866

Maximum 0.061566 0.160636 0.079919 0.065477 0.056232 0.061967 0.118438 0.086895

Minimum 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

Std. Dev. 0.008267 0.013096 0.010241 0.007113 0.005524 0.009890 0.008530 0.009978

Skewness 1.738258 2.126018 1.567026 2.030536 2.145123 1.520350 2.798026 1.462297

Kurtosis 7.801244 13.85961 6.597816 10.25165 11.96698 5.953097 22.44751 6.479028

Jarque-Bera 2671.9 *** 10342.5 *** 1731.2 *** 5252.8 *** 7513.9 *** 1366.2 *** 31140 *** 1570 ***

ADF −39.38 *** −16.66 *** −20.93 *** −36.41 *** −39.04 *** −39.82 *** −25.53 *** −39.56 ***

PP −41.82 *** −44.36 *** −39.70 *** −37.18 *** −40.02 *** −40.54 *** −37.98 *** −39.78 ***

ADF-breaks −40.18 *** −39.53 *** −38.09 *** −37.39 *** −40.13 *** −40.43 *** −37.22 *** −40.57 ***

ERS −26.25 *** −15.84 *** −4.47 *** −10.10 *** −17.63 *** −3.90 *** −24.55 *** −2.70 ***

Note: *** Significant at 1%. Results obtained by the authors. ADF—Augmented Dickey–Fuller unit root test
(Dickey and Fuller 1979); PP—Phillips–Perron unit root test (Phillips and Perron 1988); ADF breaks—Augmented
Dickey–Fuller unit root test with breaks (Perron 1989); ERS—Elliott et al.’s (1996) unit root test.

Table 2. Indicators of the descriptive statistics of volatility for the period of 1 January 2020–2
December 2021.

Banks Basic
Materials Chemicals Construction Developers Energy Food Oil and Gas

Mean 0.015299 0.020891 0.014846 0.009974 0.008627 0.017521 0.011141 0.014940

Median 0.010095 0.015193 0.010579 0.006617 0.005914 0.012036 0.007287 0.010461

Maximum 0.164290 0.171688 0.122926 0.072110 0.078906 0.147943 0.118241 0.114225

Minimum 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

Std. Dev. 0.016730 0.019978 0.015509 0.010427 0.009391 0.018946 0.012789 0.014735

Skewness 2.873488 2.116500 2.354047 2.196099 2.518805 2.569548 3.282151 2.157256

Kurtosis 18.18831 11.06158 11.58403 10.05637 13.09189 12.84583 21.02143 10.33848

Jarque-Bera 5515.9 *** 1734.1 *** 2004.8 *** 1445 *** 2661 *** 2580 *** 7694.4 *** 1515.7 ***

ADF −6.49 *** −8.07 *** −10.09 *** −19.97 *** −19.81 *** −8.26 *** −8.99 *** −17.98 ***

PP −20.71 *** −22.68 *** −22.16 *** −20.44 *** −21.26 *** −21.79 *** −18.51 *** −20.02 ***

ADF-breaks −19.41 *** −23.48 *** −22.95 *** −21.15 *** −21.18 *** −22.34 *** −17.48 *** −19.12 ***

ERS −4.45 *** −3.92 *** −3.66 *** −7.19 *** −4.69 *** −3.57 *** −7.23 *** −3.83 ***

Note: *** Significant at 1%. Results obtained by the authors. ADF—Augmented Dickey–Fuller unit root test
(Dickey and Fuller 1979); PP—Phillips–Perron unit root test (Phillips and Perron 1988); ADF breaks—Augmented
Dickey–Fuller unit root test with breaks (Perron 1989); ERS—Elliott et al.’s (1996) unit root test.

For the estimation of the TVP-VAR model, the variables considered must comply with
the stationarity condition. To test the unit root, several tests were used in order to guarantee
the validity of the results: the augmented Dickey–Fuller test (ADF) (Dickey and Fuller
1979), the Phillips–Perron test (Phillips and Perron 1988), the augmented Dickey–Fuller
breakpoint unit root test (Perron 1989) and the ERS test (Elliott et al. 1996). The results
obtained and presented in Tables 1 and 2 confirm the lack of unit root for the volatility
series in the two periods studied.

The estimation of Spearman correlation coefficients between the volatilities of stock
market sectors traded on the Polish stock market, presented in Tables 3 and 4, shows a
weak or small correlation.
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Table 3. Estimation of the Spearman correlation coefficient between the volatilities of stock market
sectors in Poland in the period of 1 January 2013–31 December 2019.

Banks Basic
Materials Chemicals Construction Developers Energy Food Oil and Gas

Banks 1.000

Basic
Materials 0.320 1.000

Chemicals 0.274 0.210 1.000

Construction 0.246 0.194 0.223 1.000

Developers 0.203 0.179 0.240 0.238 1.000

Energy 0.308 0.259 0.272 0.224 0.201 1.000

Food 0.173 0.167 0.203 0.220 0.191 0.157 1.000

Oil and Gas 0.303 0.234 0.223 0.213 0.164 0.213 0.185 1.000

Note: Results obtained by the authors.

Table 4. Estimation of the Spearman correlation coefficient between the volatilities of the stock market
sectors in Poland in the period of 1 January 2020–2 December 2021.

Banks Basic
Materials Chemicals Construction Developers Energy Food Oil and Gas

Banks 1.000

Basic
Materials 0.307 1.000

Chemicals 0.327 0.292 1.000

Construction 0.276 0.270 0.277 1.000

Developers 0.325 0.212 0.320 0.234 1.000

Energy 0.364 0.256 0.370 0.261 0.256 1.000

Food 0.289 0.266 0.310 0.229 0.256 0.231 1.000

Oil and Gas 0.415 0.323 0.368 0.267 0.290 0.356 0.312 1.000

Note: Results obtained by the authors.

It is certain that, during the health crisis, the connections between all sector volatilities,
and therefore the connectedness between sectors, increased as a result of the emergence
of a common risk factor. Both before and after the pandemic, the highest connection was
between the volatilities of the banks and basic materials sectors (0.320) and the lowest before
the pandemic was between energy and food (0.157) and the lowest after the pandemic was
between the energy and developer sectors (0.212). For both periods considered, the highest
correlations are between the banking sector and the other sectors.

5.2. Static Results for Spillover Volatility

The results of the TVP-VAR model are based on a VAR (1) model with a 20-step-
ahead generalized forecast error variance decomposition, as in the analysis conducted by
Chatziantoniou et al. (2020). The order for the VAR was selected based on the Schwarz
information criterion.

Each row of Table 5 presents the contributions of the volatility, from (FROM) each
sector, to the forecast of the volatility error variance of the considered sector. Each column
presents the contributions of the volatility of the sector considered to (TO) the forecast of
the volatility error variance of each sector in the network. Thus, the diagonal presents the
effects of the volatility of a sector on the volatility of its own sector. The column “FROM
others” shows the total volatility spillover from other sectors using values obtained by
summing up the row values. For example, a value of 36.28, for the banking sector, shows
that 36.28% of volatility is received from all other sectors in the network, but its own
volatility is excluded. On the row “TO others”, total volatility spillovers to other sectors are
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summed up per column. For example, for the banking sector, the value of 38.28 shows that
38.28% of the volatility is spilt over to the other sectors in the network, excluding its own
spillovers. The difference between the results obtained on the column “FROM others” and
the row “TO others” for each sector is indicated on the NET row. Positive values on this
line/row indicate that the sector has net volatility spillover and negative values indicate a
sector receiving volatility.

Table 5. Total volatility spillover for the period of 1 January 2013 to 31 December 2019.

Banks Basic
Materials Chemicals Construction Developers Energy Food Oil and

Gas
FROM
Others

Banks 63.72 8.03 5.53 4.05 3.37 6.52 2.19 6.59 36.28

Basic
Materials 7.71 68.76 4.06 3.42 2.73 5.82 3.15 4.35 31.24

Chemicals 6.15 4.18 68.14 4.93 4.33 5.32 2.84 4.12 31.86

Construction 4.15 3.48 4.46 71.42 4.64 3.36 4.44 4.04 28.58

Developers 3.90 3.06 4.70 5.05 72.99 3.43 3.80 3.08 27.01

Energy 7.11 5.86 5.06 3.03 3.32 70.39 1.76 3.47 29.61

Food 2.35 3.70 2.96 4.73 4.06 1.75 77.06 3.41 22.94

Oil and Gas 6.93 4.73 3.92 4.28 2.75 3.24 3.13 71.02 28.98

TO others 38.28 33.03 30.69 29.49 25.20 29.44 21.31 29.05 236.49

Inc. own 102.00 101.79 98.83 100.91 98.19 99.83 98.37 100.07 TCI

NET 2.00 1.79 −1.17 0.91 −1.81 −0.17 −1.63 0.07 29.56

NPDC 1.00 0.00 5.00 3.00 6.00 4.00 6.00 3.00

Note: Results obtained by the authors.

Total spillovers before the COVID-19 pandemic have a very low value of only 29.56%,
as shown in Table 5. For example, in the case of the US, the total connectedness is 84.5%
(Costa et al. 2021). However, the outbreak of the pandemic caused by COVID-19 caused a
rather high increase in total spillover, reaching 49.7%, according to Table 6, which confirms
research hypothesis H2 (according to which the connectedness between economic sectors
is stronger during the health crisis caused by the outbreak of COVID-19). This situation is
caused by the emergence of common risk factors for all economic sectors. This result is in
line with the one obtained by Shahzad et al. (2021a), according to which the connectedness
between sectors is stronger in the bulk of the distribution.

If before the pandemic, the contribution of volatility to one’s own sector was very
high (the highest value was 77.06% in the case of the food sector and the lowest value was
63.72% for the banking sector), then during the pandemic, the contribution of volatility to
one’s own sector decreased (the highest value was 56.06% for the food sector and the lowest
value was 42.8% for the banking sector). These results are consistent with the previous
studies performed on the emerging markets from Central Europe, among which Poland is
also present (Chirilă et al. 2015; Sucháček et al. 2021): the volatility of the stock markets
in emerging countries is more influenced by their owns shocks than external ones. The
biggest shock-transmitting sectors are banks, basic materials, chemicals and oil and gas
in the pre-pandemic period and banks, chemicals, oil and gas and basic materials in the
post-pandemic period. The results confirm research hypothesis H3, according to which
the financial sector has the largest volatility spillover to other economic sectors. We also
observe that in the spillover ranking, the chemicals and oil and gas sectors moved up in
the ranking, whereas the basic materials sector was downgraded.
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Table 6. Total volatility spillover for the period of 1 January 2020–2 December 2021.

Banks Basic
Materials Chemicals Construction Developers Energy Food Oil and

Gas
FROM
Others

Banks 42.80 7.56 10.12 5.75 6.87 7.89 6.38 12.63 57.20

Basic
Materials 9.02 52.95 9.61 6.03 4.56 6.12 5.69 6.02 47.05

Chemicals 9.86 8.31 45.71 5.63 7.91 8.00 4.91 9.69 54.29

Construction 6.78 6.35 6.81 55.30 6.90 4.18 8.75 4.94 44.70

Developers 8.86 5.91 9.25 6.96 52.13 5.45 5.45 5.99 47.87

Energy 9.73 6.60 9.56 4.20 4.65 55.96 3.19 6.11 44.04

Food 8.37 6.42 6.33 8.65 5.17 3.36 56.05 5.65 43.95

Oil and Gas 13.29 6.44 11.30 5.59 4.77 6.38 5.71 46.51 53.49

TO others 65.90 47.59 62.98 42.81 40.82 41.37 40.07 51.04 392.59

Inc. own 108.70 100.54 108.69 98.11 92.96 97.34 96.12 97.55 TCI

NET 8.70 0.54 8.69 −1.89 −7.04 −2.66 −3.88 −2.45 49.07

NPDC 1.00 2.00 0.00 4.00 7.00 4.00 4.00 6.00

Note: Results obtained by the authors.

Before the COVID-19 pandemic, the sectors with net volatility spillover were banks,
basic materials, construction and oil and gas and during the pandemic period, only the first
three sectors mentioned above still have net volatility spillovers, with the oil and gas sector
becoming a volatility receiver.

5.3. Dynamic Results for Spillover Volatility

The total volatility spillover of the listed equity sectors on the Polish stock market, over
the entire period studied, is presented in Figure 4. Therefore, it stands out that the volatility
spillover and, implicitly, the connectedness between economic sectors, varies over time, a
fact that confirms hypothesis H1 (according to which the intensity of the connectedness
between economic sectors varies over time). In Figure 4, we can also observe a higher
connectedness during the pandemic, confirming once again research hypothesis H2, this
time through graphical representation. We could also mention that the volatility spillover
shows cyclicality over a period of about 2 years. This result suggests that investors or
portfolio managers should periodically review the structure of their portfolios.
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It is undoubtedly evident that the outbreak of COVID-19 caused a significant increase
in the volatility spillover on the Polish stock market, the highest increase being in the time
interval studied. Moreover, it is also observed that this sudden spillover increase occurred
before March 11, the time when the World Health Organization declared the existence of
the pandemic. This demonstrates, once again, that the stock market anticipates economic
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developments and also that the increase in volatility spillover occurs during turbulent
times and during crises. At the same time, increased volatility spillover can be caused by
political events (Mensi et al. 2021). A steep increase in volatility spillover, but smaller than
that caused by COVID-19, occurred in 2015, the year of the presidential elections but also
the legislative (parliamentary) elections.

Figure 5 shows the evolution of volatility spillover both from one sector to all sectors
in the network (TO) as well as from all sectors to a single sector (FROM). Based on this
graphical representation we observe the variation in volatility spillover over time. In the
case of the banking sector, during almost all the time intervals studied, it is observed that
the spillover to all other sectors (TO) is higher than the spillover received from all other
sectors (FROM). The basic materials sector can also fit into the same pattern. This result
is more clearly presented in Figure 6, which shows a net volatility spillover for all sectors
in the Polish stock market. Although the chemicals sector has, overall, a net spillover,
similar to the banks and basic materials sectors, we observe distinct periods in which this
sector either has a net spillover or is a net receiver. During the COVID-19 pandemic period,
although the banks, chemicals and basic materials sectors have net volatility spillovers,
the basic materials sector initially had (in 2020) a net volatility spillover and then (in 2021)
became a net receiver of volatility. The same situation of spillover effects changing during
the pandemic is found in the case of the oil and gas sector: in 2020, it was a net receiver
and in 2021, it had a net volatility spillover.

In the other sectors, the periods when they were net receivers alternated with periods
when they had net volatility spillovers. During the pandemic period, these sectors were
also net receivers of volatility, except for the construction sector for which there was a small
period of time in mid-2020 when it had a net spillover.

Figure 7 shows all net pairwise directional connectedness between the eight equity
sectors on the Polish stock market. For each sector, the colours of the circles represent the
nature of the sector, and the size of the circles represents the size of the spillover. The blue
or dark grey colour shows us the sectors with volatility spillovers and the yellow or light
grey colour shows us sectors that are net volatility receivers. The direction of the arrows
indicates the direction of the volatility spillover and the thickness of the arrows indicates
the size of the net spillover. Figure 7a shows the results obtained on the volatility spillovers
between sectors before the pandemic and Figure 7b shows the results obtained during
the pandemic.

The banking sector had the largest net volatility spillover followed closely by the basic
materials sector. This result is in line with the one obtained by Costa et al. (2021), according
to which the financial sector was the main sector with volatility spillover in the US during
the COVID-19 period. At the same time, Akhtaruzzaman et al. (2020) confirmed a stronger
spillover of financial companies in comparison with the non-financial ones.

In the same category, for the pre-pandemic period, we can also include the construction
and oil and gas sectors but with a much lower net spillover. The net spillover was higher
from the banking sector to the energy, developer and chemical sectors. From the basic
materials sector, the net spillover was higher than in the food sector. In addition, it can
be seen that there were net spillovers from almost all sectors to the food and developer
sectors. The largest sector receiving volatility was the developer sector, followed by the
food, chemicals and energy sectors.

The situation changed during the pandemic during which we observed only two
sectors with net volatility spillovers of the same intensity: banks and basic materials.
Although there were more sectors receiving volatility compared to the pre-pandemic
situation, the developer sector remained a receiver of volatility from most sectors, whereas
the food sector received less volatility. There was also an increase in net spillover from
the banking sector to the construction and food sectors. The results presented confirm
hypothesis H1, according to which the direction of the connectedness between economic
sectors varies over time.
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Figure 5. Directional total spillovers from one sector to all sectors (FROM) and from all sectors to a 
single sector (TO) on the Polish stock market in the period of 1 January 2013–2 December 2021. Note: 

Figure 5. Directional total spillovers from one sector to all sectors (FROM) and from all sectors to a
single sector (TO) on the Polish stock market in the period of 1 January 2013–2 December 2021. Note:
(a) Banks (b) Basicm, (c) Chemic, (d) Constr, (e) Dev, (f) Energy, (g) Food and (h) Oil_Gas represent
the sectors banks, basic materials, chemicals, construction, developers, energy, food, and oil and gas,
respectively. The results were obtained by the authors.
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2 December 2021. Note: (a) Banks (b) Basicm, (c) Chemic, (d) Constr, (e) Dev, (f) Energy, (g) Food 

Figure 6. Net volatility spillovers for sectors in the Polish stock market in the period 1 January 2013–2
December 2021. Note: (a) Banks (b) Basicm, (c) Chemic, (d) Constr, (e) Dev, (f) Energy, (g) Food and
(h) Oil_Gas represent the sectors banks, basic materials, chemicals, construction, developers, energy,
food, and oil and gas, respectively. The results were obtained by the authors.
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Figure 7. Net volatility spillovers between pairs of sectors in the Polish stock market. (a) In the period
of 1 January 2013–31 December 2019 (before the crisis caused by the outbreak of COVID-19); (b) in the
period of 1 January 2020–2 December 2021 (during the crisis caused by the outbreak of COVID-19).

6. Conclusions, Limits of the Research and Future Directions

The plans for the development of a country’s economic sectors must also take into
account the connectedness between them. The study of the connectedness between the
economic sectors of Poland allows us, on one hand, to strengthen policy makers’ decisions
and, on the other hand, to strengthen the management of financial investment portfolios.

This research presents new results on the connectedness and volatility spillover be-
tween stock market sectors in Poland. To the best of our knowledge, this is the only study
with this objective conducted for a Central and Eastern European country. The methodol-
ogy used is the one proposed by Antonakakis et al. (2020), which has multiple advantages
compared to the method originally proposed by Diebold and Yilmaz (2008).

For this research, the daily data of the sectoral indices from 1 January 2013 to 2 De-
cember 2021 were used. The time interval chosen for the analysis allowed the comparative
study of volatility spillover between sectors before the outbreak of the COVID-19 pandemic
and during the pandemic. The methodology used allowed a static as well as a dynamic
comparative analysis. This methodology also allowed for comparisons to be made in regard
to the level of spillover between stock market sectors from other countries.

Static analysis of volatility spillover between the sectors of the Polish stock market
and thus the connectedness between sectors shows a lower level before the COVID-19
pandemic than during the pandemic. The result suggests both the variation in time of
the connectedness, which confirms research hypothesis H1 and also a higher level during
the COVID-19 crisis, thus confirming research hypothesis H2. The dynamic analysis also
underlines the fact that the sector with the highest volatility spillover is the banking sector,
which confirms research hypothesis H3, i.e., that the financial sector has the strongest
connectedness with the other economic sectors. The analysis of time-varying volatility
spillover confirms the variation in the connectedness between sectors, confirming research
hypothesis H1. In addition, the connectedness between sectors changes direction during
the pandemic; for example, the chemical sector became a sector with volatility spillover
although it was previously a volatility receiver, confirming research hypothesis H1.

The results indicate an increase in volatility spillover in the system consisting of the
Polish stock market sectors. The implications of these results would be that the advantages
of sectoral diversification in times of crisis become smaller. When making practical deci-
sions, risk managers need to take into account the strongest connectedness between sectors
and adjust portfolio diversification by considering sectors with weak or very weak connect-
edness. Thus, investors, based on the knowledge of the dynamics performed following this
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research, can adjust their transactional decisions in order to mitigate the risks, optimize the
returns and ensure diversification during stock exchange turbulences.

In this way, policymakers can also identify which sectors are those with the largest
volatility spillovers and which are the largest volatility receivers. Identifying these sectors
enables the design of macroprudential policies that will have the effect of reducing volatility
spillover. Identifying the increase in volatility spillover also makes it possible to anticipate
the outbreak of a crisis or a turbulent period; thus, it is a tool that can be used to forecast and
monitor the outbreak of financial crises. Therefore, the results of this research highlight the
limitations of the advantages of sectoral diversification and the need for risk management
and portfolio allocation. In order to ensure the stability of the Polish stock market, it is
also necessary to carefully monitor the volatility spillover among the economic sectors.
Specifically, follow-up measures are needed in the banking, chemicals as well as in the
basic materials sectors for the stability of the Polish stock market. Governmental decisions
adapted to each sector, beyond a fiscal approach, are required. This approach is suggested
by the research conducted by Bouri et al. (2021a) who indicate different effects on the
sectors of the stock markets following the governmental decisions taken in New Zealand.

A limitation of this research is the lack of possible comparisons with Central and
Eastern European countries. This is partly due to the fact that there is no research on this
group of countries and partly because no sectoral indices are available in other Central and
Eastern European countries.

This research also offers a new research direction, i.e., studying the connectedness
of Polish economic sectors with those of EU member countries. The result obtained
would allow for identifying the connectedness between the same economic sectors from
different countries.
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