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Abstract: Choosing funds is a general issue for investors, with the aim of balancing potential risks
and returns. The aim of this article is to use a super-efficiency approach to analyze and rank exchange-
traded funds (ETFs) in order to find the best utility ETFs. The range-adjusted measure (RAM)-based
data envelopment analysis (DEA) model is used in this work to evaluate a set of utility ETFs and rank
inefficient funds, while the super-efficiency RAM model is used to fully rank RAM-based efficient
funds. Other slack-based selected DEA models are also used to analyze the ETFs. The results show
that the suggested approach delivers the same efficient funds as other slack-based selected DEA
models; hence, it appears to be useful as a fund selection tool.

Keywords: utility exchange-traded funds; data envelopment analysis; range-adjusted measure
(RAM); super-efficiency

1. Introduction

Investors looking to diversify their portfolios may find utilities to be an appealing
industry. Utility exchange-traded funds (ETFs) largely maintain investment portfolios of
regulated utilities with a strong and stable profit margin (Tsolas 2019). Instead of taking a
risk and buying stocks of a single firm, utility sector ETFs allow investors to participate in
a number of firms in this sector. These ETFs epitomize diversity, and, moreover, they are
attractive because of the tax rules on the income generated by dividends paid (Lydon 2010).

ETFs are open-ended investment vehicles that try to track the return and risk of
their underlying indices. These funds combine the flexibility of stocks with mutual fund
diversification. ETFs have grown in popularity since their inception because they of-
fer investors better diversification, tax efficiency, and lower expenses (Henriques et al.
2022; Bowes and Ausloos 2021). The Sharpe ratio (Sharpe 1966) and Jensen’s alpha
(Jensen 1968) are two of the most frequently utilized risk-adjusted measures used to eval-
uate the performance of these funds. They do, however, have significant disadvantages,
such as the need to find benchmarks and the significance of market timing (Roll 1977;
Henriques et al. 2022).

The mean-variance analysis, which may be associated with the above measures, has
several limitations because mean-variance optimal portfolios are extremely sensitive to
even small changes in input parameters and the existence of outliers (Adhikari et al. 2020).
Because of this, portfolio construction is a current concern, and robust optimization has
been employed to address mean-variance analysis’s shortcomings (Ceria and Stubbs 2006;
Adhikari et al. 2020). Moreover, some criteria must be met in the case of socially responsible
investing (Arslan-Ayaydin et al. 2018).

Existing techniques for evaluating ETF performance have the previously mentioned
drawbacks. In order to give effective support to investors, one of the challenges inherent in
analyzing the performance of an ETF is to incorporate various variables in the analysis and
produce a single index (Henriques et al. 2022).

Data envelopment analysis (DEA) is deemed to be a suitable method that
can be employed to identify the best-in-class ETFs. Recent DEA studies deal with utility
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ETFs’ performance evaluation (Tsolas 2019; Henriques et al. 2022). DEA, proposed by
Charnes et al. (1978), allows a set of the same entities (e.g., ETFs), called decision-making
units (DMUs), to be evaluated, whose performance depends on the selected inputs and
outputs. DEA calculates a comparative ratio of weighted outputs to weighted inputs for
each DMU, which is reported as an efficiency rating with values ranging from zero to unity
(best performance). DMUs are classified as efficient or inefficient using this method de-
pending on their efficiency rating. In addition, the DEA method allows evaluators to obtain
benchmarks for underperforming DMUs in order to design performance improvement
interventions. DEA produces an efficient frontier on which the efficient DMUs are located,
and they can be used to determine the possible improvements for the inefficient DMUs.

The radial efficiency measure (Charnes et al. 1978) cannot account for all inefficiency
components of the DMU under evaluation. To tackle this problem, Charnes et al. (1985)
developed the additive model as an input and output slack-based DEA model. This
slack-based model classifies DMUs as efficient if they have zero slacks. Later on, Tone
(2001) developed the slack-based measure (SBM) of efficiency. Two ways to evaluate the
performance of DMUs have been developed in the literature, namely, the efficiency and
super-efficiency approaches. The former approach only estimates inefficiency by providing
ratings ranging from zero to unity, whereas the later approach only estimates extreme
efficiency by producing ratings larger than unity (Guo et al. 2017; Tran et al. 2019). Du et al.
(2010) developed a super-efficiency additive DEA model based on the super-efficiency SBM
model (Tone 2002). First, efficient DMUs must be identified, and then these efficient DMUs
must be subjected to an additional super-efficiency model. Jahanshahloo et al. (2013) used
the RAM super-efficiency model, which is based on the additive structure, to rank efficient
DMUs. The additive structure allows inefficiency to be measured by taking into account
each DMU’s input and output variables and, thus, it removes the separation of the input
and output orientations in model building.

The aim of this article is to use a super-efficiency approach to analyze and rank a set
of utility exchange-traded funds (ETFs) in order to find the best ETFs. The RAM model
is used in this work to evaluate the sample ETFs and rank the inefficient funds, while the
super-efficiency RAM model is used to fully rank the RAM-based efficient funds. Other
slack-based selected DEA models are also used to analyze the ETFs. The results show that
the proposed approach delivers the same efficient funds as other slack-based selected DEA
models; hence, it appears to be useful as a fund selection tool.

The current study adds to the existing body of knowledge in two ways. To begin, the
performance of a sample of utility ETFs is assessed using both the RAM and the super-
efficiency RAM to not only provide ratings but also a thorough ranking of the funds. The
use of super-efficiency RAM allows for even more discrimination in ETF performance
models. Although the concept of super-efficiency is not new, the author believes this is the
first time super-efficiency RAM has been mentioned in the relevant ETF literature. Second,
multiple additive-structured models are used to confirm the RAM’s ability to distinguish
between efficient and inefficient funds.

Two research questions are addressed in the current study: (1) What are the input and
output variables’ contributions to the inefficiency of ETFs? (2) What ETFs are the best in
their class? The RAM and the super-efficiency RAM are applied to a set of utility ETFs
traded in the United States as part of the empirical phase of the study. This sector was
chosen given its size and significance to the global economy and environment (see also
Henriques et al. 2022).

The article is structured as follows: Section 2 provides a synopsis of DEA studies on
ETF performance evaluation. The RAM and super-efficiency RAM models utilized in the
analysis are presented in Section 3. Section 4 introduces the data set and explains why the
input and output variables were chosen. The presentation and discussion of the results is
covered in Section 5. The final section concludes.
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2. Literature Review

A growing number of DEA studies have been conducted on rating the performance of
ETFs. Three research threads are formed by the pertinent works. The first strand focuses
on single DEA studies, which see fund management as a multi-input, multi-output process.
Chu et al. (2010) was followed by a number of works that fall under this area of study
(Prasanna 2012; Acharya et al. 2015; Choi and Min 2017). By placing risk metrics and
transaction costs on the input side of the DEA and return measures and other performance
indices on the output side, these research works apply various DEA models to evaluate fund
performance. Chu et al. (2010) first used a range directional measure (Portela et al. 2004)
to evaluate ETF performance. Prasanna (2012) employed DEA to assess the performance
of Indian ETFs. Acharya et al. (2015) employed DEA to evaluate a set of Indian gold
ETFs. Choi and Min (2017) used DEA to assess the performance of a set of ETFs and their
corresponding index.

The second area of research focuses on two-stage DEA studies where the goal is to
pinpoint performance-related factors. In a follow-up step of the first stage, where the ratings
are measured, regression models can be used to model the explanatory variables as well
as the DEA ratings. The works of Tsolas (2011) and Tsolas and Charles (2015) are located
in this area of study. Tsolas (2011) employed a two-step technique to evaluate natural
resources ETFs, integrating the generalized proportional distance function (Kerstens and
Van de Woestyne 2011) with a censored Tobit model. Tsolas and Charles (2015) used a two-
step process for the performance appraisal of green ETFs: slacks-based DEA models were
utilized to generate DEA-based ETF ratings, and then regression analysis was employed to
predict the ETF ratings.

The third strand focuses on the combination of DEA and other techniques such as
grey relational analysis (GRA) (Tsolas (2019) and multi-objective linear programming
(Henriques et al. 2022)).

The performance evaluation of ETFs by means of DEA should take into account the
possible existence of negative values in the data set, e.g., returns (Henriques et al. 2022).
The RAM of inefficiency has several advantages over DEA models, which do not have
the additive structure. In these models, performance is overestimated, resulting in a low
modeling approach discriminating power (Chen et al. 2019). Using the super-efficiency
RAM model and other slack-based DEA models based on the additive structure, the current
work improves on Tsolas and Charles (2015). The combined use of RAM and super-
efficiency RAM is superior to other DEA models referred to above because it provides full
ranking of DMUs.

In addition to the primitive evaluation of fund performance, the literature has mainly
tried to understand how transaction costs and fund size affect the efficiency of portfolios.
The predicted return is treated as the output, while investment costs and risk indices are
taken into consideration as inputs for this purpose (Choi and Min 2017).

The variables for evaluating ETF performance are chosen in accordance with the
pertinent literature. Regarding which inputs and outcomes should be unambiguously
included in a DEA model, academics and investors are divided. Expense ratio (ER)
(Chu et al. 2010; Tsolas 2011, 2019), tracking error (TE), beta (BETA) coefficient (Choi
and Min 2017), total assets (TA), and (1-year) return (Chu et al. 2010; Choi and Min 2017)
are the variables used for the current study. Tsolas and Charles (2015) suggested using the
TE for DEA-based ETF performance measurement, while the TA was used by Tsolas (2020)
for reflecting fund size. The interested reader is directed to Henriques et al. (2022) for a
recent review on DEA research on the performance evaluation of ETFs.

3. Methods

Given a set of n ETFs to evaluate, where ETFj uses input Xj = (x1, . . . , xm) ∈ Rm
+

to produce output Yj = (y1, . . . , yk) ∈ Rs
+, the inefficiency of ETF0 with data (X0, Y0) is

estimated by employing the following additive weighted variable returns to scale (VRS)
model (Lovell and Pastor 1995)
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WA(X0, Y0; W−, W+) = Max
m
∑

i=1
w−i s−i0 +

k
∑

r=1
w+

r s+r0

subject to
n
∑

j=1
λjyrj − s+r0 = yrj0∀r = 1, 2, . . . , k

n
∑

j=1
λjxij + s−i0 = xij0∀i = 1, 2, . . . m

n
∑

j=1
λj = 1

λj, s+r0, s−i0 ≥ 0 ∀j, i, r

(1)

where λj is an intensity vector for DMUj, s−i ≥ 0, ∀ i = 1, 2, . . . m , s+r ≥ 0, ∀ r = 1, 2, . . . , k
are the input and output slacks, respectively, and w− = (w−1 , . . . , w−m) ∈ Rm

+,
w+ = (w+

1 , . . . , w+
k ) ∈ Rs

+ are weights that reflect the importance of input and output
slacks, respectively.

The inefficiency of ETF0. is reflected by the objective function WA(X0, Y0; W−, W+) =

Max
m
∑

i=1
w−i s−∗i0 +

k
∑

r=1
w+

r s+∗r0 , where * indicates optimality. Since s+r0 ≥ 0, ∀ r = 1, 2, . . . , k

and s−i0 ≥ 0, ∀ i = 1, 2, . . . m , the value of WA(X0, Y0; W−, W+) is greater than or equal to
zero. The model (1) maximizes the weighted input and output slacks, which are used
to measure the distance between ETF0 and the efficiency frontier. If there are slacks (i.e.,
values of the objective function greater than zero), the fund is inefficient and needs to boost
outputs while lowering inputs simultaneously to become efficient.

Depending on the weights chosen, the model (1) is related with various measure-
ments (Tsolas 2020). The most known additive weighted model under VRS is the RAM of
inefficiency (Cooper et al. 1999) that stems from model (1) using the weights

(
W−, W+

)
=

(
1

(m + k)R−
,

1
(m + k)R+

)
, i = 1, 2, . . . m, r = 1, 2, . . . , k (2)

where Ri
− = max1≤j≤n

{
xij

}
−min1≤j≤n

{
xij

}
, i = 1, 2, . . . m and Rr

+ = max1≤j≤n
{

yrj
}
−

min1≤j≤n
{

yrj
}

, r = 1, 2, . . . k represent the ranges of the input i and output r, respectively.

The objective function WA(X0, Y0; W−, W+) = Max
m
∑

i=1
w−i s−∗i0 +

k
∑

r=1
w+

r s+∗r0 where *

indicates optimality, is a metric of the inefficiency of ETF0. Since s+r0 ≥ 0, ∀r = 1, 2, . . . , k and
s−i0 ≥ 0, ∀i = 1, 2, . . . m, then WA(X0, Y0; W−, W+) ≥ 0. In the case that
WA(X0, Y0; W−, W+) > 0, the fund under evaluation is inefficient.

The current study proposes the RAM of inefficiency, a non-oriented slacks-based
model that accounts for the weighted slacks of both inputs and output in order to generate
the performance metric. As a result of the slacks of inputs and outputs being divided by
the range of their observed values, RAM of inefficiency is units-invariant, meaning that the
objective function of the model is dimensionless (Tsolas 2020).

The aforementioned metric provides ties of zero for numerous efficient DMUs, making
it impossible to discern among them. Fortunately, by omitting the DMU under evaluation
(i.e., DMU0) from the analysis, the super-efficiency model may be utilized to rank the
efficient DMUs (i.e., DMUs with zero inefficiency).

DEA ratings can be used to rank inefficient DMUs. Because the ratings for efficient
DMUs are all the same and equal to unity, ranking efficient DMUs is the most difficult task
in DEA. To rank the efficient units, the super-efficiency approach might be utilized. These
units can achieve an efficiency score better than one by omitting DMU0 from the analysis.
The RAM-efficient DMUs are ranked using this feature.

If we assume that ETF0 is efficient, we cannot simply change model (1) and (2) by
excluding ETF0 from the reference set in order to obtain the super-efficiency of ETF0 because
the resulting model might not have a feasible solution. The constraints and the objective
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function of model (1) and (2) should be modified (Du et al. 2010). The RAM super-efficiency
model that provides the rating of DMU0 is as follows (Du et al. 2010)

WA(X0, Y0; W−, W+) = Min
m
∑

i=1
w−i t−i0 +

k
∑

r=1
w+

r t+r0

subject to
n
∑

j=1,j 6=0
λjyrj ≥ yrj0 − t+r0∀r = 1, 2, . . . , k

n
∑

j=1,j 6=0
λjxij ≤ xij0 + t−i0 ∀i = 1, 2, . . . , m

n
∑

j=1,j 6=0
λj = 1

(W−, W+) =
(

1
(m+k)R− , 1

(m+k)R+

)
, i = 1, 2, . . . m, r = 1, 2, . . . , k

Ri
− = max1≤j≤n

{
xij

}
−min1≤j≤n

{
xij

}
, i = 1, 2, . . . m

Rr
+ = max1≤j≤n

{
yrj

}
−min1≤j≤n

{
yrj

}
, r = 1, 2, . . . k

λj ≥ 0, j = 1, 2, . . . , n, j 6= 0, t+r0, t−i0 ≥ 0 ∀i, r

(3)

The super-efficiency rating of DMU0 using the optimal solution of Model (3) is:
1 + WA(X0, Y0; W−, W+).

Model (3) classifies the identified efficient DMUs by Model (1) and (2) into extremely
efficient and efficient with super-efficiency scores greater or equal to unity, respectively.
Thus, extremely efficient DMUs can be ranked by using their super-efficiency scores. To
rank the non-extremely efficient DMUs, the extremely efficient units must be removed from
the analysis. Model (3) is employed again to obtain the new super-efficiency scores of the
remaining efficient DMUs. By repeating this process, all efficient DMUs can be fully ranked
(Jahanshahloo et al. 2013).

4. Data Set

All funds identified by etfdb.com as Utilities Equities ETFs made up the sample for the
current study. All utility ETFs that were available as of 18 July 2017, and that were traded in
the United States, were included in the sample. Etfdb.com is the source of the information
on ETF variables. The data were available for at least a five-year period, although not all
funds’ stats were available because some of them had been established earlier (after 2015).
Due to lacking data, only the 1-year return was used for the fund returns.

The selection of inputs and outputs is based on (i) the scientific literature and (ii) a
performed isotonicity test among available variables on ETF database. The chosen variables
are: ER, TE, BETA, and TA as inputs and average 1-year return as output.

The ER represents the portion of the amount of investment in an ETF incurred annually
that goes towards a fund’s management fees. ETFs with reduced expense ratios are
regarded as advantageous for this reason (Bourgi 2019; Tsolas 2019). TE is the difference
between the performance of the ETF and the performance of the relevant index for the same
investing period (Cummans 2015). The beta coefficient measures a fund’s vulnerability to
market fluctuations. A beta of one suggests that the ETF’s price moves in lockstep with
the market. While a beta of less than one implies that the price of the fund is less volatile
than the market, a beta of more than one suggests that the ETF’s price rises higher than
the market (Killa 2021; Henriques et al. 2022). Low beta funds exhibit greater levels of
stability than their market-sensitive counterparts and will usually lose less when the market
crumbles. Given lesser risks and lower returns, these are considered safe and resilient amid
uncertainty (Killa 2021). TA describe the total amount of assets or investments managed
by a particular fund. TA include securities that receive income from security lending
(Elton et al. 2019).

The mean annual return reports over a 1-year return for a fund. It is calculated
net of the fund’s expense ratio and other costs, e.g., sales charges, other commissions
(Henriques et al. 2022).
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Due to their non-availability from etfdb.com, some potential input and output
variables are excluded from this study. Portfolio price/cash flow (P/CF), portfolio price/
book (P/B), standard deviation (Tsolas 2011; Tsolas and Charles 2015), downside risk
(Chu et al. 2010), maximum drawdown (i.e., a metric of a fund’s capability to rebound from
a trough), and monthly downside deviation (Prasanna 2012) are potential input variables
that could reflect user cost. Potential output variables (i.e., conventional performance
metrics) are the Sharpe ratio and Jensen’s alpha (Tsolas 2011, 2019; Tsolas and Charles 2015)
and upper deviation (Chu et al. 2010).

An isotonicity test was performed between the input (ER, TE, BETA, and TA) and
output (1-year return) candidate variables using Pearson’s correlation coefficient. This
test is intended to confirm the isotonicity of the DEA approach (i.e., efficiency decreases
as inputs increase and efficiency increases as outputs increase, according to Cooper et al.
(2011)). The input and output variables passed the isotonicity test when there were positive
(and substantial) inter-correlations among them.

Table 1 shows descriptive statistics for the fund data used in the analysis.

Table 1. Descriptive statistics of utility ETFs data.

ER (%) TE BETA TA 1-Year Return (%)

Mean 0.49% 0.39 0.65 4.30 8.87%
Standard deviation 0.24% 0.35 0.36 16.01 7.53%

Median 0.46% 0.33 0.69 0.05 5.16%
Min 0.08% 0.04 0.11 0.00 0.83%
Max 0.95% 1.20 1.43 71.94 27.76%

Notes: ER: expense ratio, TE: tracking error, BETA: beta coefficient, TA: total assets.

The sample ETFs are listed in Appendix A.

5. Results

Table 2 displays descriptive statistics for RAM-based ETF efficiency ratings derived
from the use of model (1) and (2). The sampled funds’ mean efficiency is at 94 percent,
while the median efficiency is around 100 percent. Twelve (60 percent) of the twenty funds
in the study are relatively efficient. Inefficient funds have a mean efficiency of around
86 percent, while the median efficiency is at 87 percent.

Table 2. Descriptive statistics of RAM-based ratings. Number and percentage of efficient ETFs.

RAM-Based
Ratings

Mean
(Standard Deviation) Median Min Max Efficient Funds

(Number (%))

Efficient and
inefficient funds 94.5% (8.6%) 100% 71.45% 100.0% 12 (60%)

Inefficient funds 86.2% (8.2%) 87.4% 71.45% 95.4%

The best-in-class funds, according to RAM-based ratings, are: Reaves Utilities ETF
(UTES), Reaves Utilities ETF (UTLF), FIDELITY MSCI UTILITIES INDEX ETF (FUTY), First
Trust NASDAQ Clean Edge Smart Grid Infrastructure Index Fund (GRID), PowerShares
S&P SmallCap Utilities Portfolio ETF (PSCU), PowerShares DWA Utilities Momentum
Portfolio ETF (PUI), Guggenheim S&P High Income Infrastructure ETF (GHII), Vanguard
Utilities ETF (VPU), Columbia India Infrastructure ETF (INXX), Utilities Select Sector
SPDR Fund (XLU), SPDR S&P International Utilities Sector ETF (IPU), and iShares Global
Infrastructure ETF (IGF).

The weighted additive VRS model (1) with weights (W−, W+) = (1, 1) and a version
of it, the measure of inefficiency proportions (MIP, Cooper et al. 1999), were utilized in the
case of robustness. These models also produce funds that are comparable to best-in-class
funds. Details of the results are available from the author.
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The sources of inefficiency of inefficient funds can be determined using input and
output slacks. Table 3 illustrates the RAM model (1) and (2)’s optimal input and output
slacks as ratios of their respective ranges. ER, TA, BETA, and TE are the factors that have
the biggest impact on ETF inefficiency. The average input inefficiencies (about 5 percent)
are higher than the average output inefficiencies (3.1 percent). The fact that systematic risk
(BETA) has slack for only one inefficient fund is a remarkable result.

Table 3. RAM-based average slacks in inputs and output as ratios of their respective ranges.

Input and Output Variables ER TE BETA TA 1-Year Return

RAM-based mean slacks 10.86% 1.08% 2.95% 4.90% 3.13%

In line with a recent study by Neves et al. (2021), efficient ETFs with a little greater
beta outperformed inefficient low beta funds on average.

For the twelve best-in-class funds described above, the RAM of inefficiency yields zero
ties, making comparisons between them impossible. The super-efficiency RAM model (3)
is used to rank the top funds.

Table 4 depicts the complete ranking of RAM-efficient ETFs after using Model (3) to
derive RAM super-efficiency ratings.

Table 4. Ranking of RAM-efficient ETFs.

Symbol Rank

UTES 1
UTLF 2
FUTY 3
GRID 4
PSCU 5
PUI 6

GHII 7
VPU 8
INXX 9
XLU 10
IPU 11
IGF 12

It is noteworthy that two of the efficient ETFs, XLU and VPU, were shown to be
efficient in a prior DEA-based study on utility ETFs (Tsolas 2019).

6. Conclusions

The current paper employs both the RAM and super-efficiency RAM models to assess
the performance of a sample of utility ETFs. To identify the efficient and inefficient funds,
the RAM of inefficiency is used as a particular additive weighted VRS model. The goal of the
current study is to respond to the research questions posed. Answers to questions (1) and
(2) are included in the findings, which point to the following: (1) Reducing inputs, mainly
ER and TA and less BETA and TE, while concurrently boosting output has the potential
to improve performance (i.e., return). (2) Fund performance ratings can be distinguished
using the derived RAM and super-efficiency RAM ratings. The fund discrimination results
are validated using a variety of alternative slack-based DEA models from the additive
model family. In order to completely rank the sample ETFs, the RAM-efficient funds are
further analyzed using the RAM super-efficiency model.

Some insights on fund performance are offered by the findings. The sample funds
have no TE issues. BETA is not a critical aspect of fund performance, although in line
with the conclusions of other studies, on average, efficient ETFs with a little greater beta
outperformed inefficient low beta funds. ER appears to have the most impact on fund
performance, while fund size should also be taken into consideration.
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The following two components of the current study can be expanded upon. First,
selecting multiple time periods and examining the sensitivity of results would be interesting.
Second, the proposed approach could be combined with existing DEA slack-based models
to further study the approach’s discriminating potential.

Professionals and investors can benefit from the current study’s findings. Financial
analysts could use the proposed metrics to track the success of the ETF industry. The RAM
and RAM super-efficiency models could provide information about financial investors’
portfolios, which they could utilize to make investment decisions. Fund managers may be
interested in tracking the performance of their funds as well as the efficiency with which
they are managed. The current analysis aids professionals and investors in constructing an
ETF performance benchmark that takes into account not only risk but also fund expenses,
total assets, and tracking error.
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Data Availability Statement: The data presented in this study are available on request from
the author.
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comments and suggestions.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A

The sample ETFs are listed in Table A1.

Table A1. List of sample ETFs.

Symbol ETF Name

EMIF iShares Emerging Markets Infrastructure ETF
FUTY FIDELITY MSCI UTILITIES INDEX ETF
FXU First Trust Utilities AlphaDEX Fund
GHII Guggenheim S&P High Income Infrastructure ETF
GII SPDR S&P Global Infrastructure ETF
GRID First Trust NASDAQ Clean Edge Smart Grid Infrastructure Index Fund
IDU iShares U.S. Utilities ETF
IGF iShares Global Infrastructure ETF
INXX Columbia India Infrastructure ETF
IPU SPDR S&P International Utilities Sector ETF
JHMU John Hancock Multifactor Utilities ETF
JXI iShares Global Utilities ETF
PSCU PowerShares S&P SmallCap Utilities Portfolio ETF
PUI PowerShares DWA Utilities Momentum Portfolio ETF
PXR PowerShares Emerging Markets Infrastructure Portfolio ETF
RYU Guggenheim S&P 500 Equal Weight Utilities ETF
TOLZ DJ Brookfield Global Infrastructure ETF
UTES Reaves Utilities ETF
UTLF iShares Edge MSCI Multifactor Utilities ETF
VPU Vanguard Utilities ETF
XLU Utilities Select Sector SPDR Fund
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