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Abstract: As the energy market has grown in importance in recent decades, researchers have paid
increasing attention to swing option contracts. Early studies evaluated the swing contract as if it
were a financial derivative contract, by ignoring its storage constraints. Aided by recent advances
in artificial intelligence (AI) and machine learning (ML) technologies, recent studies were able to
incorporate storage limitations. We make two discoveries in this paper. First, we contribute to the
literature by proposing an AI methodology—particle swarm optimization (PSO)—for the evaluation
of the swing contract. Compared to the other ML methodologies in the literature, PSO has an
advantage by expanding to include more features. Secondly, we study the relative impact of the
price process (exogenously given) that underlies the swing contract and the storage constraints that
affect a quantity decision process (endogenously decided), and discover that the latter has a much
greater impact than the former, indicating the limitation of the earlier literature that focused only on
price dynamics.

Keywords: swing option; linear programming; dynamic programming; artificial intelligence; particle
swarm optimization

1. Introduction

One of the distinguishing features of the energy markets is the difficulty of storing
the underlying commodities at a low cost over a long time period. At one end of the
spectrum we have crude oil, which can be stored relatively easily, but at the other end
of the spectrum we have electricity, which essentially cannot be stored efficiently (even
though some electricity can be stored in batteries, the storage capacity is still very limited).
Somewhere in the middle of these two extremes we have natural gas, which can be stored
in highly specialized storage facilities underground, or in its liquefied form, which requires
natural gas to be cooled down to−162 ◦C. In particular, the storage of natural gas is a highly
complex technical problem and traditional gas consumers will not be able to maintain their
own natural gas storage from which to draw on when demand spikes.

As a direct consequence, many of the commonly traded derivative contracts in the
natural gas market are designed to allow flexibility in the delivery of the underlying
commodity, both in terms of timing and volume. These types of derivative contracts are
commonly referred to as “swing contracts”.

As an example, consider a natural gas consumer who uses gas in order to produce heat.
Usually such a consumer will buy a base load of gas on a daily basis in order to generate
sufficient heat, however, on a particularly cold day it might be necessary for this consumer
to buy an extra quantity of gas in order to produce more heat and meet a potential spike
in demand. So, the consumer requires some flexibility in the purchase volume on a daily
basis that might deviate from the actual daily forecasts. Buying this excess gas on the spot
market might be extremely costly as there might be a run on gas by consumers on cold
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winter days and spot prices might spike. In 13–17 February of 2021, a strong winter storm
Uri devastated North America (United States, northern Mexico, and parts of Canada). In
Texas, it had caused an unprecedented electricity shortage. Due to its “free-market” energy
policies, the State of Texas allows the utility companies to transfer the actual electricity
costs to consumers.1 A distinguishing feature of these demand spikes is that they usually
revert quickly to their mean, and this type of flexibility in delivery of extra volumes is only
required on a few days throughout the winter.

There are a few straightforward, though sub-optimal, ways to hedge against such an
event. For example, the consumer could hedge the risk by buying a daily strip of European
options that would allow the consumer to purchase a fixed quantity of gas at a fixed price
every single day. Of course, this would be a very costly and inefficient way to hedge this
risk, since in reality only a few of those daily options would be exercised due to the mean
reverting behavior of the gas price.

A swing contract allows its holder to purchase a flexible quantity of the underlying
commodity at a fixed price and a fixed future date subject to local (e.g., daily) and global
(e.g., all-time) storage constraints. This flexibility is an attractive choice, for example, for
natural gas consumers and matches their risk profile better than the previously mentioned
hedging alternatives. For example, a swing contract could allow its holder to buy a
certain amount of gas on a daily basis throughout the winter (daily decision within daily
constraints), subject to a total consumption limit. In addition, on each day, the buyer of the
swing contract can also consume any quantity of natural gas (but up to the storage limit).
As a result, it is a derivative contract that must be balanced between price and quantity in
order to maximize the profit (or minimize the cost).

Swing contracts are commonly traded over-the-counter and allow their holders to
purchase a flexible quantity of the underlying asset at fixed exercise dates, subject to local
and global constraints. For example, a power producer relying on wind to generate power
might have entered into an agreement to deliver a certain amount to the power supply on a
monthly basis. In case the wind does not produce sufficient amounts of energy, they would
be able to hedge their delivery risk by purchasing a swing contract on power. In the same
way, a gas consumer might require volume flexibility throughout the winter in order to
balance their delivery risk.

While the methodologies used to evaluate the swing contract are quite standard (e.g.,
dynamic programming (DP), also known as lattice), the implementations are extremely
expensive due to the complex structure of the contract. The purpose of this paper is two-
fold. First, we show that, with a slight modification, the problem can be solved via linear
programming (LP), which is extremely fast. The error is shown to be small. Secondly,
we propose the use of an artificial intelligence (AI) method, known as the particle swarm
optimization (PSO), as an alternative to the existing expensive methods. PSO (or any AI
method) in general is not fast, yet it is robust to high dimensional problems, and as a result,
perfectly suitable for complex contracts, such as the swing option.

2. The Swing Contract and the History of Pricing Models

Kohrs et al. (2019), who provide an excellent review of the literature and the evolution
of the commodity derivative market, explain the swing contract very well. In their words,
swing contracts “ . . . incorporate flexibility-of-delivery options, known as ‘swing’ or ‘take-
or-pay’ options, which allow the holder to repeatedly exercise the right to receive greater
or smaller quantities of energy subject to local daily and global periodic constraints”. As a
result, a swing contract is a complex/exotic commodity derivative contract that must be
balanced between price and quantity in order to maximize the profit (or minimize the cost).

There are a large number of variations of the swing contract and the literature was
not clear and varies to a large degree on how to differentiate various contractual terms
in the swing contract. Often swing contracts are mixed with what is known as a storage
contract. Strictly speaking, a swing contract is an option contract between the supplier
of the commodity (natural gas) and the buyer of the commodity (utility firm). However,
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the utility firm has a storage concern which interferes with how the utility firm negotiates
the swing contracts with its suppliers. This raises massive confusion for those who are
interested in studying the swing contract. At the same time, the literature has made various
simplifying assumptions in order to make the valuation tractable. Here, we follow the
existing literature to combine the two contracts with some of those simplifying assumptions.

It is clear that swing contracts are path-dependent American-style derivatives. As
mentioned earlier, there is no closed-form solution to this pricing problem and complex
numerical algorithms are a must to calculate the value of the contract.

Various numerical techniques were tested to evaluate swing contracts. As part of the
general derivative family, swing contracts (regardless of the variations) can be naturally
evaluated by the lattice method (also known as the dynamic programming method). Jaillet
et al. (2004) were the first to adopt a comprehensive multi-variate lattice (known as “forest
of trees”) to evaluate the swing contract. However, as expected, due to the complexities of
the swing contract, their lattice is costly to implement with a large number of nodes. As
a common substitute for the lattice, the Monte-Carlo-Least-Square (MCLS) method, first
proposed by Longstaff and Schwartz (2001), is popular in pricing American-style options,
as recently used by Boogert and de Jong (2011), among various other earlier researchers.

Besides the standard valuation methods, such as lattice and MCLS, more advanced
algorithms were proposed in the literature. Bonnans et al. (2012) adopt a stochastic control
approach, which generate more accurate swing contract prices.2 Given that American-style
derivatives are an optimal stopping time problem, Carmona and Touzi (2008) adopt the
theory of the Snell envelope to evaluate the swing contract, which is a multi-stopping
time problem. Kluge (2006) employs an integration method and compares the results
with Monte Carlo bounds, provided by Meinshausen and Hambly (2004). Bardou et al.
(2009) and Bonnans et al. (2012) adopt the optimal quantization method 3 and compare
it with the least-square Monte Carlo simulation method (LSMC) and conclude that the
optimal quantization method is far more superior to the LSMC method (at least in an
unconstrained case).

As a natural continuation of the option valuation, hedging implications are widely
discussed in the literature. For example, Keppo (2002) and Warin (2012) discuss hedging of
the swing contract and Hambly et al. (2009) study the impact of price spikes in the energy
market. Recognizing that swing contracts are not the same as typical financial options, and
hence standard hedging does not apply, Pflug and Broussev (2009) use the game theory to
model the behavior of the seller.

In addition to the horserace of various numerical algorithms, the literature also in-
cludes extensions to the simplest model proposed by Jaillet et al. (2004). Jaillet et al. (2004);
Boogert and de Jong (2011); Bonnans et al. (2012), among others, assume the underlying
energy price is driven by multiple factors. Wahab et al. (2010) assume the underlying
energy price is governed by a regime switching process. Safarov and Atkinson (2017)
assume the underlying energy price is governed by a complex Levy process. Thompson
et al. (2009) use the real option technique, which assumes a very flexible underlying asset
price process.

Kohrs et al. (2019) provide an excellent review of the literature above and interested
readers are referred to their original paper for the history and review. An earlier review
can be found in Løland and Lindqvist (2008).

The common deficiency of all of the above models is that quantity limitations are not
considered. In other words, the above models treat this energy derivative as a financial
derivative in which the quantity in transactions is completely elastic. As a result, the Texas
situation discussed in the Introduction can be incorporated nowhere in their models.

However, incorporating quantity in the valuation substantially deviates from the
traditional option pricing methodologies. This is because the classical pricing models
assume the quantity to be completely elastic (or known as infinite supply). In other words,
quantity has no impact on price. Once quantity has an impact on price, the classical
models fail, in the sense that no reasonable stochastic process can describe the actual price
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movements in the market (as in Texas). Not to mention that the decisions involved in
setting the quantity (subject to limitations) can themselves impact on the price of the swing
option. The discussion of how quantity can impact on the price of energy can be traced
back to Holland (2007), and yet only until now has the technology caught up with the
reality of the market.

It is natural then for researchers to look for answers in various artificial intelligence
and machine learning areas. Daluiso et al. (2020) argue that the swing option is effectively
a stochastic control problem with a set of actions and, as a consequence, use reinforcement
learning for the valuation. Curin et al. (2021) amalgamate the reinforcement learning with
MCLS. Malyscheff and Trafalis (2017) integrate the stochastic vector machine with MCLS.

As in the more recent, machine learning-related literature, we regard the swing contract
as a combination of an option (i.e., the holder of the contract has the right to buy the
underlying commodity at a strike price) and a decision-making process (i.e., the holder can
decide the amount of the underlying commodity to buy and sell). Doing it this way, not
only can we clarify a number of confusing issues in the literature, but we can easily extend
our model to evaluate exceptionally complex swing contracts.4

Let 0 = t0 < t1 < · · · < tn = T be the times where the swing contract can be
exercised. Usually (and so assumed from now on), these times are daily. In addition,
let qmin < qmax and Qmin < Qmax be the daily quantity limits and global quantity limits
allowed in the swing contract. S(t) represents the (spot) price of the underlying asset and
K is the strike price.

A swing contract is a derivative contract on S(t) and allows its holder to buy a daily
quantity qi at each exercise date ti where i = 1, · · · , n at the strike price K subject to
the following:

qmin ≤ qi ≤ qmax

Qmin ≤ ∑n
i=1 qi ≤ Qmax

(1)

We should note that in some swing contracts those bounds are not hard bounds but
subject to penalties, i.e., the holder of the contract can buy above the local/global limit,
however, they will pay a penalty, which is usually a fixed percentage of the price of the
underlier (i.e., something such as the Henry Hub price + 20%). For simplicity, the literature
treats those penalties as infinite, and we assume the same.

To add to the literature, we propose the use of a PSO (particle swarm optimization)
algorithm to evaluate the swing contract. There are two advantages of using PSO for
the valuation of the swing contract. First, PSO can be easily combined with Monte Carlo
simulations and hence gain computational efficiency. Second, PSO can more easily combine
price (i.e., stochastic process exogenously given) and quantity information (i.e., decision-
making process endogenously decided) in the valuation. Furthermore, PSO allows easy
expansions to more complex contracts or allows for more sources of randomness (as
suggested by Jaillet et al. (2004) and Boogert and de Jong (2011) to adopt multiple factors).

In addition to the novelty of adopting PSO in valuing the swing contract, which is the
first time in the literature, we also provide some insights toward how price and quantity
interact and their relative contribution to the price of the swing contract. In particular, we
discover that the buy/sell decision plays the dominant role in the price of the swing option,
while the price process does not. As a result, the problem can be very easily resolved just by
using linear programming.5 As discussed toward the end of the paper, for the price process
to have an impact, it must generate enough higher moments. In other words, the price
impacts are in the situations where risk-neutral pricing fails. This is an important empirical
question to answer. We conclude that the theory papers in the literature (including this
paper) that are predominantly based upon continuous-time martingale processes for the
natural gas will not be able to generate a substantial price impact on the swing contract. In
such a case, a simple linear programming algorithm can produce satisfactory results for the
swing contract.
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3. The Valuation

As documented in the literature, there are a number of moving parts in the swing
contract: (1) stochastic price process; (2) random interest rate environment; (3) lack of
liquidity in the market (and hence a utility dependent valuation is necessary); and (4)
quantity optimization. We summarize all of the moving parts and write the valuation
equation as follows:

C(t) = maxqi ∑ n
i=1Et

[
Λ(t, Ti)

{
−1qi>0qimin{Φ(Ti, Ti + ∆), K} − 1qi<0qiS(Ti)

}]
(2)

subject to Equation (1):
qmin ≤ qi ≤ qmax

Qmin ≤ ∑n
i=1 qi ≤ Qmax

where 1{·} is the indicator function; Ti’s are exercise dates; Φ(t, Ti) is the futures price
purchased at time t and delivered at time Ti; S(Ti) is the spot price; Φ(Ti, Ti + ∆) is the Ti
futures price settled at Ti + ∆ (∆ is usually a day); K is the strike price; qi is the quantity
sold (–) or purchased (+) at time Ti; Λ(t, Ti) is known as the pricing kernel; and Et is the
conditional expectation under the physical measure.

In Equation (2), we note that the pricing kernel Λ(t, Ti) carries the risk premium (of
the representative agent). We also note that the pricing kernel is also known as the marginal
rate of substitution between periods.6

Equation (2) states that in a swing option contract, the owner can choose to buy and
sell repeatedly at specific dates during the contract period T =< T1, · · · , Tn >. When
selling, the owner will receive the spot price. When buying, the owner will pay the lower
of the strike price and the futures price (not the spot price). The reason why it is the futures
price is because the delivery of the natural gas to the owner of the swing option is delayed
(by ∆, which is usually a day). The quantity qi at time Ti is either positive (determined by
the indicator function) upon purchase or negative at sale. The owner will calculate the
optimal quantity to buy or sell at each exercise time Ti in order to maximize the total profit
over the contract period.

We note that Equation (2) is not a straightforward option pricing problem. It includes
a decision-making process. The contract allows its owner to decide how much quantity
to buy (by exercising the option at the strike price K) and sell (in the cash market at the
spot price S(Ti)), subject to the daily and all-time limits (qmax, qmin and Qmax and Qmin,
respectively). An optimized decision is made at each exercise date Ti based upon the best
knowledge given at that time.

Hence, while Equation (2) is easy to write down, its implementation is not. First of all,
pricing kernel, price and quantity are all random (and could be correlated). The optimal
decision of quantity qi is made on the fly at each time Ti. Hence, a natural way to solve the
problem is dynamic programming (i.e., a lattice), which optimizes backwards along the
price lattice. This is not an easy implementation.

As a result, apparently, Equation (2) is not exactly implemented in the literature.
Equation (2) can be greatly simplified as follows (subject to Equation (1)):

C(t) = maxqi ∑ n
i=1P(t, Ti)Êt

[{
1qi>0qimin{Φ(Ti, Ti + ∆), K}+ 1qi<0qiS(Ti)

}]
(3)

where P(t, Ti) is the risk-free discount factor (to replace the pricing kernel Λ(t, Ti)) and Êt
is the conditional expectation under the risk-neutral measure (to replace the conditional
expectation under the physical measure Et).

From Equation (2) to Equation (3) is the well-known change of measure. The change
of measure (from physical to risk-neutral) requires either (1) continuous trading (and in a
frictionless market), or (2) a representative utility function. Given that energy commodities
are unlike financial assets and cannot be transacted easily and in small portions, a common
simplification adopted is to assume that the representative agent is risk-neutral, i.e., Êt =
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Et. As a consequence of this assumption, the pricing kernel is equal to the risk-free
discount factor.

Apparently, even Equation (3) is highly complex and expensive to implement (see
Jaillet et al. 2004). Not only is the optimal decision on quantity and buy/sell at each
period a result of current and future prices, but it is also a result of future buy/sell and
quantity decisions.7

3.1. Deterministic Quantities

As long as the quantity decision is not made dynamically, the valuation becomes
dramatically easier. The assumption made in this sub-section is that the quantity decision
is made at the current time t, and hence there is no uncertainty of quantity. When the
quantity of each period is fixed, then Equation (3) becomes extremely easy to solve, as
demonstrated below:

C(t, T; q) = maxqi ∑n
i=1 P(t, Ti)1qi>0qiÊt[min{Φ(Ti, Ti + ∆), K}] + 1qi<0qiÊt[S(Ti)]

= maxqi ∑n
i=1 P(t, Ti)

{
1qi>0qi[Φ(t, Ti + ∆)(1−Π+

i )− KΠ−i ] + 1qi<0qiΦ(t, Ti)
} (4)

Finally, Π+
i and Π−i are two probabilities similar to those in the Black–Scholes model,

indicating the likelihood of the option being in-the-money (but under different probability
measures), which are derived below:8

In Equation (4), we note that the risk-neutral expectations of future spot price and
futures price are both futures’ prices. If the futures price follows the Black model (1976):

dΦ(t, Ti)

Φ(t, Ti)
= σdW(t) (5)

then the two probabilities are normal:

Π±i = N
(

ln Φ(t, Ti)− ln K
σ
√

Ti − t
± 1

2
σ2(Ti − t)

)
(6)

where N(·) is the standard normal probability. Note that Equation (4) does not have a
closed form solution (although the price option does). Equation (4) needs to be solved for a
series of quantities (positive is buy and negative is sell/consume). Given that the objective
function is linear (both Φ(t, Ti + 1d)Π+

i − KΠ−i and Φ(t, Ti) are known), the problem can
be solved via linear programming:

maxqi ∑ n
i=1P(t, Ti)

{
1qi>0qiai + 1qi<0qibi)

}
(7)

subject to Equation (1):
qmin < qi < qmax

Qmin < ∑n
i=1 qi < Qmax

Then,
ai = Φ(t, Ti + 1d)Π+

i − KΠ−i
bi = Φ(t, Ti)

This is a linear programming problem that can be easily solved in Excel using the
Solver. An example will be provided in the next section (Section 5) where both the linear
programming and dynamic programming are presented and compared.
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3.2. Stochastic Quantities Yet Uncorrelated with Prices

When the quantities are random (i.e., determined at each date) but independent of
prices, then the problem can also be greatly simplified. Equation (3) can be rewritten
as follows:

C(t) = maxqi ∑n
i=1 P(t, Ti)×{

Êt
[{

1qi>0qi
}]
Êt[min{Φ(Ti, Ti + ∆), K}] + Êt

[
1qi<0qi

]
Êt[S(Ti)]

}
= maxqi ∑n

i=1 P(t, Ti)×{
Êt
[{

1qi>0qi
}]
{Φ(t, Ti + ∆)(1−Π1)− KΠ2}+ Êt

[
1qi<0qi

]
Φ(t, Ti)

}
(8)

With the prices already computed, we only need to optimize the quantities. As a result,
a dynamic programming approach can be used. In the dynamic programming (lattice), we
can identify an optimal path.

The state space can be set up in the following manner, as shown in Figure 1:
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Figure 1. Consumption, Lower Bound and Upper bound.

At the beginning (current time), the holder of the swing contract has no inventory and
hence can only buy. Over time, the holder can only buy up to the maximum capacity limit
Qmax—labeled by the yellow dots. Once the limit is reached, the holder can no longer buy,
but only sell or take no action. The red dots represent the lower limit Qmin and in between
is the daily most allowable capacity. As a result, the holder must start buying since the
daily allowable capacity is reached. Note that the diagram is just a demonstration. The
actual state space needs to be constructed according to the actual contract.

Now the quantities to buy or sell qi can be decided at each node. Note that this is a
one-dimensional lattice that is quite different from the lattice forest by Jaillet et al. (2004).
This one-dimensional lattice is extremely fast to solve.

An explicit example will be provided later (Section 5) and will be compared to linear
programming. We discover that the results are identical. In other words, the optimal path
in the lattice is the same as the result of linear programming where the quantities are totally
deterministic. In other words, the quantities, whether random or not, do not impact the
solution, as long as they are independent of the price.

3.3. Full Model

When the quantities are determined at each future exercise time Ti and are correlated
with the underlying price process, then the numerical algorithm to solve Equation (3) can
instantly become more complex, as shown in Jaillet et al. (2004) and the others reviewed in
the previous section.
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To evaluate the full model, we propose an alternative artificial intelligence (AI) method:
particle swarm optimization (PSO) to “intelligently” search for the optimal quantity deci-
sion process. AI methods are in general less preferred than parametric numerical methods,
such as lattice or PDE. However, in the case of the swing option, none of the parametric
methods can provide an accurate solution cheaply. As a result, we contend that PSO has
a merit in reaching a solution reasonably fast and cheaply and should be considered as a
practical alternative.

We also compare the PSO result of the full model (Equation (3)) with the results of the
linear programming (limited model, Equation (4)) and find small differences. This brings
confidence in using the limited model as a fast approximation.

4. Particle Swarm Optimization (PSO)

In theory, swarm intelligence is effective for optimization problems in a high-dimensional
space. PSO is such an application. The original version of PSO was first proposed by Eber-
hart and Kennedy (1995) who modified the behavioral model of swarm into an objective-
seeking algorithm. Similar to Reynold’s, their model “artificializes” the group behavior
of a flock of birds seeking food. Via bird-to-bird chirping (peer-to-peer communication),
all of the birds fly to the loudest sound of chirping. Subsequently, Shi and Eberhart (1998)
improved the model by adding an inertia term (symbolized as w later as we introduce the
model) and it has become the standard PSO algorithm used today. To set a proper value of
the inertia term is to seek the balance between exploitation and exploration. A larger value of
the inertia term gives more weight to exploration (as the bird is more likely to fly on its
own), and a smaller value of the inertia term gives more weight to exploitation (as the bird
intends more to fly toward other birds).9

One can compare PSO to the grid search. A grid search can find the global optimum
and yet it takes an exploding amount of time to reach such a solution, especially in a
high-dimensional space. PSO can be regarded as a “smart grid search” where each particle
performs a “stupid search” and yet, by communicating with other particles and by having
a large number of such particles, we can reach the global optimum quickly.

Imagine we need to measure the deepest place of a lake whose bottom has an uneven
surface. A two-dimensional grid search can easily find the global minimum. An alternative
would be PSO. Imagine we have a number of “fish” (particles) who swim in the lake. At
each time step, all of the fish will measure the depth of the lake underneath them. Each fish
is communicating with all of the other fish to decide whose depth is the deepest (minimum).
All of the fish now remember the minimum and then they swim for another time step. At
each time step, they update the global minimum so far. If we let these fish swim randomly
for enough time, we will reach the global minimum.

In the case of the lake, we may find the grid search to be more accurate and time-
effective. However, in an n-dimensional lake, grid searches are becoming ineffective, but
the same number of fish may just do the same job with the same amount of time as in the
two-dimensional lake.

Currently there were a limited number of applications of PSO in finance, mostly in
the portfolio selection. Chen et al. (2021) uses it for the first time in the literature to locate
the exercise boundary of American-style derivatives (specifically, put option, option on
min/max, and Asian option).

The PSO algorithm can be formally defined as follows. For i = 1, · · · , n particles and
each particle is a vector of j = 1, · · · , m dimensions, we have:

→
v i,j(t + 1) = w(t)

→
v i,j(t) + r1c1(

→
p i,j(t)−

→
x i(t)) + r2c2(

→
g (t)−→x i,j(t))

→
x i,j(t + 1) =

→
x i,j(t) +

→
v i,j(t + 1)

(9)

where
→
v i,j(t) is velocity of the ith particle in the jth dimension at time t;

→
x i,j(t) is position

of the ith particle in the jth dimension at time t; w(t) is a “weight” (less than 1), which
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decides how the current velocity will be carried over to the next period (and usually it
is set as w(t) = αw(t − 1) and α < 1 to introduce diminishing velocity);10 and finally
r1, r2 ∼ u(0, 1) follow a uniform distribution.

In the swarm literature, w(t)
→
v i(t) is called inertia; r1c1(

→
p i(t)−

→
x i(t)) is called the

cognitive component; and r2c2(
→
g (t)−→x i(t)) is called the social component. Coefficients

c1 and c2 are known as acceleration coefficients.
At each position there is “cost function” f (·) (sometimes called distance function) at

which a “cost” (or penalty) is computed. This cost function is the objective function to be
minimized (or maximized).

The global best at any given time is either the maximum or minimum value of the
objective function generated by all of the particles at the time:

→
g (t) = min

i

{
f (
→
p i(t))

}
(10)

and the personal best at the time is:

→
p i(t) = min

t

{
f (
→
x i(t))

}
(11)

and f (·) : Rn → R is the “fitness function”. The usual fitness function is

f (
→
x i(t)) = ‖xi − χ‖ = ∑ J

j=1(xij − χj)
2 (12)

where χ =< χ1, · · · , χJ > is a coordinate in a J-dimensional space.
As we can see, the algorithm (at least the standard one presented here) of PSO is

quite different from that of a generic swarm by Reynolds (1987). Yet they both share the
same behavioral pattern of a natural swarm. In other words, (1) both PSO and the generic
swarm are based upon peer-to-peer communication in order to achieve the objective, and
(2) the particles in both PSO and the generic swarm are identical (such as birds or ants)
and each particle follows its neighbor particles. The difference is just how each particle
weighs its neighbors. In PSO, each particle only cares about the global best discovered by
its neighbors, and in the generic swarm each neighbor’s position is important. We provide
an example to demonstrate the mechanical details of PSO in Appendix A.

5. A Demonstration

In this section, we first demonstrate a limited model (deterministic quantity case) of
Equation (4). In this case, we can solve the problem via easy linear programming (LP).
We also demonstrate how dynamic programming (DP) and particle swarm optimization
(PSO) can lead to the same solution. This implies that the price dynamics are relatively less
important in determining the price of the swing option contract and the quantity decision
dominates. To see why, we note that Equation (2) is an expectation on the physical measure
where risk preference matters. Yet, in the demonstration below, the Black model, which
assumes (log) normality, is adopted. Under the (log) normal distribution, risk-neutral
measure can be easily derived since the (log) normal distribution has only two moments. In
a more complex distribution where higher moments matter, then the risk-neutral measure
is not easily achievable (unless the representative agent has quadratic utility function (see
Merton (1973) for a full discussion)). Then Equation (2) cannot be simplified and the only
solution to the problem must be an AI/ML one, such as PSO. This is an empirical question
and we leave it to future research.

Then, we will solve the full model of Equation (3) or (8). The full model can only
be solved via DP or PSO. We demonstrate that PSO is highly efficient in solving complex
option problem, such as the swing option. In the literature (reviewed earlier), reinforcement
learning (Daluiso et al. 2020) and stochastic vector machine (Malyscheff and Trafalis 2017)
were used to solve the problem. While in the finance literature, comparisons of various
models are useful in identifying the best model, we do not provide a horserace of the various
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AI/ML tools in this paper. This is because such comparisons are highly case dependent
and algorithm-dependent (i.e., how the code is written). Unless such comparisons are
performed in a wide collection of transactions (i.e., an empirical study), differences are
usually not meaningful. Hence, this is different from the large volume of horserace papers
in finance. We argue that PSO is easy to visualize and then better to be introduced to the
industry. Judging from the methodology, SVM and PSO are very similar and reinforcement
learning is more tedious to program than PSO.11

5.1. Limited Model

To make the problem simple, so that we have a known solution, we adopt a simple
example, as follows. The prices given in this demonstration are either $5 or $10. The
action the investor can take is either to buy or sell one unit at a time (i.e., qmin = −1 and
qmax = 1); or he can take no action (i.e., qi = −1, 0, 1). There is a storage limit of five units
(i.e., Qmax = 5). Finally, the contract holder cannot short sell (minimum capacity is 0 or
Qmin = 0). The tenor of the contract is assumed to be 22 days.

Intuitively, one could guess the solution to be buying low (at $5) and selling high
(at $10). Such a profit is $50, which is the maximum. We shall see that the LP solution is
consistent with that intuition. We also discover that the DP solution is the same as the
LP solution, although the investor is allowed to dynamically optimize his action (and the
inventory as a result).

5.1.1. Linear Programming

Table 1 is an example where the prices are known for the next 22 exercise dates
(imagine this is a daily schedule, so roughly a month). They are given in column 2 of
Table 1.

Table 1. A Hypothetical Example of a Swing Contract.

Day Prices Action

1 5 1
2 5 1
3 10 −1
4 10 −1
5 5 1
6 5 1
7 10 −1
8 10 −1
9 5 1
10 5 1
11 10 −1
12 10 −1
13 5 1
14 5 1
15 10 −1
16 10 −1
17 5 1
18 5 1
19 10 −1
20 10 −1
21 5 1
22 5 −1

The maximum profit is $50. In Table 1, “1” means “buy”, and the investor spends
the price to acquire either 5 or 10 units of goods; and “−1” means “sell”, and the investor
makes money by selling the goods at the given price. For example, at day 1, the investor
has no inventory to sell so s/he must buy (or no action) at $5. Hence, the day-1 profit is
−$5. At day 2, the investor can either buy more, or sell the one unit s/he just bought. In
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the solution, he would choose to buy one more unit. The reason is that the price is low so
s/he keeps buying and then sells at a higher price at $10, which is exactly what s/he does
on day 3. S/he sells one unit at $10 at day 3 and another unit at $10 at day 4. It is clear that
the investor will always buy at a low price and sell at a high price, provided that he cannot
sell short, nor can he accumulate inventory over the given capacity.

Hence, “1” means “buy”, “−1” means “sell”, and “0” means no action. The investor
makes money by selling, and pays money when buying.

LP can easily solve the problem (e.g., Excel Solver12) and the solution is presented in
column 3 of Table 1. The maximum profit is $50.

5.1.2. Dynamic Programming

A dynamic programming approach is also implemented. The state space for DP is
given in Table 2. The numbers in the table represent the quantities held by the investor at a
specific time and state. Given the maximum capacity of five units, the state space can be
only up to five.

Table 2. State Space of Dynamic Programming.

Day 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

5 5 5 5 5 5 5 5 5 5 5 5 5
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

This table presents the inventory level over time (22 days). The capacity limit is five
units which can be reached in 5 days (permitted action every day is to buy or sell one unit).
At the end of the month, it is optimal that there is no inventory left (all sold), which implies
that day 18 is the last day that the inventory level can be five. The actions permitted on
each day is then clear. On day 1, the investor can either do nothing (0)—resulting in no
inventory on day 1; or buy (1)—resulting in one unit of inventory on day 1. S/he cannot
sell since that would result in negative inventory, which is not allowed. On each of the
consecutive days, the investor can buy, no action, or sell. The optimal action is given in
Table 1.

In an extreme case, the investor can buy from day 1 for 5 consecutive days and reach
the storage capacity. In another extreme case, the investor holds on to a maximum number
of units of five till the last allowable day (which is 5 days till maturity), in that it is optimal
for the investor to sell all of the goods at maturity. Hence, the state space steps down
starting day 17 and reaches 0 on day 22.

The result (i.e., payoff) of the DP is given in Table 3. Table 3 is similar to Table 2, except
that the quantity numbers are replaced by payoffs. In DP, we need to move backwards
from maturity.

Table 3. Payoff of Dynamic Programming.

Day 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Price 5 5 10 10 5 5 10 10 5 5 10 10 5 5 10 10 5 5 10 10 5 5

65 65 60 55 55 55 50 45 45 45 40 35 35
60 60 60 55 50 50 50 45 40 40 40 35 30 30 30

60 55 55 55 50 45 45 45 40 35 35 35 30 25 25 25 20
60 55 50 50 50 45 40 40 40 35 30 30 30 25 20 20 20 15 10

55 50 50 45 45 40 40 35 35 30 30 25 25 20 20 15 15 10 10 5 5
50 45 40 40 40 35 30 30 30 25 20 20 20 15 10 10 10 5 0 0 0 0 0
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From this result, we can see the maximum profit is $50 on day 0. The backward
induction process of the dynamic programming is explained in the text. It is quite lengthy
and so we will not repeat it here.

The optimal path is presented via the shaded nodes. We can see that on day 0 there
are two choices of action: buy or no action. If buy, the $5 is spent and if no action, then
$0 is spent. The best result is to buy rather than no action because the payoff of buy is
$55 − $5 = $50 and greater than the payoff of no action, which is $45 + $0 = $45 (note that
$50 and $45 are payoffs on day 1 from backward induction). At state 1 on day 1, three
choices of action are available: buy again, no action, and sell. The payoff of each decision is
$60 − $5 = $55, $50 + $0 = $50, and $40 + $5 = $45, respectively. Hence, clearly the optimal
decision is to buy again. At state 2 on day 2, the price goes up to $10. There are three choices
of action: buy, no action, and sell. The resulting payoffs are $60 − $10 = $50, $55 + $0 = $55,
and $50 + $10 = $60, respectively, so clearly the optimal decision is to sell. This process
continues and the shaded boxes indicate the optimal action path.

At maturity, the payoff is $0 because there is no inventory at hand. On day 21, if the
investor has no inventory at hand (i.e., state 0 in Table 2), he will have nothing to sell and
hence make no money. Certainly he will not buy, because he has no chance to sell it and will
suffer a $5 loss (Or −$5). Choosing the larger of the two, at state 0, the investor will only
take no action, and hence the resulting payoff is $0. On day 21, there is another possible
state—state 1. At state 1, the investor has one unit in inventory and can sell it. This is the
only permissible action, and selling the unit will generate $5 payoff.

Day 21 22
state 1 5
state 0 0 0

Moving backwards to day 20, there are three possible states: 0, 1, and 2 (reflecting the
inventory). At state 0, the investor has two possible actions: buy or no action. The buy
action will incur a cost of $5 and will move on to state 1 on day 21, which has a payoff of $5.
Spending $5 now and receiving $5 the next day will result in $0. Alternatively, the investor
can take no action. Under this action, the investor will move on to state 0 on day 21, which
pays $0. As a result, no action on day 20 also yields $0, which is the same as buying. Taking
the larger of the two same results, the payoff at state 0 on day 20 is $0.

At state 1 on day 20, only sell and no action are allowed (since there is no state 2 on
day 21). If the investor takes no action, then he will end up with $5 the next day. If the
investor sells, then he will receive $5 from selling and $0 from the payoff (state 0) of the
next day. Both results are equal, and hence we know that the payoff at state 1 on day 20
is $5.

At state 2 on day 20, the only permissible action is to sell. This yields $5 from selling
and $5 from the next day (state 1), and so together is $10, as follows:

Day 20 21 22
state 2 10
state 1 5 5
state 0 0 0 0

Repeating the process, we can derive all of the payoffs in the lattice, as shown in
Table 3. As we can see, the maximum payoff on day 0 is $50. We can trace the best decision
path by following the combined result of action and the next period payoff. The optimal
path is highlighted in the shaded cells. The explanation of the optimal path is offered
alongside the table to easily compare the numbers.

Quite amazingly, the result of this DP algorithm is the same as the result of LP. Random
quantities (i.e., deciding what action to take on the fly) make no difference in the results of
LP (i.e., deciding the action at the beginning), once the prices are deterministic. In the next
sub-section, we implement PSO to demonstrate in this simple example how in detail we
can construct a PSO algorithm to solve the LP problem.
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5.1.3. PSO

A PSO algorithm can also easily find the solution, although much more slowly than
LP or DP. In the PSO, we first randomly assign a location to each particle (i.e., fish/bee/ant).
The location is a vector of all 22 of the actions over the period. The following is the
VBA code:

• If Rnd > (2/3) Then fish(ifsh, idim) = 1
• If Rnd < (2/3) And u > (1/3) Then fish(ifsh, idim) = 0
• If Rnd < (1/3) Then fish(ifsh, idim) = −1
where ifsh indicates the ith fish and idim (for dimension) represents the ith action and
hence fish(ifsh, idim) is the action of ith fish on the ith day. As we can see, the location
is randomly assigned 1 (sell), 0 (no action), and −1 (buy). The three actions are chosen
equally from a uniform random number Rnd (which is an VBA function to call upon a
uniform random number).

We also need to choose the initial velocity:

• velo(ifsh, idim) = Rnd

After the initialization, particles (fish) start to move around. These subsequent move-
ments are decided by new velocities.

The velocity in the following iterations is determined by combining three amounts:
from itself; from its personal best; and from the global best, as indicated by the right-
hand-side of Equation (9). However, the right-hand-side of Equation (9) is not directly
the velocity to be used to update either the next velocity or the position, but needs to be
translated into integers. This is because our actions are only allowed to be 1, 0, and −1,
which is not the general case of a PSO. Then this velocity is added to the previous location
to arrive at the next location of each particle (fish), as Equation (9) describes.

A sample run is given in Table 4. The number of particles used in this example is 100.
As we can see it converges rather quickly (in iteration 6).13

Table 4. PSO.

Day 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Price 5 5 10 10 5 5 10 10 5 5 10 10 5 5 10 10 5 5 10 10 5 5
Profit actions

15 0 1 0 −1 1 1 −1 −1 1 0 −1 0 0 0 0 0 0 0 0 1 0 −1
15 0 1 0 −1 1 1 −1 −1 1 0 −1 0 0 0 0 0 0 0 0 1 0 −1
30 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 0 0 0 0 1 0 0 −1 1 0
40 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 0 1 −1 0 1 0 0 −1 1 −1
40 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 0 1 −1 0 1 0 0 −1 1 −1
45 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 0 1 0 −1 −1 1 −1
50 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 −1
50 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 −1
50 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 −1
50 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 −1

particles = 100.

Table 4 presents the days and daily prices in the top two rows, below which are the
iterations and the result of each iteration. The profit is given on the left and the daily actions
taken are given afterwards. The daily actions are the “gbest” among all of the particles
(fish/bees/ants)—that is the result of the best fish.

As we can see, at the first iteration, the best fish does not offer a good solution. The
actions suggested only result in $15 profit. This is expected and the coordinates (i.e., actions)
are randomly chosen. In the next iteration, there is no improvement (daily actions are
same), indicating the best fish in the initial iteration remains the best fish. In iteration 3,
another fish takes over and the profit increases to $30. In about six iterations, PSO reaches
the optimal solution.
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5.2. Full Model

In this sub-section, we consider the general case where both the prices and quantities
are random and furthermore correlated. DP in this case is very complex. This is because
once the prices are random, actions (quantities) are dependent on the prices given at each
time and node. The lattice must be first built for the prices. Then at each time and node,
the decision of an optimal action is made. This is the same as lattice on lattice (known as
“lattice forest”).

Complex lattices always run into computational issues—either memory or speed.
Usually they are not able to provide accurate results, due to computation limitations. To
overcome this dimensionality curse problem, we employ PSO as an alternative to DP or
PDE. In PSO, we apply, for each particle (fish), a vector of actions (one for each month for
12 months, i.e., < x1, · · · , x12 >) are applied on the N simulation paths of prices. Then,
via iterations, the best action is determined and the option value computed. Detailed
discussions of using PSO to evaluate the expectation, such as Equation (3), can be found in
Chen et al. (2021).

This is identical to the lattice algorithm, in that all of the fish swim through all of the
simulation paths. Hence, in an M× N (M fish and N price paths) universe, the best action
is decided and option price calculated.

To carry out this exercise, we employ real data. The data we use in this demonstration
are obtained from the CME website14, which contains the prices of all of the futures
contracts on Henry Hub natural gas (per million BTU, or British thermal unit) on a given
day. The data are presented (for the next 12 months) in Table 5. The spot data are obtained
from the EIA (U.S. Energy Information Administration).15

Table 5. CME Futures Prices (per million BTU) 1/13/2021.

Month Last Change Prior Settle Open High Low Volume

02/01/21 2.743 −0.01 2.753 2.737 2.826 2.708 157769
03/01/21 2.703 −0.004 2.707 2.69 2.773 2.671 83168
04/01/21 2.7 0.001 2.699 2.679 2.758 2.676 58202
05/01/21 2.718 0.002 2.716 2.705 2.772 2.7 28261
06/01/21 2.783 0.011 2.772 2.773 2.826 2.76 17321
07/01/21 2.854 0.013 2.841 2.833 2.893 2.831 17359
08/01/21 2.87 0.014 2.856 2.86 2.91 2.849 7340
09/01/21 2.858 0.016 2.842 2.845 2.894 2.835 5438
10/01/21 2.877 0.014 2.863 2.854 2.914 2.852 23347
11/01/21 2.931 0.015 2.916 2.92 2.965 2.909 3597
12/01/21 3.053 0.014 3.039 3.025 3.083 3.025 3609
01/01/22 3.136 0.013 3.123 3.111 3.166 3.111 11949

Spot price 2.82. https://www.eia.gov/dnav/ng/hist/rngwhhdm.htm. (accessed on 13 January 2021).

We simulate spot prices of natural gas using the Black–Scholes model:

dS(t)
S(t)

= r(t)dt + σdW(t) (13)

where rt is the risk-free rate (assumed to be a deterministic process); σ is volatility (assumed
to be constant); and Wt is the risk-neutral Brownian motion. The futures prices can be
computed as:

Φ(t, u) = Et[S(u)]

= S(t) exp
(∫ u

t r(w)dw
)

= S(t)M(t, u)

(14)

https://www.eia.gov/dnav/ng/hist/rngwhhdm.htm
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As a result, we can compute the money market account as:

M(t, u) =
Φ(t, u)

S(t)
(15)

This is used in simulation:

ln S(t + ∆t) = ln S(t) + M(t, t + ∆t) + σ
√

∆tε(t) (16)

where ε(t) is the standard normal random number sampled at time t.
While these are stochastic prices, the PSO used here is similar to the one in the limited

model. Each particle (fish) contains a vector 22 action values—one per day for the whole
22-day period. Each fish in the PSO “swims” (i.e., trying various values of the vector) and
compares with other fish in terms of the value of the objective function—profit from the
actions. Given that our example is to buy or sell at futures prices, the value of the objective
function is just the inner product of the action vector and futures price curve.

The steps of PSO are given as follows. Let the action vector be x = {x1, · · · , x22} for
the 22-day period. Each fish has such a vector and competes with other fish for the best
vector (i.e., “gbest”) as follows:

1. set a specific decision process (i.e., vector of buys/sells);
2. simulate standard normal variables (22 periods by 1000 paths);
3. calculate price of the swing option by Equation (16) (22 periods by 1000 paths);
4. calculate the expected payoff: 1

1000 ∑22
i=1 ∑1000

j=1 xiS(ti);
5. find the best fish (with the highest value);
6. revise the decision process;
7. repeat steps #2~5 until it converges

The above process is similar to the American option valuation, introduced in Chen
et al. (2021). A brief sketch of their process is introduced in Appendix A.

The result of PSO is given in Table 6. The market futures prices are given in row 2 and
the calibrated money market account (MM) is given in row 3. These MM account values
are computed using (15) and used in simulations to guarantee the risk-neutral expectations
converge to the market futures prices in row 2. The volatility is set at 50% and the number
of simulation paths is 1000. The number of particles is 400.

Table 6. PSO Result.

Day 1 2 3 4 5 6 7 8 9 10 11 12

Price 2.743 2.703 2.7 2.718 2.783 2.854 2.87 2.858 2.877 2.931 3.053 3.136

MM −0.0277 −0.0147 −0.0011 0.00664 0.02363 0.02519 0.00559 −0.0042 0.00663 0.0186 0.04078 0.02682

iter gbest Day = 1 2 3 4 5 6 7 8 9 10 11 12
1 −0.771 0 0 1 0 1 0 1 0 0 −1 −1 −1
2 −0.79016 0 0 1 0 1 0 1 1 −1 −1 −1 −1
3 −1.0969 0 1 1 1 1 1 0 −1 −1 −1 −1 −1
4 −1.22089 1 1 1 1 1 0 −1 0 −1 −1 −1 −1
5 −1.22089 1 1 1 1 1 0 −1 0 −1 −1 −1 −1
6 −1.22089 1 1 1 1 1 0 −1 0 −1 −1 −1 −1
7 −1.22089 1 1 1 1 1 0 −1 0 −1 −1 −1 −1
8 −1.22089 1 1 1 1 1 0 −1 0 −1 −1 −1 −1

The parameters are given as follows:
S(t) 2.82

volatility 0.5
npaths 1000
nfish 400

Note: In the above table, the top part contains the price information as before. MM is
the marginal rate of substitution representing the expected (see Equation (15)). The bottom
part is the list of PSO results in each iteration. As we can see, in four iterations, PSO has
reached the optimal solution (hence, iterations six–eight are redundant). The actions are
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given in columns 3~14 where 1 = buy; 0 = no action; and −1 = sell. The optimal value
(gbest) is $1.22.

In a few steps,16 PSO converges to $1.2209 and the action is given accordingly on the
right. We note that this result is the same as the LP result, which is $1.22, as presented in
Table 7. The slight difference could be due to a Monte Carlo error.

Table 7. LP Result.

Day 1 2 3 4 5 6 7 8 9 10 11 12

Price 2.743 2.703 2.7 2.718 2.783 2.854 2.87 2.858 2.877 2.931 3.053 3.136

MM −0.0277 −0.0147 −0.0011 0.00664 0.02363 0.02519 0.00559 −0.0042 0.00663 0.0186 0.04078 0.02682

1.22 1 1 1 1 1 0 −1 0 −1 −1 −1 −1

Note: In the above table, the top part contains the price information as before. MM is the marginal rate of
substitution representing the expected (see Equation (15)). The linear programming result is the same as the PSO
result in Table 6. The maximum profit is $1.22 at the bottom of column 1. The actions are given in columns 2~13.

The results of this example indicate that correlated random prices and quantities do
not add value to the option price. This result could be due to the fact that the permissible
actions are only limited (i.e., buy or sell only one unit). As we expand the decision space
(and hence the state space), the impact is larger. Still, we note that a larger state space
creates computational challenges for DP and PDE, but not for PSO.

6. Conclusions

The swing option contract was evaluated in the literature for nearly three decades.
While it was recognized as a storage contract (as early as Holland 2007), earlier valuation
models continued to use price process(es) as the only pricing dynamics, mainly due to the
computational limitations. Recently, thanks to the growing trading activities in the energy
markets and the technological advances in the artificial intelligence (AI) and machine
learning (ML) areas, a renewed interest in valuing the swing contract has emerged and
storage constraints are explicitly considered.

Joining this growing interest of valuing the swing contract using AI/ML models, we
propose the use of a particle swarm optimization (PSO) methodology. Compared to the
other ML methodologies in the literature, PSO has an advantage in expanding to include
more features. In particular, PSO is more streamlined with Monte Carlo simulations,
and hence can gain computational efficiency. Moreover, PSO can more easily combine
price (i.e., the stochastic process exogenously given) and quantity information (i.e., the
decision-making process endogenously decided) in the valuation. Lastly, PSO allows
easy expansions to more complex contracts, or allows for more sources of randomness (as
suggested by Jaillet et al. 2004 and Boogert and de Jong 2011 to adopt multiple factors).

In addition to the novelty of adopting PSO in valuing the swing contract, which is the
first time that this was completed in the literature, we also provide some insights toward
how price and quantity interact and their relative contribution to the price of the swing
contract. We discover that the buy/sell decision plays the dominant role in the price of the
swing option, while the price process does not. As a result, the problem can be very easily
resolved just using linear programming. For the price process to have an impact, it must
generate enough higher moments. In other words, the price impacts are in the situations
where risk-neutral pricing fails. This is an important empirical question to answer. We
conclude that the theory papers in the literature (including this paper) that are based mostly
upon continuous-time, martingale processes for the natural gas will not be able to generate
substantial price impact on the swing contract. In such a case, a simple linear programming
algorithm can produce satisfactory results for the swing contract.

One can use PSO to model more complex variations of the swing contract with few
difficulties. Many swing contracts involve multiple assets (different gas prices at different
terminals). To solve this problem, a non-linear optimization (yet still integer and most
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likely binary in the shipping variable, as demonstrated earlier) may be effective. We leave
this for future research.
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Appendix A

(a) A PSO Demonstration
In this appendix, we demonstrate the mechanics of PSO used in this paper. We adopt

a simple sphere as the objective function, so we know the answer of the solution:

f (x1, x2) = (x1 − 0.5)2 + (x2 − 0.5)2 (A1)

Hence the solution is:
x1 = 0.5
x2 = 0.5

To conserve space and easy reading for the readers, we explain the details of the PSO
implementation by Table A1 so the readers can refer to the table more easily.

Note: The parameters of PSO in Equation (9):
→
v i,j(t + 1) = w(t)

→
v i,j(t) + r1c1(

→
p i,j(t)−

→
x i(t)) + r2c2(

→
g (t)−→x i,j(t))

→
x i,j(t + 1) =

→
x i,j(t) +

→
v i,j(t + 1)

are given below. Except for rare cases, the results of PSO are usually quite insensitive to
these parameters. As noted in the text, c1 and c2 amplify exploitation and exploration,
respectively. We set them as equal to not bias the model. w is usually less than one in order
to encourage convenience:

c1 1
c2 1
w 0.9

We demonstrate PSO using two iterations. Each fish carries a coordinate in the x–y
plane. These values are shaded in gray in the table. The day-0 values are randomly created

between 0 and 1. The values of the objective function of the five fish are ( shaded in yellow )

f (x, y) = (x− 0.5)2 + (y− 0.5)2 and can be computed as (e.g., for the first fish) 0.149926
= (0.663165 − 0.5)2 − (0.851145 − 0.5)2. The next column is “pbest” (or personal best)
shaded in blue . On day-0, given no history, these values are just the same values as the

objective function. The next two columns record the coordinates the pbest of each fish. The
next column is to select the best fish and, in the example, fish 2 is the “gbest” (or global
best), as it has the lowest objective function value 0.111287, with the next two columns
recording its coordinates. Lastly, in the last two columns, we have the velocity of each fish.
On day-0, these are also randomly chosen from uniform distribution.
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Table A1. A Demonstration of PSO (five particles, two dimensions).

coordinates obj fcn pbest pbest coordinates gbest velocity
day 0 x y x y if yes? x y x y
fish 1 0.663165 0.851145 0.149926 0.149926 0.663165 0.851145 0 0.657494 0.10171
fish 2 0.280451 0.751167 0.111287 0.111287 0.280451 0.751167 1 0.280451 0.751167 0.267828 0.407284
fish 3 0.406239 0.144589 0.135108 0.135108 0.406239 0.144589 0 0.140151 0.045138
fish 4 0.976293 0.41713 0.233723 0.233723 0.976293 0.41713 0 0.954009 0.153271
fish 5 0.898113 0.069016 0.344241 0.344241 0.898113 0.069016 0 0.622724 0.229386

0.111287 0.280451 0.751167
coordinates obj fcn pbest gbest velocity

day 1 x y x y if yes? x y x y r1 r2
fish 1 1.32066 0.952855 0.87856 0.149926 0.663165 0.851145 0 0.569697 0.085779 0.093361 0.617054
fish 2 0.548279 1.158451 0.435888 0.111287 0.280451 0.751167 0 0.241045 0.366555 0.41755 0.699711
fish 3 0.54639 0.189727 0.098421 0.098421 0.54639 0.189727 1 0.54639 0.189727 0.131175 0.13099 0.159044 0.862283
fish 4 1.930303 0.570401 2.050722 0.233723 0.976293 0.41713 0 0.547117 0.287474 0.509094 0.879301
fish 5 1.520838 0.298403 1.082751 0.344241 0.898113 0.069016 0 0.427 0.353833 0.383035 0.564073

0.098421 0.54639 0.189727
coordinates obj fcn pbest gbest velocity

day 2 x y x y if yes? x y x y r1 r2
fish 1 1.890357 1.038635 2.22322 0.149926 0.663165 0.851145 0 0.470934 0.057302 0.038976 0.535754
fish 2 0.789324 1.525006 1.134346 0.111287 0.280451 0.751167 0 0.072254 −0.19386 0.538003 0.584523
fish 3 0.677565 0.320717 0.063672 0.063672 0.677565 0.320717 1 0.677565 0.320717 0.165733 0.165499 0.363449 0.925142
fish 4 2.477419 0.857875 4.038262 0.233723 0.976293 0.41713 0 −0.63784 0.024366 0.701198 0.475362
fish 5 1.947837 0.652236 2.119409 0.344241 0.898113 0.069016 0 0.301537 0.298678 0.065913 0.649501

0.063672 0.677565 0.320717

Now, we can proceed to day-1 using equation. The two coordinates of fish 1 on day-1
are computed, as follows:

1.320659 = 0.663165 + 0.657494 and
0.952855 = 0.952855 + 0.101710

The new coordinates will lead to new values of the objective function and each fish
will update its own pbest and the new gbest will be chosen. As in the example, fish 3 has
updated its pbest from 0.135108 to 0.098421, while the other fish will remain the same.
Now the gbest is fish 3, no longer fish 2. As we can see the coordinates or pbest and gbest
are recorded.

The velocity of fish 1 requires two extra random numbers r1 and r2 that are presented
in the last two columns ( shaded in green ) of the table. These two random variables are
the “intelligence” of the model. Without them, the model is totally deterministic and is not
capable of finding the global optimum.

0.569697 = 0.9 × 0.657494 + 0.093361 × 1 × (0.663165 − 0.663165 + 0.617054 × 1 × (0.280451 − 0.663165))
0.085779 = 0.9 × 0.101710 + 0.093361 × 1 × (0.851145 − 0.851145 + 0.617054 × 1 × (0.751167 − 0.851145))

Now the process repeats itself from day-1 to day-2. In less than 20 iterations, PSO will
reach the final coordinate, which is 0.5 and 0.5.

(b) PSO in Option Pricing
In Chen et al. (2021), PSO is applied to American option pricing in the following

manner. Carr (1998) and Carr et al. (2008), among others, argued that the value of an
American option can be calculated as:

C = max
B(τ)

e−r(τ−t)Êt[max{K− S(τ), 0}] (A2)

where t is current time; r is the risk-free rate (constant); K is the strike price; B(τ) is the
exercise boundary value at time τ; S(τ) is the spot price at time τ; τ is the exercise time
(when S(τ) ≤ B(τ)), and Êt[·] is the conditional risk-neutral expectation.

Equation (18) indicates that an American option value is equal to the expected exercise
value when the optimal boundary is specified. However, the challenge lies in the difficulties
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in finding the function form of the boundary function B(τ). Chen et al. reviewed the
existing literature of various B(τ) functions (all of which are parametric) and proposed the
use of the PSO to identify a non-parametric boundary function.

Here, we use PSO in parallel to Chen et al. but the expected value is computed from
the payoff of the swing contract.

Notes
1 According to the New York Times https://www.nytimes.com/2021/02/20/us/texas-storm-electric-bills.html, (accessed on

10 May 2022) “Scott Willoughby, a 63-year-old Army veteran who lives on Social Security payments in a Dallas suburb. He
said he had nearly emptied his savings account so that he would be able to pay the $16,752 electric bill charged to his credit
card—70 times what he usually pays for all of his utilities combined . . . ”

2 Barrera-Esteve et al. (2006) compared three methods (forest of trees, MLCS, and dynamic programming) and found them to be
indistinguishable and interested readers are encouraged to read their survey paper.

3 The optimal quantization method is a method coming from signal processing devised to approximate a continuous signal by a
discrete one in an optimal way.

4 Many swing contracts involve multiple assets (different gas prices at different terminals). Modeling these complex swing contracts
require non-linear optimization in the decision making process.

5 A quantitative website named hpcquantlib (https://hpcquantlib.wordpress.com/2011/05/29/swing-option-i-linear-vs-dynamic-
programming, accessed on 10 May 2022) discusses how a simple linear programming can be used in substitution for dynamic
programming.

6 For details, please see Merton’s intertemporal asset pricing model (Merton 1973).
7 It is also worth noting that under certain regularity conditions the optimal consumption strategy can be shown to be of a

so-called bang-bang type, i.e., at each exercise date the optimal decision is to either buy the maximum or minimum quantity (see
Theorem 3.1 in Barrera-Esteve et al. 2006).

8 We assume the readers have certainly familiarity with the Black–Scholes model and understand the two probabilities usually
called Nd1 and Nd2.

9 Similar to PSO, an ACO (ant colony optimization) by Dorigo et al. (2000) and ACS (ant colony system) by Dorigo and Gambardella
(1997) are both based upon swarm intelligence. The first ant system is first developed by Dorigo and Gambardella (1997) and
then popularized by Dorigo et al. (2000).

10 The reason is that, as a particle is approaching the global best, the velocity should approach 0 (i.e., the particle should no longer
move at the global optimum).

11 We implemented a reinforcement learning model on the limited case. The result is available upon request.
12 In the “Selecting a Solving Method”, choose “Simplex LP”.
13 Note that with different random numbers the result will change. Yet the convergence is equally fast for this simple problem.
14 https://www.cmegroup.com/trading/energy/natural-gas/natural-gas_quotes_globex.html (accessed on 10 May 2022).
15 https://www.eia.gov/dnav/ng/hist/rngwhhdm.htm (accessed on 10 May 2022).
16 The CPU time is 13 s on an ASUS (LAPTOP-4MUP54NS) Intel i7-8550U CPU @ 1.80GHz 1.99 GHz and 16.0 GB memory.
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