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Abstract: In this paper, we study the estimation and inference of the threshold model with hybrid local
stochastic unit root regressors. Our main contribution is to propose an estimator that generalizes the
threshold model with various forms of nonstationary regressors and to obtain its limiting distribution
theory. In particular, our proposed model generalizes the threshold model with unit root, local-to-
unity, and stochastic unit root regressors. We provide the estimation strategy for the least squares
estimator and derive the asymptotic results for the proposed estimator. Depending on the diminishing
rate of the threshold effect, we find that the limiting distribution of the threshold estimator takes
different forms. Monte Carlo simulations are used to assess our proposed estimator’s finite sample
performance, which is found to perform well.

Keywords: threshold model; hybrid local stochastic unit root

1. Introduction

Widely used to capture nonlinearities in economic relationships, the parametric thresh-
old model has received much attention over the past two decades. Many empirical studies
use threshold models in time series applications and examples include the pricing asymme-
try of oil prices and the nonlinear effect of public debt-to-GDP ratio on the per capita GDP
growth of a given country over time.

The statistical inference of the threshold regression model is well established with
stationary regressors. Under the fixed threshold effect assumption, Chan (1993) devel-
ops a threshold estimator which converges to a function of a compound Poisson pro-
cess. Hansen (2000) establishes the limiting results under the diminishing threshold ef-
fect assumption and shows that the limiting distribution of the threshold parameter es-
timator is in the form of two independent Brownian motions. Extending Hansen (2000),
Caner and Hansen (2004) further allow for the endogenous slope regressors by using a
two-step least squares estimation method. In the spirit of Heckman (1979), Kourtellos
et al. (2016) propose using a parametric control function method to allow for the endoge-
nous threshold variable under the joint normality assumption. Yu et al. (2021) correct
and expand Kourtellos et al. (2016)’s method, assuming the endogeneity is known with a
finite functional form. Kourtellos et al. (2021) further relax Yu et al. (2021)’s assumption
on the known endogenous form and use a nonparametric approach to control for the
unknown form of endogeneity. Chen et al. (2012) consider a threshold regression model
with two separate exogenous threshold variables, while Chen et al. (2021) further allow
two thresholds to be endogenous. Yang et al. (2021) extend Hansen (2000) by allowing
for a time-varying threshold. Miao et al. (2020) study a panel threshold model with latent
group structures. Seo and Linton (2007) explore a linear index threshold model that allows
multiple stationary threshold variables to be a linear index of regressors, and Yu and Fan
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(2020) provide the distributional theory of a least squares estimator for that model. In light
of Seo and Shin (2016), Chen and Stengos (2021) employ a generalized method of moment
approach to allow for the endogeneity in the linear index threshold model.

As for the threshold regression model with nonstationary regressors, surprisingly, the
asymptotic properties have not been fully developed. Among the few, Caner and Hansen (2001)
study a threshold autoregressive model with unit root regressors, and they derive the limiting
distribution of Wald tests for a threshold, under the null of a linear model to be nonstandard
and different from the stationary case. Gonzalo and Pitarakis (2012) extend the nonlinearity
testing to the case of nearly unit root regressors, while Chen (2014) develops the estimation and
inference of a threshold model with integrated regressors. One of the findings is that the model
may be identified only weakly if the diminishing rate of the threshold effect is fast enough.

Nevertheless, the studies mentioned above restrict the regressors to either unit root
or nearly unit root, though many series, particularly from empirical macroeconomics and
finance, display various forms of dependence in different periods. Recent empirical work
also sheds light on the advantages of linking multiple regimes of stationary and non-
stationary behaviors and transition mechanisms between them (e.g., Phillips et al. 2011;
Phillips and Yu 2011). Hence, a statistical inference of a threshold regression model that
accommodates various forms of nonstationary regressors is needed.

Our paper aims to fill this gap in the literature. Our main contribution in this paper is to pro-
pose an estimator that generalizes the threshold model with various forms of nonstationary re-
gressors and to obtain its limiting distribution theory. Following Lieberman and Phillips (2020),
we propose a threshold regression model with hybrid local stochastic unit root (HLSUR) regres-
sors. The proposed model generalizes the threshold model well, with unit root, local-to-unity,
and stochastic unit root regressors. We provide a least squares estimation strategy and derive
the limiting results of the threshold estimator. We also demonstrate the good finite sample
performance of our proposed estimator via Monte Carlo simulations.

The remainder of the paper is organized as follows. In Section 2, we introduce the
threshold model with HLSUR regressors and provide an estimation strategy, while in
Section 3, we derive the limiting results. Section 4 provides a heuristic example to discuss
the limiting results. In Section 5, we show the inference for the threshold effect. Section 6
reports the Monte Carlo results for the proposed estimators. Finally, Section 7 concludes
the paper. Technical proofs are relegated to Appendix A.

To proceed, we adopt the following notation. The indicator function is denoted as I(.).

We use ||| to denote the Euclidean norm. [np] denotes the integer part of np. 5, i, =,
and ~ denote convergence in probability, convergence in distribution, weak convergence,
and equivalent to, respectively. A and \/ denote the minimum and maximum operators.
Following Caner and Hansen (2001), we make W(s, i) a two-parameter Brownian motion
on (s,u) € [0,1]%

2. The Model and Estimators
Consider the following threshold model,
yr = Blxe + 6, xedqr < o) + 1)

where x; is a dyx x 1 vector of hybrid stochastic unit root processes, forall j = 1,...,dy, with
the form

Xjt = ButXjt-1+ 04, 2)
Te,
b= eH
nt — 7

where ¢; is a localizing constant, ¢j; is a dg]. x 1 vector, and xj; = vj;. Note that the
specification of B, allows for different types of dependence. For example, if all a; and ¢;
are zero, we will have the standard unit root case.
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Lete; = [s{t,...,sgrt]T and vy = [vlt,...,vdxt]T. We assume the vector 17; = (p¢, vtT,etT)T

to be a strictly stationary martingale difference sequence, and the partial sums satisfy the
following invariance principle

1 [np] T
77 L= B() = [Bu(p) BI()BI(p)] ©)
t=

where By (p) = [Bo, (p),---, Bo,, (p)]T, Be(p) = [BF_T1 (p),---, Bsde (p)]T, and B(p) is a vector
of Brownian motions with a long run positive definite covariance matrix

UﬁOO
=10 %, 0], 4)

and 05 > 0, £y > 0, and Z¢ > 0.
We can rewrite model (1) in a stacked form

y = X(7)0+ 1, (5)

where 0 = [BT, 1] T,y stacks up vy,  stacks up ps, X(7) stacks up X;(7), and X () =

T
[xf xf Lge < 7)]
Hence, given a fixed y € [7,7], model (5) is linear in 6. We obtain

3 -1
0(y) = [X(M'X(M] XNy ©)
The least squares estimator of g is
¥ =arg min SSR(vy), (7)

vl

. 2
where SSR(7) = L4 (yt - G(W)TXt(v))
Due to the non-smooth nature of the objective function, following Hansen (2000), we
employ a grid-search method to estimate the model empirically.

3. Asymptotic Properties for the Estimators
We make the following assumptions to support model (1).

Assumption 1. {qg;} is a strictly stationary mixing sequence with the mixing coefficient of size
—r/(r —2) for some r > 2.

Assumption 2. Let F; be the smallest sigma-field generated by {qs41,n7l : 1 <s <t < n}.
{(nt, Fui) }/_q is a strictly martingale difference sequence (MDS) with positive definite covariance

E(nyin] | Fu,t), whose partial sums satisfy the invariance principle, as in (3).

Assumption 3. The threshold variable q; has a continuous distribution F(.). f(.) is the corre-
sponding density function with 0 < f(y) < f < oo forall vy € [7,7].

Define
ol S ool
Gy, (5) _ Sita] By (9) (/ R ng(p)dij(p)) ®)
0

and

Guels) = [Gal,cl (5), -+ +s Gaycu. (S)} r )
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Assumption 4. fol Gua,c(s)GJ o (s)ds is positive definite.

Assumption 1 ensures the threshold variable g; is strictly stationary. Assumption 2
states that gq; is contemporaneously exogenous in model (1) and ensures the multivariate
invariance principle for the partial sum of a martingale difference array. Assumption 3 is
common in the threshold regression literature. This assumption assumes the threshold
variable is continuous with positive density everywhere, ensuring they are dense near the
true threshold level. Assumption 4 is a regular full rank condition.

Theorem 1. Under Assumptions 1-4, with 8, = n=/275y and p € (—1/2,1/2), we have
¥ =70 = 0p(1).

Theorem 2. Under Assumptions 1—4, with 6, = n=/2-05, the following limiting results hold:

(. ifpe(0,3)

n! =2 (§ —y0) = AT, (10)

2
(7#

,and T = argmax T(r) with T(r) denotes a two-sided
FO10)8F fy G ()Gl (5)dsdo re(igoo,+oo) ") ")

Brownian motion on the real line

where A =

Wi (r) — %r, ifr >0,
T(r) =40, ifr=0, (11)
Wy (—r) — 3lr|, ifr <0,

and Wy (r) and Wy, (r) are two independent standard Brownian motion processes defined on [0, 00);
(ii). ifp=0,
n(y —0) 4 argmin D(v), (12)
v
where

D(v) = 50T ;{\2 ? (xtxtT(SO - 2xt]4t), ifv >0,
5 i\I:z i (xex[do +2xept), ifv <0,

_ o~

and N1 (v) and Ny (v) are two independent Poisson process with intensity f (7).

Theorems 1 and 2 show the threshold estimator’s consistency and asymptotic distribu-
tion, respectively. We make the following remarks for Theorem 2.

Remark 1. The convergence rate of 7y depends only on the diminishing rate of the threshold effect,
p. It does not relate to both the localizing constant, c, and the coefficient of the stochastic term, .

Remark 2. If the diminishing rate of the threshold effect is fast enough (p € (0,1/2)), the asymp-
totic distribution of 7 is in the form of the argmin of the drifted two-sided Brownian motion and
is essentially in the same form of Hansen (2000) and Chen (2014), with a different scaling factor,
A. Intuitively, this is because we have infinite threshold variables in the local neighborhood of -y
asymptotically. Thus, we can apply the functional central limit theorem to derive the limiting results.
We notice Chen (2014) also allows a “slowly” diminishing rate (o € (—1/2,0)). We exclude that
case because, as we show in Lemma A4 of the appendix, the uniform law of large numbers and
the functional central limit theorem can be applied if and only if % goes to zero, where ay is the
convergence rate of the threshold estimator. This condition is well documented in the change point
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model. For example, Kejriwal and Perron (2008) assume the jump size is diminishing at a faster
rate with the nonstationary regressors than with the stationary regressors.

Remark 3. If p = 0, only a finite number of q; are involved asymptotically in the local neighborhood
of the true threshold level. Under this case, that P(N(v) — oo) = 0 for any finite v holds since
the threshold variable is strictly stationarity. Therefore, we can extend Chan (1993)’s distributional
theory to the nonstationary regressors. As a result, the limiting distribution of the threshold
estimator is given as the argmin of the stochastic process D (v). A similar argument can be found in
the comment of proposition 2 of Bai (1997). Note that, if x; is also strictly stationary, D(v) reduces
to a compound Poisson process, as shown in Theorem 2 of Chan (1993). !

Remark 4. If p < O, the threshold estimator converges very fast, such that we have zero information
around the local neighborhood of the true threshold level asymptotically. As a result, we cannot
obtain a limiting distribution.

We consider some extensions to Theorem 2. The following provides the limiting results
of the threshold estimator for model (1) with some special HLSUR regressors.

Corollary 1. Under Assumptions 1-4, and ¢; = 0 for j = 1,...,dy, with p € (0, ), we have

~ d ! o !
nl=20 (3 —y9) = AT, where A = : » Gals) = {G”‘l (), Gag, (S)} ’

F(10)8d fy Ga(s)GE (s)dsdy
and Gy, (s) = = ¢ B <f0 o By P 4B, (p))

Corollary 2. Under Assumptions 1-4, and a; = 0 for j = 1,...,dy, with p € (0, 1), we have
n'=20 (4 — ) A N'T, where A" =
and Gey(s) = eI 3 e 7idBy, ().

i L Gels) = [Gq (s),.+., Gey, (s)]T,

F(70)0 f Ge(s)GX (s)dsdy

Corollaries 1 and 2 show the limiting results of the threshold estimator in the case of a
stochastic unit root and local-to-unity regressors, respectively. If we assume both ¢; = 0 and
aj=0forallj=1,...,dy, the regressors are unit root processes. The limiting distribution
further reduces to Theorem 3.1 of Chen (2014).

4. Heuristic Arguments and an Illustrative Example

In this section, we use a simple setup of model (1) to provide more intuitions on
the limiting result in Theorem 2. Suppose x; and a are of dimension one, Jp = 1, and

B = 0. In addition, we further assume ¢? = (7;2[ = 02 = 1. Hence, model (1) becomes
_1/2— p2(c+ac)s
yr = n" V2 Px1(q; < y0) + pit, where E(Gyc(s)) = 0 and Var(Gy,c(s)) = W

Assuming the knowledge of the consistency and the convergence rate, we examine the
asymptotic behavior of SSR(7o + 7-) — SSR(70), where a,, = n'=20. For any v € (0, ),
we have,

[ -
SSR(70+ —) = SSRu(y0) ="'~ ZPZxZI —2n 12" sztz o )

n

= Snl(v) — anz(l)),

where I(7-) = I(v0 < qt < y0+ )
Note that S,y(v) = 1y ( = ) anl(7>). Applying Lemma 1 of Hansen (2000),
we have

2 2
ay & v v a2 |1 & v v a2
E|Z2 Y [I(=) — E(I(=)]| = ZE|—=Y_ [I(—) - E(I(— e,
n tzl[ an) (an ] n "t:1[ an) ( (an))] n o ay




J. Risk Financial Manag. 2022, 15, 242

6 of 15

where C is a constant. Thus, for p € (0, %) we can verify, for any finite positive v,
Y 1) LA f(70)v. Note that 1 y7 1( ) = [ Gu(s)?ds. Therefore, we have

n

Snl(v) :>Uf Yo fo lX,C )2d5~
2
Forp = 0, E‘”W” ?:1(1(%) —E<1(1)>)‘ = O(1). This implies 2=y | I(%) A

an an

f(70)v, which is well explored in the case of the fixed threshold effect in a threshold regres-

sion model with stationary regressors. Following Chan (1993), we can show Y3i_ I(;-) ~

Binomial(n, p(v)) = N(v),> where p(v) = f(70) - and N(v) is a Poisson distribution
with intensity f (7o) due to the fact that np(v) = f(y0) < oo. Asaresult, S,1(v) = Zi\[(f X2,

Next, we can rewrite S,(v) as S,2(v) = ﬁ Y \/EI( )pr. For p € (0,3), we
have

o i) - (o)) = e

t=1 n

E

Je [ - () )| ‘ 0,

Thus, we can show 1YV, a, I(75) u? v f (70) uniformly for all v. Then we can
apply the functlonal central limit theorem on \f Yioa vVanl (7). As * f = Gu,(5),

wehave 5,5 (v) = [ Gye(s)dW(s, f(70)0).
By contrast, for p = 0,

2

E|% = 0(1).

oy i ()]

t=1

Therefore, Ly L a (2 -) u? A vf(0). Following Chan (1993), we have S, (v) =
thl Xtpt.

5. Test for the Linearity

The threshold effect of model (1) disappears if &y = 0. Thus, for a given y € [v,7], we
can construct the Wald statistic to test the null hypothesis of 5y = 0 as

Wa(7) = 87 | X} (L — Po) Xy | 6/33. (13)

Following Hansen (1996), we define SupW = sup Wy(7).
relral

Theorem 3. Under Assumptions 1-4 and 5y # 0, we have Wy, (7y) = Op(n'/27F).

Corollary 3. Under the null and Assumptions 1—4, we have

1 1 T
SupW = 721[,17;’17]({/0 Gac(s)dW(s, F(y)) — F('y)/o Ga,C(S)dW(S)} (14)
-1

X { [P('y) — F('y)2 /1 Galc(s)Ga,C(s)Tds} (15)
{/ Gue(s)dW (s, F(7)) — / Gue(s)dW (s )})/aﬁ.

Theorem 3 shows SupW = oo under alternative assumptions. Under the null
hypothesis, the limiting random variable of SupW depends on some unknown parameters.
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Note that if c = 0 and & = 0, Wy, (7y) is in the same form as Chen (2014). If c < O and « = 0,
Corrollary 3 reduces to Proposition 1 of Gonzalo and Pitarakis (2012).

6. Monte Carlo Studies

To evaluate the finite sample performance of our proposed estimator, we provide
Monte Carlo simulation results in this section. We generate our data from following a
simple structure:

yr = 0.2x; +2n V27 Px, I (g < 0.2) + s, (16)
Xt = BuiXt—1 + 04,

coy X
ﬁi’lt = en ﬁ/

where q;, ut, v¢, and g; are independently normally distributed with mean zero and vari-
ance one.

We vary ¢ € (—0.5,0,0.5) and a € (0,0.07,0.2). For each data-generation process, we
replicate 2000 times. We consider sample sizes of n = 300, 500, and 1000. Tables 1-3 report
the simulation results with p = 0, 1/4, and 1/3, respectively.

Opverall, we see that the performance of the threshold estimator improves as the sample
size increase for all cases. In addition, the finite sample performance slightly changes over
various « and c. We observe more considerable bias and MSE as the threshold effect
diminishes faster. These observations are consistent with our limiting results, suggesting
that the convergence rate of the threshold estimator only relates to the diminishing rate of
the threshold effect, p.

Table 1. Simulation results with p = 0.

Panel A:aa =0
c=-05 c=0 c=05
n Bias MSE Std Bias MSE Std Bias MSE Std

300 —-0.0367 0.0635 0.2494 —-0.0270 0.0595 0.2425 —-0.0204 0.0473 0.2166
500 —0.0179  0.0448 0.2109 —0.0175 0.0353 0.1870 —0.0119 0.0299 0.1727
1000 —0.0099 0.0170 0.1300 —0.0029 0.0129 0.1136  —0.0021  0.0095 0.0977

Panel B: « = 0.07
c=-05 c=0 c=05
n Bias MSE Std Bias MSE Std Bias MSE Std

300 —0.0228 0.0532 0.2297 —-0.0197 0.0493 0.2212 —0.0243 0.0399 0.1982
500 -0.0163 0.0292 0.1700 —0.0093 0.0235 0.1531 —0.0105 0.0180 0.1338
1000 —0.0059 0.0101 0.1004 —0.0053 0.0089  0.0942 —0.0037 0.0058 0.0758

Panel C: o = 0.2
c=-05 c=0 c=05
n Bias MSE Std Bias MSE Std Bias MSE Std

300 —0.0141  0.0339 0.1835 —0.0077 0.0250 0.1580 —0.0167 0.0234 0.1519

500 -0.0119 0.0174 0.1316 —0.0094 0.0114 0.1062 —0.0047 0.0077 0.0879

1000 —0.0018  0.0039 0.0624 —0.0012 0.0023 0.0476  —0.0022 0.0017 0.0417
This table reports the simulation results with p = 0. The first column shows the sample size. The second to the
fourth columns report the results with ¢ = —0.5. The fifth to the seventh columns report the results with ¢ = 0.
The last three columns report the results with ¢ = 0.5. Panel A shows the results with « = 0. Panel B reports the
results with & = 0.07, and Panel C reports the results with « = 0.2.
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Table 2. Simulation results with p = 1/4.
Panel A:a =0
c=-05 c=0 c=05
n Bias MSE Std Bias MSE Std Bias MSE Std
300 —0.1519 0.2711  0.4981 —0.1304 0.2649 0.4980 —0.1448 0.2501 0.4788
500 —0.1380 0.2550 0.4859  —0.1201 0.2344 0.4691 —0.1109 0.2160 0.4514
1000 —0.1347 0.2494 04810 —0.1077 0.2241 04611 —0.1148 0.1951 0.4267
Panel B: « = 0.07
c=-05 c=0 c=05
n Bias MSE Std Bias MSE Std Bias MSE Std
300 —0.1450 0.2502 0.4788 —0.1350 0.2311 0.4615 —0.1001 0.2066 0.4435
500 —0.1195 0.2264 04607 —0.1106 0.2149 0.4504 —0.1076 0.1894 0.4218
1000 —0.1100 0.1947 04274 —0.0640 0.1518 0.3845 —0.0675 0.1391 0.3669
Panel C: o« = 0.2
c=-05 c=0 c=05
n Bias MSE Std Bias MSE Std Bias MSE Std
300 —0.1095 0.2001 0.4338 —0.0841 0.1686 0.4021 —0.0723  0.1372 0.3633
500 —0.0644 0.1389 0.3671 —0.0619 0.1255 0.3489  —0.0452 0.0902 0.2970
1000 —0.0422 0.0779 0.2759  —0.0211 0.0526  0.2285 —0.0203 0.0433 0.2070

This table reports the simulation results with p = 1/4. The first column shows the sample size. The second to the
fourth columns report the results with ¢ = —0.5. The fifth to the seventh columns report the results with ¢ = 0.
The last three columns report the results with ¢ = 0.5. Panel A shows results with « = 0. Panel B reports results
with & = 0.07 and Panel C reports results with & = 0.2.

Table 3. Simulation results with p = 1/3.

Panel A:a =0
c=-05 c=0 c=05
n Bias MSE Std Bias MSE Std Bias MSE Std
300 —0.1903 03193 05322 —0.1859 0.3105 0.5254 —0.1629 0.2868 0.5102
500 —0.2009 03091 0518 —0.1798 0.3019 0.5194 —0.1731 0.2886 0.5087
1000 —0.1615 0.2859 0.5099 —0.1524 0.2853 0.5121 —0.1553 0.2712 0.4972
Panel B: « = 0.07
c=-05 c=0 c=05
n Bias MSE Std Bias MSE Std Bias MSE Std
300 —0.1549 0.2930 0.5188 —0.1527 0.2804 0.5071 —0.1541 0.2586 0(.4848
500 —0.1483 0.2831 0.5111  —0.1551 0.2639 0.4899 —0.1233 0.2385 0.4727
1000 —0.1470 0.2549  0.4831 —0.1201 0.2324 04670 —0.1126 0.2162 0.4513
Panel C: o = 0.2
c=-05 c=0 c=05
n Bias MSE Std Bias MSE Std Bias MSE Std
300 —0.1494 0.2624  0.4901 —0.1175 0.2288 0.4638 —0.1168 0.2038 0.4361
500 —0.1326  0.2229 04533 —0.0834 0.1782 0.4139 —0.0742 0.1512 0.3818
1000 —0.0786 0.1449 03725 —0.0633 0.1132 0.3305 —0.0468 0.0783 0.2759

This table reports the simulation results with p = 1/3. The first column shows the sample size. The second to the
fourth columns report the results with ¢ = —0.5. The fifth to the seventh columns report the results with ¢ = 0.
The last three columns report the results with ¢ = 0.5. Panel A shows results with « = 0. Panel B reports results
with « = 0.07 and Panel C reports results with « = 0.2.
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7. Concluding Remarks

The estimation and statistical theories of the threshold model with stationary or
integrated regressors are well explored (e.g., Hansen 2000; Caner and Hansen 2001;
Chen 2014). Yet, in empirical macroeconomics and finance, many explanatory variables
follow either near unit root or stochastic unit root processes (e.g., Phillips et al. 2011;
Phillips and Yu 2011; Lieberman and Phillips 2017, 2020). This paper proposes estimating
a threshold regression model with HLSUR regressors that has both local-to-unity and
stochastic unit root components. The estimation of the threshold parameter is based on a
concentrated least squares method. We develop estimations and inferences for the thresh-
old estimator under the diminishing threshold effect assumption, including a sup-Wald
statistic to test for the existence of the threshold effect. Finally, we assess the performance
of the proposed estimator using Monte Carlo simulations.

There is a wide range of directions open for future work. First, the current paper
assumes the threshold variable is strictly stationary. It may be interesting to extend it to
be nonstationary. Second, our model relies on exogenous regressors and the threshold
variable. Future works can relax this assumption by applying a control function approach.
Moreover, a more general model with nonstationary regressors and multiple threshold
variables may be interesting. These extensions are left for future studies.

Author Contributions: These authors contributed equally to this work. All authors have read and
agreed to the published version of the manuscript.

Funding: Thanasis Stengos acknowledges the financial support from NSERC of Canada.
Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Lemma

Let x;, = xI(q: < 7) and X, stack up x;,. Let X stack up x4, and let Py be the
projection matrix of x;. Denote I, as an n x n identity matrix.

Lemma A1l. Under Assumption 2, we have
(i) n 2% () = Gayi(s)- (A1)

(if). 17 2x, ) = Gue(s). (A2)

Proof. The proof is given in Lemma 1 of Lieberman and Phillips (2020) with no presence
of endogeneity ing;. [
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Lemma A2. Under Assumptions 1—4, uniformly for any y € [v,7|, we have

I 1
(i). n=3/2 Z X = / Gue(5)ds, (A3)
(i) Wth — F(y / Gue(s (Ad)

ns]
(iii). n~1/2 L 1 < m = oW (s, F(1) (A5)
t=

(iv).n! Z Xty e = Uy/ Guc(s)dW(s, F(7)), (A6)
-2 thxt = / Gue(s)GL . (s)ds, (A7)
(0i) 2mexmyt:>l-" / Gue(s)GL, (s)ds. (A8)
(vii). n—2 Z Xi(y T'— M(y), (A9)

where

M(y) = fo Gac )Gac(s)ds  F(y fo Gue(5)Gac(s)ds |
fO G"‘C GEC( )ds F '7 fo sz,c 5 GEC(S)dS

Proof. (i) is standard by applying Lemma A1l. We show the proof of (ii), and the others can
be proven in a similar way. Define x,; = n~'/2x;. Closely following the proof of Theorm 3
of Caner and Hansen (2001) with our defined x,; and w; = 1, we can show, uniformly for

Y€ 17

1 n
sup |~ Y- xu(I(g < 7) —E(y)| Bo.
t=1

YE[17]

Then, applying (i) and the continuous mapping theorem completes the proof of
this Lemma. O

Lemma A3. Under Assumptions 14, for any <y € [7,7], we have

L1/2+0 (5(')/) _ 9) — M(7) " A(7,70,0), (A10)
where

(F(v0) = F(1) Jy Gaels)Gae(s)ds |,

Al o) = l(F(vo A7) = F(1) fo Guels)Gie(s)ds

-1

Proof. By definition, we have 8(y) — 0 = (X(7)TX(7)) " X(7)T[1 + (Xyy — Xy )0n).
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Hence, under Assumptions 1-4 and by Lemma A2, we can show

(i). n'/2+ (X(“Y)TX(’Y))_lx(ﬂTH =0p(1),

). 12 (X(0)TX() X0 (K — X360

n -1 n_ZZ” wixT —xT s
- t=1 Xt | Xy, Xt )00 B
= (” ZZXt(’Y)Xt(’Y)T> ( " 7) = M(7) 'A(7,70,0),
t=1

-2y T
n Zt:lxt,“r(xt,yo xt’y do

where we use the fact that I(g; < v)I(q: < v0) = I(q: < v AY0)-

This completes the proof of this Lemma. [

Leta, = n'™%, I(L) = I(v0 < q: < Y0+ =), ut(v) = anl(Z) — E(anI(£)), and
0ui(0) = V().

Lemma A4. Under Assumptions 1-4 and p € (0, 3), for any v € [v, 7], we have

(i). sup |f Z”f| 2o, (A11)
ve[vv] t=
(ii). n=1/2 Zv ; B(v), (A12)

where B(v) is a Brownian motion.

Proof. Note that, for each v, by Lemma 1 of Hansen (2000), we check the point conver-

gence condition
v
(G —EG))
where C is a finite number.

Then, we can apply Lemma 1 of Hansen (1996) to conclude the proof of (i). Next, given
each v, by Lemma 1 of Hansen (2000), we can show

2
1 & v v a2
E|=- (2) — E(a, )| =%E
nt;an( ) (ﬂnan)‘ "

an

2
<C’ L
n

1 1&
E|— vntvz—E— vntvz
"t; (v) <”t; (0)%)

4

-1/2

Eln max vy (v) — 0.

ve(v,7]

<’ an
n

where C’ and C” are two finite numbers.
Then, we can use similar arguments in the proof of Lemma A.11 of Hansen (2000) to
complete the proof of (ii). O

Appendix B. Proof of Theorem
Appendix B.1. Proof of Theorem 1
Define the projection matrix P(7y) = X (XxTX2) 1 XxT, where X = [X,, X — X,].
By simple calculation, we have
SSR(7) =y" (I = P(7))y (A13)
= 63 X3, (In = P(7)) X0 + 26 X5 (In = P(7)) pr+ " (In = P(7)) .

Hence, the centered process is as follows:
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n*~1(SSR(y) — SSR(70)) = n~ 26§ XJ (I — P(7)) X80 + n~3/2255 X3 (I, — P(7))p
+ %! {VT(IH —P(y))u— VT(In - P(’YO))V} = Am + A + Aps.

For all v € (70,7], closely following the same line of argument in the proof of
Lemma A.5 of Chen (2014), and by applying Lemma A2, we can show that

(1). A = (P(’Yo) - F(VO)F*l(v)F(w)é{ /O 1 Ga,c(5)Gac(s)ds,
(2). Az = O, (nP1/2),
(3). Aus = Op(n*71),

where we use the fact that I(q: < 70)I(q: <) = I(q¢+ < 70)-
Therefore, we have

271 (SSR(y) — SR (10)) = (F(20) ~ Fr)E " (1)F(30))&] [ Guls)Gle(s)es.

Note that, forall v € (o, 7], wehave F(y) > F(v). Thus, we have n?*~1S,; (SSR('y) -
SSR(')/O)> > 0 uniformly for all y € (vg,7]. Similarly, we can show that n2°~1S5 <SSR(’y) -
SSR('yO)) < 0if v € [7,70), which completes the proof of this Theorem.

Appendix B.2. Proof of Theorem 2

First, closely following the proof of Lemma A.6 of Chen (2014), we can show a,, (7 —

Y0) = argmin Qu(v) = Op(1), where Qu(v) = SSR(70+ =) — SSR(70).
v€(—00,+00)
Next, note that

y—X(10=p+ X(B—- B) + Xy (8n = 0n) — (X — Xoy) O
Therefore, we can show

SSR(y) — SSR(m0)
= 3 (Xy = Xq) " (X = Xg) 3 =2 [+ X (B = B) + X (60— 80) ] [(Xy = X))

n

=05 Y xx] |1(qe < v) — 1(g¢ < 70)|0n
t=1

- 2371“ Z nut (xtr7 - xt/’YO)

n
t=1
n

- 25, Y [(B— @Txf + (0n — g")Txmo] (Xt — Xt,7)

=1

~

-~

T ~
n+(5n> thxtTll(ﬂhS')/)_I(qtgr)/O”(én_én)
t=1

= Su1(7) = 28u2(7) = 2513(7) + Sua(7)-

_|_

Now, we consider the limiting behavior of Snj('y), forj=1,2,3,4with p € (0, %) For
any v € [v,7], a finite interval, by Lemmas A2-A4 and the Taylor expansion, we have



J. Risk Financial Manag. 2022, 15, 242 13 of 15

Sm (70 + %) =
w65 | F(70 -+ ) — F(0) / G (5)GIo(s)ddsdo + 0p(1) B [0l 1,08 / G (5)GL (s)dsdo.
For S;;» and for v > 0, by Lemmas A2 and A3, we have
Sn2 (70 + - )
—5Tt21ﬂm[ g <70+ - ) —I(q: < ”ro)] + (00 — 6n) met[ g < r0+ - ) —I(q < 'yo)}

— nl/Z*P(sOTaM/O Galc(s)d{W(s,F(’m + ;)> - W(s,F(fyO))} [1 + o,,(nfl/z)]

LetH(17) = [ Ga,c(s)dW(s, 7). NotethatE[ (7)) =0,var(H(y)) = ’7f0 Gue(s)GI (s)ds,
and E(H (’71) (12)) = (11 A112) Jy Gue(5)GL(s)ds. Thus, e(v) = \/and] oy [H(70 + Z) —

H(7yo)] is a Brownian motion with

1
Var(e(v)) = ;f('yo)vég /0 Ga,c(s)GD{C(s)dséo +0p(1),
where we use the first-order Taylor expansion of F(7yq + =) around 7.

Next, we can show that, forallv € [v,7], S;;3(v) = op(Snnl(v)) and S,4(v) = 0p(Sn1(0))-
Thus, combining the above results together, we have

0
SSR(y0 + P ) — SSR(70)
n

of (70)08 fol Gua,cGL . (s)dsdy — 20y, \/f(”yo)v5g fol Ga,c(s)Gl o (s)dsdoWy (v), ifo>0
== <0, ifo=0

191 £ (7087 [ GucGLo(s)dsdy — 20, \/ Fro)|ol8T [} Gue(s)GI(s)dségWa(—v), ifv <0,

where Wi (v) and W, (—v) are two independent standard Brownian motion process defined
on [0.00).

Following the proof of Theorem 1 of Hansen (2000) and Lemma A.7 in Chen (2014), by
making the change of variables, we complete the proof of (i).

Now, we consider the limiting behavior with p = 0. Note that, for any positive
finite v, i1 I(;>) ~ Binomial(n, p(v)), where p(v) ~ f(70); and np(v) is finite. Hence,
Y () = Nl( ) where N (v) is a Poisson process with intensity f(-yg). Similarly, for
any negatlve finite v, we have Y./ ; I(—7-) = Nz(|v[), which completes the proof of (ii).

Appendix B.3. Proof of Theorem 3

-1

Note that, given y € [,7], =[x [X (In —Py)X,] XT(In — Py)y. Hence, we have

Y
Wi () = 8T [x{ (I — PX)XW} 55,2
-1
= yT (L, — Py)X, [Xg(zn — px)xy} XI (1, — Py,

where, by Lemma A2, we can show
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(). 2XE (1~ P = [E(r) ~ Fr ] [ Gu(5)Gaels) s,

(id). X} (I = Po)y = n ™" [ X = X] Papt 4 X] X — X} P X |
1 1 1
- /O Gu,c(8)dW(s, F(7)) — F(')’)/O Gu,c(s)dW(s) + nlipF(')’/\'YO) /O Ga,c<S)Ga,c(S)TdS5O

—7117‘01: ’}’0 / Gac IX ) dsdy.

Thus, Wy (7) = Op(n'~F). Under the null of 6y = 0, we can show

Wa(y) = {/ Guse )W (s, E(x)) ~ F(7) [ Gaels) dW<>}T
-1

< {[F) = FO?] [ Guc(6)Giel)s |
<A [ uclaw(s, F(n) = F) [ Goelaw(s) |,
which completes the proof of this Theorem.

Notes

! For more reference on how compound Poisson process can be approximated by two-sided Brownian motion, see Yu and Phillips (2018).

2 This is the limiting case when the finite g; is involved in the local neighborhood of the true threshold level. If p > 0, we have

infinite information, and if p < 0, /1 I(;-) — 0, we have zero information provided in the local neighborhood of 1.
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