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Abstract: In the United States, exchange-traded funds can defer capital gains taxes of their investors
by taking advantage of a legal loophole. To quantify the impact of this tax loophole on investor
portfolios, we study a rank-dependent expected utility model. We develop an approximation formula
for the sensitivity of the optimal investment strategy with respect to changes in the expected asset
returns. By applying this approximation formula, we are able to quantitatively estimate how much
investor portfolios may change depending on the investment horizon if the tax loophole is closed.
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1. Introduction

Exchange-traded funds (ETFs) have experienced a meteoric rise in popularity since
their inception, largely due to their lower costs compared to mutual funds (MFs) and
high tax efficiency. Particularly, ETFs in the United States are able to take advantage of a
tax loophole to avoid capital gains distributions. In the United States, tax typically must
be paid on capital gains distributions. However, due to a 1969 tax law, ETFs are able to
make use of tax-free in-kind redemptions to allow their investors to defer their capital
gains taxes to a future date. This causes the ETF to have a greater unrealized return for
holding investors. There has been recent attention, from both media (Mider et al. 2019)
and academia (Colon 2017; Hodaszy 2016; Moussawi et al. 2021) on the legal and financial
aspects of this benefit for ETF investors. In September 2021, U.S. Senate Finance Committee
Chairman Ron Wyden released draft legislation that could mean the beginning of the end
of the ETF tax loophole although the proposal is not yet part of any formal legislative plan
(Lim and Rubin 2021).

The objective of this paper is to provide a quantitative analysis of how investor portfo-
lios containing ETFs and MFs would change in the event the ETF tax loophole is closed,
in addition to providing a further understanding of how investor preferences and market
components would affect this change. To this end, we develop an approximation formula
that describes how an investor’s utility and their optimal asset allocation change when the
expected asset returns shift. We do this in a simple model, yet capture a crucial feature in
asset allocation, namely, the investors’ overweighting of tail probabilities. Compared to
results from classical portfolio optimization, there exists an investor preference for actively
managed mutual funds over their passively managed counterparts (e.g. ETFs), which is
referred to as the mutual fund puzzle (Gruber 1996). Therefore, we use a rank-dependent
expected utility (RDEU) model, as presented in Quiggin (1993). RDEU is an extension of
classical expected utility that overweights unlikely extreme outcomes.

The ETF tax loophole is the unexpected outcome of a 1969 U.S. tax law and predates
the first ETF by two decades (Colon 2017). For a detailed description of how the loophole
is used, we refer the reader to Colon (2017); Mider et al. (2019); or Moussawi et al. (2021).
The ethical considerations of this loophole, as well as its implications and possible closure
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scenarios, have been thoroughly discussed in the academic literature, including by Hodaszy
(2016), Colon (2017), and Moussawi et al. (2021). While Hodaszy (2016) entertains various
closure scenarios, Colon (2017) argues that the tax loophole provides an unfair tax benefit
to ETFs and their investors, particularly, high-net-worth taxpayers. Moussawi et al. (2021)
thoroughly explore in an empirical analysis the implications and results from the tax
loophole. Specifically, they find that the loophole is causing an increase in capital flow
from active MFs to ETFs, and as ETF investors can defer the realization of their capital
gains to an optimal future date due to the tax loophole, ETFs are becoming a more popular
investment with high-net-worth investors.

The remainder of this paper is organized as follows. In Section 2, we form an ap-
proximation on the RDEU portfolio optimization problem under changes in the expected
asset returns. In Section 3, we estimate the benefits ETF investors receive due to the tax
loophole, analyze how an investor’s portfolio would change in the event the loophole is
closed, and discuss the sensitivities of this investment change with respect to the parameter
values. Finally, in Section 4, we provide our closing remarks. All proofs are relegated to
Appendix A.

2. Approximation Formula

We consider a financial market with T trading periods. There are n risky assets in
addition to a risk-free asset with interest rate r f . The returns of the risky assets in period
t are represented by a random vector Yt with n components. We assume that the return
vectors (Yt)t=1,...,T are independent for different periods, but they do not need to have
independent components. The expected return vector and covariance matrix of Yt are
denoted by µt and Σt, respectively, and we assume that Σt is invertible. We consider
deterministic strategies that are self-financing, where we denote by θt the strategy for
period t with each component θt,k representing the wealth invested in the kth risky asset
at the beginning of period t. We model an investor’s preferences by an exponential utility
function u(x) = − exp(−γx)/γ, which allows us to incorporate different levels γ of risk
aversion. We denote the investor’s wealth at the end of period t by Wt and the cumulative
distribution function (CDF) of WT by FWT .

Let us recall the classical expected utility maximization

max
θ

E[u(WT)], (1)

which consists of maximizing the expected utility of the terminal wealth WT over all trading
strategies θ. Theorem 1 in Chamberlain (1983) implies that if the returns (Yt)t=1,...,T are
elliptically distributed, (1) is equivalent to the mean-variance portfolio maximization

max
θ

(
E[WT ]−

γ

2
Var(WT)

)
. (2)

It is well known and straightforward to derive that its optimizer is given by

θ∗t =
1

γ(1 + r f )T−t Σ−1
t (µt − r f1), (3)

where 1 = (1, . . . , 1)> is a column vector of ones.
Rather than using classical utility maximization, we consider RDEU, which applies a

weighting function G to the CDF FWT of the terminal wealth. The weighting function G is a
continuous and increasing mapping of [0, 1] to [0, 1] that is inverse S-shaped, which allows
one to model the investor’s overweighting of unlikely extreme outcomes; see Figure 1 for
an example. This means that, instead of (2), we consider the portfolio optimization problem

max
θ

E[u(WT)Z(FWT (WT))],
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where Z denotes the derivative of G. The increased complexity of this portfolio optimiza-
tion, compared to classical expected utility maximization, does in general not allow for
an explicit solution. In light of this, we present two propositions that will enable us to
measure the effect of a shift in the risky assets’ expected return on the RDEU value and
optimal strategy.
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Figure 1. Example of a probability weighting function in the form of G(P) = exp(−(−β ln(P))α),
introduced by Prelec (1998), with parameters α = 0.6 and β = 0.8.

Proposition 1. Let θ be a strategy with associated terminal wealth WT and consider a shift of the
expected returns µt in period t to µ̃t = µt + κt for a vector κt. Then the log difference of the RDEU
is given by

ln
(E[u(W̃T)Z(FW̃T

(W̃T))]

E[u(WT)Z(FWT (WT))]

)
= −γ(1 + r f )

T−tθ>t κt,

where W̃T is the wealth under the shifted expected returns and with the same strategy θ.

While Proposition 1 demonstrates the impact of a shift in the expected returns on the
RDEU, the next result shows how the optimal strategy is affected.

Proposition 2. Assume that the wealth WT is approximately normally distributed and that the
weighting function G has an inflection point at approximately 1/2. Let θ∗ and θ̃∗ be the optimal
strategies of the original problem and the problem with shifted time-t expected returns µ̃t = µt + κt
for a vector κt. Then the change in the optimal strategy is approximately given by

θ̃∗t − θ∗t ≈
1− 2b

γ(1 + r f )T−t Σ−1
t κt, (4)

where b = Z′′(1/2)/
(
4πZ(1/2)

)
.

The assumption of the weighting function G having an inflection point at approxi-
mately 1/2 is natural, since G is inverse S-shaped and maps [0, 1] to [0, 1]; compare Figure 1.

The approximation (4) tells us how the optimal strategy changes when the expected
return vector changes. In the case where the investor’s probabilities are not distorted,
the function G is the identity function, its derivative Z is equal to 1, and Z′′ = 0 so that
b = 0 and (4) simplifies to 1

γ(1+r f )T−t Σ−1
t κt. This is the same as how the optimizer (3) in the

classical expected utility maximization is affected under changes of the expected returns.
The approximation (4) is more general in that it allows us to incorporate the investor’s
biases in their probabilities through the parameter b.

The approximation (4) is exact when the distribution of WT is normal and the weight-
ing function takes the form G(P) = Φ(αΦ−1(P)), where Φ is the CDF of the standard
normal distribution. With this choice of weighting function, the coefficient 1 − 2b be-
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comes α2. In this special case, the optimal strategy is similar to the example of Section 5
in Hu et al. (2021), who consider equilibrium strategies in a continuous-time model.

3. Quantitative Analysis
3.1. Estimated Change in ETF and MF Investment

To estimate the benefits that ETF investors receive from the tax loophole, we consider
two scenarios from the perspective of a withdrawing ETF investor, where the investor
has held their investment for T years. In the first scenario the loophole is freely used
by the ETF, and in the second scenario the loophole is closed. We assume that the ETF
has an annual return of µl when using the loophole and an annual return of µc when the
loophole is closed. The return µc is determined by applying a capital gains tax rate, denoted
by rt, to the ETF return excluding dividends. Setting the dividend rate to be d, we find
µc = (1− rt)(µl − d) + d. If rt < 0, then µc < µl and it is clear to see that there are benefits
received by taking advantage of the loophole, that in turn compound with an investor’s
holding period.

In the scenario where the ETF used the tax loophole and paid no capital gains tax, we
assume that the withdrawing investor must pay the tax rate of rt on their capital gains, as
this is the corresponding tax rate that would have been applied to the yearly capital gains
of the ETF to the investor.1 The annualized return for the withdrawing investor after capital
gains tax has been applied is given by ((1 + µl)

T − ((1 + µl − d)T − 1)rt)
1
T − 1. With an

analogous argument, we determine the annualized return after capital gains tax in the
scenario where the loophole has been closed as ((1 + µc)T − ((1 + µc − d)T − 1)rc)

1
T − 1,

where rc represents the tax rate on capital gains in addition to the yearly capital gains tax.
To determine the extent to which ETF investors benefit from the loophole, we compute
the difference between the two scenarios. We denote the annualized ETF return benefits
received from the tax loophole usage by τT , and we compute τT as

τT = ((1 + µl)
T − ((1 + µl − d)T − 1)rt)

1
T − ((1 + µc)

T − ((1 + µc − d)T − 1)rc)
1
T . (5)

Using (5), we construct the vector κt from Proposition 2, for all t, as κt = [−τT , 0]>. Here,
we have set component one of κt to represent the change in an ETF’s expected return and
component two of κt to represent an MF’s change in expected return. We retain this setting
for the remainder of this paper.

We define σ2
1 to be the variance of the ETF’s returns, σ2

2 the variance of the MF’s
returns, and ρ to be the correlation between the two funds’ returns. For simplicity, we
assume the variances and correlation to be constant across holding periods. Analyzing (4)
in this two dimensional case with change vector κt, we find the optimal weight change is
approximated by

θ̃∗t − θ∗t ≈
1− 2b

γ(1 + r f )T−t
1
|Σ|
[
− τTσ2

2 , τTρσ1σ2
]>, (6)

where |Σ| represents the determinant of the covariance matrix and is equal to (σ1σ2)
2 −

(ρσ1σ2)
2. We note that as the covariance matrix is positive semi-definite, we have |Σ| ≥ 0.

We analyze various sensitivities of (6) in Section 3.2.
Next we perform an analysis using reasonable realistic and estimated parameters.

For our choice of rt from (5), we note that in 2018, the investors in 400 U.S. equity ETFs
avoided paying tax on more than 211 billion USD in gains as a result of tax loophole, which
is approximately 23 billion USD in taxes (Mider et al. 2019). This equates to an approximate
tax rate of 10.9%, and we set rt = 0.109. For the dividend rate d, we set this equal to 2.5%,
the approximate average dividend yield of the S&P 500 over the past 40 years.2 We set the
risk-free interest rate equal to zero. We also assume, for simplification, that the investor has
paid all their capital gains taxes during the holding period of their investment, and as such
we set rc to zero.
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We conduct our analysis for multiple holding periods and for multiple expected ETF
returns. We assume each holding period is equivalent to one period in our model. We
choose holding periods between two and 15 years, and choose the expected ETF return µl
in the range from 6% to 12%. We assume that the MF and ETF are highly correlated, and
set their correlation coefficient ρ equal to 0.9. We set the ETF’s and MF’s return standard
deviation equal to 15% and 16.5%, respectively. Both the standard deviations and the
correlation were chosen in accordance to sample parameters for active and passive funds
determined by Polkovnichenko et al. (2019). For the risk aversion parameter, we choose
γ = 5, and we set the initial wealth equal to one. We use the Prelec weighting function of
the form G(P) = exp(−(−β ln(P))α), introduced by Prelec (1998). Polkovnichenko et al.
(2019) have shown that this weighting function can be used to accurately represent investor
portfolios containing active and passive funds. For the parameters of the weighting function,
we set α = 0.9 and β = 0.95, which are the approximate median values of distortion that
represent an accurate level of observed investor bias in the market (Polkovnichenko and
Zhao 2013).

As expected, we find from Table 1 that the optimal wealth allocated to the ETF
decreases as we decrease its tax efficiency by closing the loophole. Consequentially, more
capital is invested into the MF. This relation, however, is not one-to-one, and the remaining
capital from the ETF that does not flow into the MF is allocated to the risk-free asset. Table 1
highlights the strong effect of the holding period. As the holding period is increased, so
too is the impact of the tax loophole closure to a significant extent, as the benefits received
from the loophole are compounding. Additionally, for ETFs with a higher expected return,
closing the loophole has a significantly larger impact on the flow of investor capital from
ETFs to MFs. These results are consistent to those of Moussawi et al. (2021), as we also find a
non-trivial amount of capital will flow from ETFs to MFs in the event the loophole is closed.
This analysis demonstrates the influence that the ETF tax loophole currently has on investor
portfolios, and the importance that tax legislation as a whole has on asset allocation.

Table 1. Optimal investment change vector for a portfolio containing an ETF and MF as a function of
the investment horizon T and the expected ETF return µl .

T µl 6% 8% 10% 12%

2 years [−0.006, 0.005] [−0.010, 0.009] [−0.017, 0.014] [−0.024, 0.019]

3 years [−0.011, 0.009] [−0.020, 0.017] [−0.032, 0.026] [−0.049, 0.038]

4 years [−0.016, 0.013] [−0.030, 0.024] [−0.047, 0.038] [−0.067, 0.055]

5 years [−0.021, 0.017] [−0.039, 0.032] [−0.061, 0.050] [−0.086, 0.070]

10 years [−0.043, 0.035] [−0.078, 0.064] [−0.119, 0.098] [−0.166, 0.136]

15 years [−0.061, 0.050] [−0.109, 0.089] [−0.163, 0.134] [−0.223, 0.183]

From this application, we can extrapolate an additional result in regards to the pro-
posed tax plan of U.S. President Biden and its potential ramifications for ETFs and MFs.
The Biden administration considers raising the capital gains tax from 20% to 39.6% for
high-income-earning investors (Davison 2021). In the event the ETF tax loophole remains
open and this tax plan becomes legislation, the comparative advantage ETFs have over
MFs due to the tax loophole will increase. MF investors affected by the tax plan would
need to pay higher capital gains taxes in the relevant tax year while ETF investors could
defer them to a future, tax efficient date. This likely would result in further flows of capital
into ETFs from MFs and other funds.
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3.2. Sensitivities

To further validate our results, we investigate their robustness in a sensitivity analysis.
Using the same parameter values as in Section 3.1 to generate Table 1, with the exception of
fixing µl at 0.08, we now analyze how variations in parameter values impact the optimal
weight change described by (6). The results of the sensitivity analysis are similar for values
of µl other than 0.08. For the parameters α, β, ρ, σ1, σ2, d, and rt, we perturb the original
parameter by ±0.025 and re-compute the change in optimal weight for the ETF and MF.
For γ, we choose to use ±1. Altering a single parameter at a time, we display our results in
Figure 2.
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First, we analyze how changes in α and β, the weighting function parameters, impact
the change in optimal strategy. We see that changes in either of these parameters result in
relatively small changes in strategy, and reducing these parameters decreases the absolute
weight change. As both of these parameters increase to one, the probability distortion
reduces and we approach the optimal strategy in the classical expected utility maximization.
The risk aversion parameter γ, which appears only as a divisor in (6), simply scales the
optimal strategy change. Changes in ρ, the correlation between the ETF and MF returns,
result in a large change in optimal strategy, and these changes grow with the correlation
value. This is because the ρ-dependent terms in (6) can be written as

1
|Σ|
[
− τTσ2

2 , τTρσ1σ2
]>

=
1

1− ρ2

[
− τT

σ2
1

,
τTρ

σ1σ2

]>
, (7)

which shows that the dependence on ρ is proportional to 1
1−ρ2 for the ETF investment and

proportional to ρ

1−ρ2 for the MF investment. Analyzing changes in the ETF’s standard
deviation, we see that this creates an unequal change between the MF and ETF optimal
weights, as shown by the band widths in the figure, while a change in the MF standard
deviation only impacts the MF’s optimal weight. Both observations follow directly from (7).
Finally, we see that changes in the dividend rate and applied tax rate rt impact both funds’
weights symmetrically.

Overall, we see from this robustness investigation that changes in ρ and the ETF’s
standard deviation have the greatest impact on the results given the range of ±0.025, while
the least sensitive parameters given our interval are the weighting function parameters α
and β, as well as the MF’s standard deviation in the case of the ETF investment. The range
of the optimal strategy grows with the holding period for all parameters, which is to be
expected given the compounding nature of (6).

4. Conclusions

This paper adds to the increasing discussion regarding the ETF tax loophole, by
conducting a quantitative analysis of its impact on investor portfolios. As we are dealing
with active MFs and passive ETFs, we had to take into account the inherent investor bias
between these two types of funds and to do so, we used an RDEU model. Under exponential
utility preferences, we can exactly measure the log difference of the RDEU values given
an additive shift in the expected asset returns. We are further able to approximate how an
investor’s optimal portfolio would change given this additive shift.

By analyzing two scenarios of ETF investors, we can estimate the benefits that investors
receive due to the tax loophole, and how their portfolio would change in the event this
loophole is closed. The application of the approximation formula allows us to highlight
how this estimation depends on the investment horizon and the expected asset returns.
Confirming the results of Moussawi et al. (2021), we find a non-trivial amount of an
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investor’s capital would flow into MFs from ETFs if the loophole is closed. To validate the
robustness of our results, we performed sensitivity tests, which highlight the importance of
the ETF’s standard deviation and the correlation between the ETF and MF.

Several related areas could be explored in future research. As this paper is based on a
discrete-time financial market with T trading periods, a similar analysis in a continuous-
time model could be interesting. While continuous-time RDEU models are generally
time-inconsistent, Hu et al. (2021) are able to characterize RDEU in a continuous-time
setting. A further study could deal with how tax revenues will change over time if the tax
loophole is closed, since we observed that investors will adjust their strategies in such a
scenario. If the tax loophole is indeed closed, an empirical analysis could investigate the
flows between ETFs and MFs, comparing them with our results.
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Appendix A. Proofs

Proof of Proposition 1. We first note that W̃T = WT + (1 + r f )
T−tθ>t κt. Let FWT and FW̃T

be the CDFs of WT and W̃T , respectively. Then, we have the relation

FW̃T

(
W̃T
)
= P

(
W̃T ≤ x

)∣∣
x=W̃T

= P
(
WT + (1 + r f )

T−tθ>t κt ≤ x
)∣∣

x=WT+(1+r f )T−tθ>t κt

= P
(
WT ≤ x− (1 + r f )

T−tθ>t κt
)∣∣

x−(1+r f )T−tθ>t κt=WT

= P(WT ≤ y)|y=WT

= FWT (WT).

Thus, for any probability weighting function G with derivative Z, we obtain Z
(

FW̃T

(
W̃T
))

=

Z
(

FWT (WT)
)
. Because of the exponential utility function, we have the relation

u
(
W̃T
)
= u

(
WT + (1 + r f )

T−tθ>t κt
)
= e−γ(1+r f )

T−tθ>t κt u(WT)

so that
E
[
u
(
W̃T
)
Z
(

FW̃T

(
W̃T
))]

= e−γ(1+r f )
T−tθ>t κt E

[
u(WT)Z

(
FWT (WT)

)]
, (A1)

which concludes the proof by taking logarithms.
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To prove Proposition 2, we fist show the following lemma.

Lemma A1. Assume that the RDEU is of the form

E
[
u(WT)Z

(
FWT (WT)

)]
= c exp

(
1
2

T

∑
s=1

θ>s Asθs +
T

∑
s=1

θ>s vs

)
(A2)

for symmetric and positive definite matrices As and vectors vs. Let θ∗ and θ̃∗ be the optimal
strategies of the original problem and the problem with shifted time-t expected returns µ̃t = µt + κt
for a vector κt. Then the change in the optimal strategy is given by θ̃∗t − θ∗t = γ(1 + r f )

T−t A−1
t κt.

Proof of Lemma A1. Taking in (A2) the first-order conditions with respect to θt and using
that At is symmetric and positive definite, we find θ∗t = −A−1

t vt. Combining (A1) and (A2),
we obtain similarly that θ̃∗t = γ(1 + r f )

T−t A−1
t κt − A−1

t vt, hence we deduce θ̃∗t − θ∗t =

γ(1 + r f )
T−t A−1

t κt.

Proof of Proposition 2. Using that the wealth WT is approximately normally distributed,
we have the approximations FWT

(
E(WT)

)
≈ 1/2, F′WT

(
E(WT)

)
≈ 1/

√
2πVar(WT), and

F′′WT

(
E(WT)

)
≈ 0. We centre a second-order Taylor approximation on Z

(
FWT (WT)

)
about

E(WT). Using additionally that our weighting function G has an inflection point at approx-
imately 1/2, we form the approximation

Z
(

FWT (WT)
)

≈ Z
(

FWT (E(WT))
)
+ Z′

(
FWT (E(WT))

)
F′WT

(
E(WT)

)(
WT − E(WT)

)
+

Z′(FWT (E(WT)))F′′WT
(E(WT)) + Z′′(FWT (E(WT)))

(
F′WT

(E(WT))
)2

2
(
WT − E(WT)

)2

≈ Z(1/2) + Z′(1/2)F′WT
(E(WT))(WT − E(WT))

+
Z′(1/2)F′′WT

(E(WT)) + Z′′(1/2)
(

F′WT
(E(WT))

)2

2
(
WT − E(WT)

)2

≈ Z(1/2) +
Z′′(1/2)

4πVar(WT)

(
WT − E(WT)

)2

= Z(1/2)
(

1 +
Z′′(1/2)

Z(1/2) 4πVar(WT)

(
WT − E(WT)

)2
)

≈ Z(1/2) exp
(

Z′′(1/2)
Z(1/2) 4πVar(WT)

(
WT − E(WT)

)2
)

= a exp
(

b
(

WT − E(WT)√
Var(WT)

)2)
,

where we have set a = Z(1/2), and b = Z′′(1/2)/
(
4πZ(1/2)

)
. To be able to solve for the

optimal strategy using this approximation, we further assume b < 1/2. Using this Taylor
expansion, and assuming an approximately normal distribution on WT , we can write

E
[
u(WT)Z

(
FWT (WT)

)]
=
∫ ∞

−∞
u(w)Z

(
FWT (w)

)
F′WT

(w) dw

≈ −a
γ
√

2πVar(WT)

∫ ∞

−∞
exp

(
− γw + b

(
w− E(WT)√

Var(WT)

)2

− 1
2

(
w− E(WT)√

Var(WT)

)2)
dw

=
−a

γ
√

2πVar(WT)

∫ ∞

−∞
exp

(
− γw +

2b− 1
2

(
w− E(WT)√

Var(WT)

)2)
dw
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=
−a

γ
√

2π

∫ ∞

−∞
exp

(
− γ

(
E(WT) +

√
Var(WT)y

)
− 1− 2b

2
y2
)

dy

=
−a

γ
√

1− 2b
exp

(
γ2Var(WT)

2− 4b
− γE(WT)

)

=
−a e−γW0(1+r f )

T

γ
√

1− 2b
exp

(
γ2

2− 4b

T

∑
s=1

(1 + r f )
2T−2sθ>s Σsθs − γ

T

∑
s=1

(1 + r f )
T−sθ>s (µs − r f1)

)

=
−a e−γW0(1+r f )

T

γ
√

1− 2b
exp

(
1
2

T

∑
s=1

θ>s

(
γ2(1 + r f )

2T−2s

1− 2b
Σs

)
θs

−
T

∑
s=1

θ>s (1 + r f )
T−s(γµs − γr f1)

)
.

Therefore, the matrix At from Lemma A1 is approximately given by At ≈
γ2(1+r f )

2T−2t

1−2b Σt,
which is symmetric and positive definite since Σt is symmetric and positive semi-definite
as a covariance matrix, and it is positive definite because of the assumed invertibility. Thus,
we conclude (4) from Lemma A1.

Notes
1 This tax rate may be lower than rt, as the investor may decide to realize their gains in a year where they have low income. For

simplicity, we assume that it is equivalent.
2 Historical dividend yields are available at https://www.multpl.com (accessed on 28 April 2022).
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