
����������
�������

Citation: Chen, Wenting, and

Song-Ping Zhu. 2022. On the

Asymptotic Behavior of the Optimal

Exercise Price Near Expiry of an

American Put Option under

Stochastic Volatility. Journal of Risk

and Financial Management 15: 189.

https://doi.org/10.3390/

jrfm15050189

Academic Editor: Zbigniew

Palmowski

Received: 3 March 2022

Accepted: 13 April 2022

Published: 19 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Risk and Financial
Management

Article

On the Asymptotic Behavior of the Optimal Exercise Price Near
Expiry of an American Put Option under Stochastic Volatility
Wenting Chen 1 and Song-Ping Zhu 2,*

1 School of Business, Jiangnan University, Wuxi 214126, China; wtchen@jiangnan.edu.cn
2 School of Mathematics and Applied Statistics, University of Wollongong, Wollongong City 2500, Australia
* Correspondence: spz@uow.edu.au

Abstract: The behavior of the optimal exercise price of American puts near expiry has been well
studied under the Black–Scholes model as a result of a series of publications. However, the behavior
of the optimal exercise price under a stochastic volatility model, such as the Heston model, has not
been reported at all. Adopting the method of matched asymptotic expansions, this paper addresses
the asymptotic behavior of American put options on a dividend-paying underlying with stochastic
volatility near expiry. Through our analyses, we are able to show that the option price will be quite
different from that evaluated under the Black–Scholes model, while the leading-order term of the
optimal exercise price remains almost the same as the constant volatility case if the spot volatility is
given the same value as the constant volatility in the Black–Scholes model. Results from numerical
experiments also suggest that our analytical formulae derived from the asymptotic analysis are quite
reasonable approximations for options with remaining times to expiry in the order of days or weeks.

Keywords: singular perturbation; matched asymptotic expansions; American put options; optimal
exercise price; the Heston model

1. Introduction

It is well known now that the Black–Scholes model, which is a breakthrough in the
financial area, is inadequate to describe asset returns and behaviors of the option markets
(see Dragulescu and Yakovenko 2002). This is because the Black-Scholes model assumes
that the underlying asset satisfies the lognormal distribution, the right tail of which has
quite often displayed a mismatch with empirically observed data. One possible remedy
is to assume that the volatility of the asset price also follows a stochastic process (see
Ball and Roma 1994; Fouque et al. 2000; Heston 1993; Hull and White 1987), rather than
a constant, as assumed in the original Black–Scholes’ framework. In this paper, we use
the stochastic model introduced by Heston (1993) to price American options. In this
model, we assume that the variance (the square of the underlying price volatility) follows a
random process known in the financial literature as the Cox–Ingersoll–Ross (CIR) process
and in mathematical statistics as the Feller process (see Feller 1951; Fouque et al. 2000).
Empirical studies suggest that this non-negative and mean-reverting process is indeed more
consistent with the observations of real markets (see Bakshi et al. 1997; Pan 2002; Tompkins
2001). For example, Dragulescu and Yakovenko (2002) showed that the time-dependent
probability distribution of the changes of the stock index generated in the Heston model
agrees well with the Dow Jones index after a careful calibration process to determine the
appropriate parameters to be used in the model. Supported by much empirical evidence in
the literature already, the Heston model has recently received much research attention in
traditional finance, as well as quantitative finance, particularly in the latter (see Altmayer
and Neuenkirch 2016; Malham et al. 2021; Mickel and Neuenkirch 2021 and the references
therein). In this paper, we shall complement the existing literature with a study on the
asymptotic behavior of optimal exercise price near expiry of an American put option under
a typical stochastic volatility model.
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As is well known now, the main difficulty for pricing American options stems from
the inherent nonlinear nature of the option contract itself, i.e., the additional right written
in the contract for the holder to exercise the option at any time prior to the expiry date. In
the context of partial differential equation (PDE) approaches, this is reflected in the fact that
the corresponding PDE is associated with an unknown moving boundary, and the problem
thus becomes a moving boundary problem. As a result, no useful analytical methods
are hitherto available for pricing American options under the Heston model, and thus,
numerical methods are preferred by market practitioners. However, it is usually difficult
to retain accuracy in approximating the optimal exercise price by means of the numerical
methods, and the inaccuracy becomes more intolerable when the time is closer to expiry.
This is because within the short tenor, the velocity, with which the optimal exercise price
reaches its final value, is extremely fast and is thus difficult to approximate by numerical
methods. For example, when using the predictor–corrector finite difference scheme (see
Zhu and Chen 2011), a very fine discretization must be adopted near expiry, which is both
expensive and limited in accuracy. Therefore, it is quite reasonable to infer that, under the
Heston model, the optimal exercise price is also singular at expiry, which is true under
the Black–Scholes’ framework (see Evans et al. 2002). On the other hand, it is quite useful
to determine the asymptotic behavior of the optimal exercise price near expiry, since this
asymptotic solution can be used as a complement to the numerical approaches to calculate
the option values and the optimal exercise price for other larger times away from the expiry.

In the literature, some analyses of the asymptotic behavior of the optimal exercise price
near expiry have already been carried out. For instance, Barles et al. (1995) derived the first
term for the optimal exercise price of American puts on a non-dividend-paying underlying
by constructing a subsolution, as well as a supersolution. The examples in their paper
considered options with maturities less than one year, in which case, the inaccuracy of the
approximation was not significant. Chen and Chadam (2007) analyzed the same problem
as Barles et al. did and provided four approximations for the optimal exercise prices of
American puts with different maturities by the method of integral equations. Evans et al.
(2002) considered the asymptotic behavior of the optimal exercise price near expiry on
an asset with a constant dividend yield rate. The approximation was derived both with
the utilization of the method of integral equations and the method of matched asymptotic
expansions and was expected to be useful for time scales in the order of days and weeks
from expiry. Moreover, Chen and Zhu (2009) extended Evans et al.’s results to the local
volatility model, in which the volatility is assumed to be dependent on both time and the
underlying asset price. Yang (2019) considered the short-maturity asymptotic behavior of
the optimal exercise price of American lookback options under the random walks of the
order-two model. On the other hand, it is a non-trivial task to derive asymptotic behaviors
for multi-dimensional problems, and thus, this has received much research interest. For
example, Qin et al. (2019) derived the asymptotic behavior of the optimal exercise strategy
for a small number of executive stock options. It is also not easy, as will be shown in this
paper, to determine the asymptotic behavior of the optimal exercise price near expiry under
the Heston model, since in this case, the optimal exercise price depends, in addition to time,
on the dynamics of volatility as well. In other words, the introduction of a second stochastic
process has produced a number of new phenomena, which have in turn made the problem
much more complicated and totally different from the case with a single stochastic process
being used to describe the behavior of the underlying asset only while the volatility is
assumed to be a constant.

The aim of this paper is to present an explicit analytical approximation for the optimal
exercise price near expiry under the Heston model by means of the method of matched
asymptotic expansions. The approximation could help readers understand clearly the near-
expiry behavior of the optimal exercise price, which is indeed useful for both theoretical and
practical purposes. It turns out that, even with stochastic volatility taken into consideration,
the convergence rate for the calculation of the optimal exercise price is almost the same as
that for the constant volatility case.
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The paper is organized as follows. In Section 2, we introduce the PDE system that
the price of an American put option must satisfy under the Heston model. In Section 3,
we deduce the asymptotic behavior of the optimal exercise price near expiry by using
the singular perturbation method. In Section 4, we compare our approximation with the
numerical results calculated by the predictor–corrector finite difference method (see Zhu
and Chen 2011), to illustrate the reliability of our asymptotic solution. Concluding remarks
are given in Section 5.

2. American Puts under the Heston Model

In this section, the Heston model and the PDE system for American puts underneath
will be briefly reviewed. There are two main reasons why we choose the Heston model for
the current work. Firstly, various studies (see Bakshi et al. 1997; Pan 2002; Tompkins 2001)
suggest that the Heston model is consistent with the real market. Secondly, this model
is analytical achievable only for European options. In the case of American options, no
analytical solution for American options under the Heston model has been discovered yet.

The hypotheses used in the current paper are the same as those of the Heston model. In
the Heston model, the underlying St, as a function of time, is assumed to follow the stochas-
tic differential equation (SDE) of a geometric Brownian motion (GBM) in the Itô form:

dSt = µStdt +
√

vtStdW1
t , (1)

where µ is the drift rate, W1
t is a standard Brownian motion, and

√
vt is the standard

deviation of the stock returns
dSt

St
. Furthermore, the variance vt (the square of the volatility)

is assumed to be governed by the following mean-reverting SDE:

dvt = κ(η − vt)dt + σ
√

vtdW2
t . (2)

Here, η is the long-term mean of vt, κ is the rate of relaxation to this mean, and σ is the
volatility of volatility. W2

t is also a standard Brownian motion, and it is related to W1
t with a

correlation factor ρ ∈ [−1, 1]. (2) known in the financial literature as the CIR process and in
mathematical statistics as the Feller process (see Feller 1951; Fouque et al. 2000).

Let PA(S, v, t) denote the value of an American put option, with S being the price of
the underlying asset, v being the variance, and t being the time. Then, under the proposed
processes (1)–(2), it is shown that the valuation of an American put option can be formulated
as a free boundary problem (see Zhu 2006), in which the boundary location itself is part of
the solution of the problem. Specifically, PA satisfies

1
2

vS2 ∂2PA
∂S2 + ρσvS

∂2PA
∂S∂v

+
1
2

σ2v
∂2PA
∂v2 + (r− D)S

∂PA
∂S

+κ(η − v)
∂PA
∂v
− rPA +

∂PA
∂t

= 0,

PA(S, v, TE) = max(K− S, 0),

lim
S→∞

PA(S, v, t) = 0,

PA(S f (v, t), v, t) = K− S f (v, t),

∂PA
∂S

(
S f (v, t), v, t

)
= −1,

lim
v→0

PA(S, v, t) = max(K− S, 0),

lim
v→∞

PA(S, v, t) = K.

(3)

This PDE system is defined on S ∈ [S f (v, t),+∞], v ∈ [0,+∞] and t ∈ [0, TE]. We
remark that in the above PDE system, K is the strike price, D is the dividend yield, TE is the
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expiry date, and r is the risk-free interest rate. Unlike the Black–Scholes’ case, the unknown
optimal exercise price S f now depends on both the time and the volatility.

For simplicity, in our work, we assume that r is greater than D. A similar analysis can
also be carried out for the case of r < D, and is thus not included in the current paper. It
should be remarked that, when r > D, the riskless growing argument proposed in Zhu and
Chen (2011) also holds, and thus, the boundary conditions established therein can still be
used here. Moreover, it is also straightforward to show that (see Zhu and Chen 2011):

S f (v, TE) = K, S f (0, t) = K,

which financially simply states that at the expiration date or when the spot volatility is
zero, the optimal exercise price is equal to the strike price. However, just as a similar case
of the Stephan problem (see Zhu 2006), the “velocity”, with which the optimal exercise
price reaches its final value, is extremely fast and is difficult to approximate by numerical
approaches. Therefore, in the next section, we shall construct the asymptotic behavior of the
optimal exercise price near expiry by using the method of matched asymptotic expansions.

3. Matched Asymptotic Expansions for the Optimal Exercise Price near Expiry

To make the analysis convenient, we shall first non-dimensionalize all variables by
using the new variables

S = Kex, P =
PAeqτ

K
+ eqτ(ex − 1), S f = Kex f , τ =

σ2

2
(TE − t),

where the parameters q and d are defined as

q =
2r
σ2 , d =

2D
σ2 ,

respectively. Then, (3) can be written in the dimensionless form:

∂P
∂τ

=
v
σ2

∂2P
∂x2 + (q− v− v

σ2 )
∂P
∂x

+ v
∂2P
∂v2 +

2κ

σ2 (η − v)
∂P
∂v

+
2ρv
σ

∂2P
∂x∂v

+ eqτ(dex − q),

P(x, v, 0) = max(ex − 1, 0),

P(x f , v, τ) = 0,

∂P
∂x

(x f , v, τ) = 0,

lim
x→∞

P(x, v, τ) = eqτ(ex − 1),

lim
v→0

P(x, v, τ) = eqτ max(1− ex, 0) + eqτ(ex − 1),

lim
v→∞

P(x, v, τ) = eqτ+x,

(4)

together with two more conditions for the optimal exercise price:

x f (v, 0) = x f (0, τ) = 0. (5)

One should notice that, although the governing differential equation itself in (4) is
linear in terms of the unknown function P, it is the unknown boundary that has made this
PDE system highly nonlinear. The nonlinearity of the problem will be clearly manifested
once a Landau transform is used to convert the moving boundary problem into a fixed
boundary problem, as demonstrated by Zhu and Chen (2011). On the other hand, the
high nonlinearity, as well as the introduction of another new variable v has resulted in
the analytical methods being less achievable than the Black–Scholes’ case (see Evans et al.
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2002). Consequently, we shall use the method of matched asymptotic expansions, which is
an ideal tool to deal with the nonlinear problems, to construct an approximation of x f (v, τ)
for the PDE System (4). Hereafter, we only consider the options with a short tenor, i.e.,

τ = εT, (6)

where T = O(1) and ε is a small positive parameter. By substituting (6) into (4), we obtain
the PDE system for P(x, v, T):

∂P
∂T

= ε[
v
σ2

∂2P
∂x2 + (q− d− v

σ2 )
∂P
∂x

+ v
∂2P
∂v2

+
2κ

σ2 (η − v)
∂P
∂v

+
2ρv
σ

∂2P
∂x∂v

] + εeεqT(dex − q),

P(x, v, 0) = max(ex − 1, 0),

P(x f , v, T) = 0,

∂P
∂x

(x f , v, T) = 0,

lim
x→∞

P(x, v, T) = eεqT(ex − 1),

lim
v→0

P(x, v, T) = eqεT max(1− ex, 0) + eqεT(ex − 1),

lim
v→∞

P(x, v, T) = eqεT+x.

(7)

Unlike the constant volatility case discussed in Evans et al. (2002), the PDE System
(7) needs to be dealt with with care; there are several different regions, or the so-called
“boundary layers”, in which either the unknown function P or its partial derivatives change
rapidly. The increased complexity, as will be shown later, is a result of the introduction of
stochastic volatility and, consequently, a new dimension of the PDE system. The “boundary
layer” is a phrase commonly used in physics and fluid mechanics to describe the layer of
fluid in the immediate vicinity of a boundary surface (see Friedman 2008), and it has been
adopted in most of singular perturbation analyses as well. Therefore, we shall also use it in
this paper to derive the specific boundary layer structure for the PDE System (7).

The procedure usually begins with the assumption that the solution can be expanded
in powers of ε, i.e.,

Pouter = P0 + εP1 +O(ε2), (8)

in which the subscript stands for the outer solution in the region outside of boundary layer
where a singular expansion is required to deal with rapid changes of the value of P or its
derivatives. According to the fundamental theory of the method of matched asymptotic
expansions Smith (2009), only a regular expansion in the form of (8) is needed for the “outer
region”; the correct order for the entire problem will be automatically determined once the
“inner solution” and “outer solution” are forced to match. After some simple calculations,
we obtain the solution as

Pouter(x, T) = ex − 1 + qTε(ex − 1) +O(ε2). (9)

It should be noted that the above solution is valid for the domain x > 0, 0 ≤ v < ∞,
and fails to satisfy the boundary condition at v = ∞. Therefore, there is a boundary layer
near v = ∞, with the layer thickness in the order of ε. It can be inferred that, in order to
satisfy the boundary condition at v = ∞, the exact solution of (7), compared with Pouter,
changes rapidly only within the O(ε) neighborhood of v = ∞. On the other hand, in
the traded market, the volatility value is usually very small, and the highest value of the
volatility that has ever been recorded on the Chicago Board Options Exchange (CBOE)
is only 0.85 (see CBOE 2022). Therefore, with these two points in mind, it is perfectly
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justifiable to not analyze this boundary layer at all; our solution will be a reasonably good
approximation for any large enough, but finite v values.

On the other hand, it is clear that as x → 0+, too many terms on the right-hand side of
the governing equation contained in (7) have been dropped, and thus, we need to perform
an asymptotic analysis in the vicinity of x = 0. By using the stretched variable:

X =
x
εα

, (10)

and substituting (10) into (7), we obtain

∂P
∂T

= ε1−2α v
σ2

∂2P
∂X2 + ε1−α(ρ− v− v

σ2 )
∂P
∂X

+ εv
∂2P
∂v2 + ε

2κ

σ2 (η − v)
∂P
∂v

+ ε1−α 2ρv
σ

∂2P
∂X∂v

+ εeεqT(deεαX − q).

The significant degeneration of the above operator arises if α = 1
2 , and thus, the

boundary layer near x = 0 is with the thickness of O(
√

ε). Assuming that P(X, v, T) has a
regular expansion in this region, we write

P =
√

εP0 + εP1 + ε
3
2 P2 +O(ε2), (11)

where the explicit analytical expressions of P0, P1, and P2 are derived in Appendix A. The
solution derived in this boundary layer can be referred as the inner solution with respect to
(with respect to hereafter) Pouter.

It can be easily shown that the first-order derivative of P0 with respect to v becomes
unbounded at the corner (X, v) = (0, 0). Consequently, the derivatives of P0 with respect to
v cannot be ignored when deriving the PDE system for P0 around that corner. Another local

analysis is again needed. By setting V =
v
εβ

and investigating the significant degeneration

of the corresponding operator, it is obvious that β = 1 is a well-balanced choice. Assuming
that Z1(X, V, T) (the solution at the corner) can be expanded in powers of ε, we obtain

Z1 =
√

εZ11 + εZ12 + ε
3
2 Z13 +O(ε2),

where the explicit analytical expressions of Z11, Z12, and Z13 are derived in Appendix B. Fur-
thermore, it can be easily shown that Z11 is continuous, but not differentiable with respect
to X at the corner (X, v) = (0, 0). Thus, the following stretched variables are needed:

X1 =
x
εµ , V1 =

v
εν

,

where µ = ν = 1 are determined by investigating the significant degeneration of the
corresponding operator again.

The above analysis has clearly demonstrated the boundary layer structure of our
problem, as shown in Figure 1, where the Roman numbers I, I I, I I I, and IV stand for four
different regions in which local analysis needs to be carried out consecutively. In particular,
Region I represents the valid domain of Pouter, while Region I I shows theO(

√
ε) boundary

layer near x = 0. Regions I I I and IV denote the corner boundary layers, and they are
defined as

(x, v) ∈ [−
√

ε,
√

ε]× [0, ε],

(x, v) ∈ [−ε, ε]× [0, ε],

respectively. Moreover, near x f , there might be another boundary layer, which will be
discussed later. Note again that the O(ε) boundary layer near v = ∞ has been ignored.
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−3 −2 −1 0 1 2
−2

0

2

4

6

8

10

v

x

ε

III

III

IV

O(ε
1/2

)

Figure 1. Boundary layer structure.

It should be remarked here that the introduction of a second stochastic process for v
has indeed made the analysis much more complicated and totally different from that of
the Black–Scholes’ case, as shown in Evans et al. (2002). The complexity, as well as the
difference has been clearly manifested when analyzing the solution within the domain
x ∈ U(0,

√
ε), 0 ≤ v < ∞. Here, the notation U(a, δ) denotes the neighborhood of a point a

with radius δ > 0, i.e.,
U(a, δ) = {x | 0 ≤| x− a |< δ}.

In the classical Black–Scholes’ case, the analysis usually stops once the inner solution
within the O(

√
ε) boundary layer near x = 0 has been found. Under the Heston model,

however, the “inner” region x ∈ U(0,
√

ε) (relative to the “outer” Region I) needs to be
further divided into another set of “inner” and “outer” regions because there exists another
boundary layer in the v direction as a result of Region I I still containing the singular point
at the origin. This new inner region is denoted as Region I I I. Similarly, the same process
needs to be repeated, which yields Region IV (the dashed area of Figure 1) as a boundary
layer in x again. It is envisaged that this “cascade” phenomenon of sub-dividing regions is
a particular feature associated with the Heston model when it is used to price American
options. However, since we are only interested in an approximate solution, based on the
method of matched asymptotic expansions, of O(ε), it suffices to stop the sub-division at
Region IV, as shall be discussed later.

With the division of the original solution domain into the above four regions, we
can now prove the following lemma for the asymptotic behavior x f (v, τ) when v /∈
U(0, ε). Note that hereafter, we shall use a new definition Os(·), i.e., f (ε) = Os(g(ε)), if
f (ε) = O(g(ε)), and f (ε) 6= o(g(ε)) for ε → 0. As shall be demonstrated, this new
definition enables us to give a sharp estimate of the target functions.
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Lemma 1. (i) For v = Os(1), we have x f (v, τ) /∈ U(0,
√

ε). (ii) For v = Os(εβ), where
0 < β < 1, we have x f (v, τ) ∈ U(0,

√
ε), and the leading-order term of x f , say x0, should be

bounded as v→ 0 and satisfy lim
v→0

x0(v, τ)

2
√

aτ
= −∞, where a =

v
σ2 .

Proof. (i) The first part of the lemma is proven by means of the method of proof by

contradiction. Assuming that x f (v, τ) ∈ U(0,
√

ε), we have lim
ε→0

x f (v, τ)
√

ε
= X0, where X0

should have finite values for any v = Os(1) and T = O(1). Therefore, we can rescale
x f (v, τ) and expand it in terms of

√
ε, i.e.,

X f =
x f√

ε
= X0 +

√
εX1 +O(ε).

In order to satisfy the moving boundary conditions, the leading-order term should at
least satisfy

P0(X0, v, T) =
∂P0

∂X
(X0, v, T) = 0,

which yields

vT
σ
√

π
e−

σX2
0

4vT +
X0

2
er f c

(
− σX0

2
√

vT

)
= 0, (12)

er f c
(
−σX0

2
√

vT

)
= 0. (13)

However, when v = Os(1), the only solution of (12) and (13) is X0 = −∞, and this is in
contrast with our assumption that x f (v, τ) ∈ U(0,

√
ε). Therefore, when v = Os(1), the

location of the free boundary should be outside the O(
√

ε) layer near x = 0, and thus,

lim
ε→0

x f (v, τ)
√

ε
= −∞. This completes the proof.

(ii) It is straightforward to show that if lim
v→0

x0(v, τ)

2
√

aτ
= −∞, (12) and (13) are always

satisfied. On the other hand, when v = Os(εβ), the leading-order term of x f (v, τ), i.e.,

x0, can be bounded and satisfy lim
v→0

x0(v, τ)

2
√

aτ
= −∞ at the same time. Therefore, when

v = Os(εβ), where 0 < β < 1, x f should be located inside U(0,
√

ε). This completes
the proof.

Since the location of the free boundary x f (v, τ) differs with respect to v, it is much more
convenient to discuss the asymptotic behavior of x f (v, τ) in different ranges of v separately.

Case I. v = Os(1)
In this case, x f (v, τ) is located outside U(0,

√
ε), which indicates that there is another

boundary layer near x f (v, τ). Now, we perform the local analysis in the vicinity of x f by
using the stretched variable:

Z =
x− x f (v, τ)

ε
, (14)

where Z = O(1). Substituting (14) into the governing equation contained in (7), we obtain
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

ε
∂P
∂T
−

x f

∂T
∂P
∂Z

=
v
σ2

∂2P
∂Z2 + ε

(
q− d− v

σ2

) ∂P
∂Z

+ v[ε2 ∂2P
∂v2 − 2ε

∂2P
∂v∂Z

∂x f

∂v

+
∂2P
∂Z2 (

∂x f

∂v
)2 − ε

∂P
∂Z

∂2x f

∂v2 ] +
2κ

σ2 (η − v)
(

ε2 ∂P
∂v
− ε

∂P
∂Z

∂x f

∂v

)
+ 2

ρv
σ

(
ε

∂2P
∂v∂Z

− ∂2P
∂Z2

∂x f

∂v

)
+ ε2eεqT(deεz+x f − q),

P(0, v, T) = 0,

∂P
∂Z

(0, v, T) = 0.

(15)

Again, an expansion in regular powers of ε gives the solution of (15) as

P = O(ε2). (16)

In order to match the solution in Region I I with the solution near x f , we found the
asymptotic behaviors of h0, h1, and h2 as ξ→−∞:

h0(ξ) =

√
a

2
√

π

e−ξ2
1

ξ2
1

+O
(

e−ξ2
1

ξ4
1

)
,

h1(ξ) = d− q +O(ξ1e−ξ2
1 ),

h2(ξ) = 2d
√

aξ1 +O(ξ4
1e−ξ2

1 ),

where ξ1 =
ξ√
a

.

Now, if we follow Evans et al. (2002) and match the Pτ values of (11) and (16) by taking
the limit x→x f , we obtain the following transcendental equations:

√
a

2
√

πτ
e−

x2
f

4aτ + d− q = 0, for d < q, (17)

√
a

2
√

πτ
e−

x2
f

4aτ + d
√

ax f = 0, for d = q, (18)

which lead to the solutions of the form

x f (v, τ) = −2
√

aτ

√
| ln

(q− d)2
√

πτ√
a

| for d < q, (19)

x f (v, τ) = −2
√

aτ

√
| ln

1
4
√

πdτ
|, for d = q, (20)

respectively, after higher-order terms are ignored.
It should be remarked that matching Pτ values is not the unique choice. Evans et al.

(2002) did it in this way without any detailed explanation. In fact, this approach may be at
odds with the conventional method of matched asymptotic expansions in which P, instead
of Pτ , values should be matched in the “inner” and “outer” regions. Clearly, if a solution
is obtained with P values being matched, so should the Pτ values, provided that the P
function is of sufficient smoothness. However, the converse is not true. One naturally
wonders whether or not the two different approaches would lead to the same conclusion,
once all the higher-order terms are ignored. Without a great deal of additional effort, it can
be shown that matching the P values of (11) and (16) by taking the limit x→x f leads to

2a
3
2 τ

3
2 e−

x∗2f
4aτ

√
πx∗2f

+ (d− q)τ + dτx∗f = 0. (21)
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In comparison with (17) and (18), it is much more difficult to go through some additional
order analysis to simplify (21), in order to analytically obtain the asymptotic behavior of x∗f
like those presented in (19) and (20). However, it can still be shown that x∗f lies between x f

and −2
√

aτ (see Lemma 2 below), where x f is solved from matching with Pτ . Hence, as τ
approaches zero, the difference between x f and x∗f will become smaller. It should be noted
that we only need to consider the negative root of (21) because of the physical restriction
that x f ≤ 0.

Lemma 2. For small τ, (21) has only one negative solution x∗f , and moreover, it satisfies

x f < x∗f < −2
√

aτ,

where

x f = −2
√

aτ

√
| ln

(q− d)2
√

πτ√
a

|, for d < q (22)

x f = −2
√

aτ

√
| ln

1
4
√

πdτ
|, for d = q. (23)

Proof. Denote

f (x) =
√

aτe−x2

2
√

πx2 + (d− q)τ + 2d
√

aτ
3
2 x. (24)

Comparing (24) with (21), it is obvious that x =
x∗f

2
√

aτ
. Then, taking the first-order

derivative of f (x) with respect to x, we obtain:

f ′(x) = −e−x2
√

aτ√
π

(
1
x
+

1
x3

)
+ 2d
√

aτ
3
2 . (25)

Since the parameters a, τ, and d are all greater than zero, we have f ′(x) > 0 for any
x < 0. Therefore, f (x) is monotonically increasing for negative x values.

On the other hand, it is straightforward to show that when d < q,

f (−1) =
√

aτe−1

2
√

π
+ (d− q)τ − 2d

√
aτ

3
2 ,

f

(
−

√
| ln

(q− d)2
√

πτ√
a

|
)

= τ(q− d)

 1

| ln (q−d)2
√

πτ√
a |

− 1

− 2d
√

aτ
3
2

√
| ln

(q− d)2
√

πτ√
a

|.

Furthermore, for reasonably small τ, we have

√
ae−1

2
√

π
> (q− d)

√
τ + 2d

√
aτ,

| ln
(q− d)2

√
πτ√

a
|> 1.

Therefore, f (−1) > 0 and f
(
−
√
| ln (q−d)2

√
πτ√

a |
)

< 0. Based on the monotonicity

of f (x), the only negative root of f should lie between −

√
| ln

(q− d)2
√

πτ√
a

| and −1.
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Similarly, we can show that when q = d, it lies between−
√
| ln

1
4
√

πdτ
| and−1. Therefore,

for small τ, (21) has only one negative solution x∗f , and moreover, it satisfies

x f < x∗f < −2
√

aτ. (26)

This completes the proof.

On the other hand, Equation (21) can also be numerically solved, and numerical
evidence indeed suggests that the difference between x∗f and x f is negligible. This probably
explains why Evans et al. (2002) chose to match the Pτ values in their analysis.

By substituting (19)–(20) into (11), we find that the free boundary conditions can be
satisfied in the following asymptotic sense, i.e.,

P(x f , v, τ)− Pexact(x̃ f , v, τ) = O(τ) for d < q, (27)

P(x f , v, τ)− Pexact(x̃ f , v, τ) = O
(

τ
3
2

√
ln

1
τ

)
for d = q,

∂P
∂x

(x f , v, τ)− ∂Pexact

∂x
(x̃ f , v, τ) = O(τ

3
2 ) for d ≤ q, (28)

where x̃ f stands for the exact free boundary.
Case II. v = O(εβ), 0 < β < 1
According to the second part of Lemma 1, x f (v, τ) should be located inside U(0,

√
ε).

Now, we assume that (11) can satisfy the conditions across the free boundary. By taking the
limit ε→ 0, we deduce the asymptotic behavior of h0, h1 and h2, respectively, as:

h0(ξ) =

√
a

2
√

π

e−ξ2
1

ξ2
1

+O
(
√

a
e−ξ2

1

ξ4
1

)
, (29)

h1(ξ) = d− q +O(ξ1e−ξ2
1 ), (30)

h2(ξ) = 2d
√

aξ1 +O
(

ξ4
1e−ξ2

1 )√
a

)
,

where ξ1 =
ξ√
a

. It is not strange that the asymptotic behaviors of h0, h1, and h2 as ε→ 0 are

quite similar to those derived in Case I, since when taking the limit ε→ 0, it is equivalent
to v→ 0, which is also equal to ξ1 → −∞ and a→ 0.

On the other hand, upon applying the free boundary conditions on (11), the leading-
order term of x f should at least satisfy

Pτ(x f , v, τ) = O(τ),

which is the same as what we have obtained in Case I. It is now quite trivial to show that
the leading-order term of x f is the same as the one derived in Case I, and the expansion
satisfies the free boundary conditions in almost the same asymptotic sense, i.e.,

P(x f , v, τ)− Pexact(x̃ f , v, τ) = O(τ) for d < q, (31)

P(x f , v, τ)− Pexact(x̃ f , v, τ) = O(τ
3
2+

β
2

√
ln

1
τ
) for d = q.

∂P
∂x

(x f , v, τ)− ∂Pexact

∂x
(x̃ f , v, τ) = O

(
τ

3
2

)
for d ≤ q. (32)

Case III. v = O(ε)
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In this case, if we follow the procedure described previously, we should first determine
whether x f (v, τ) ∈ U(0, ε) or not, which is equivalent to analyzing whether the solution in
Region IV can satisfy the free boundary conditions or not. It is straightforward to show
that the governing equation for the solution in Region IV is

∂Z2

∂T
=

V
σ2

∂2Z2

∂X2
1
+ (q− v)

∂Z2

∂X1
+

2ρV
σ

∂2Z2

∂X1∂V
+ V

∂2Z2

∂V2 +
2κη

σ2
∂Z2

∂V
+ d− q, (33)

which contains all the derivatives the original equation has. Now, we are in an unfortunate
situation of having to solve almost the full problem to be able to determine what is going
on in Region IV. If we could solve this problem, one might wonder why it was necessary
to bother with an approximation in the first place. There is no need to argue with this
sentiment, and this is indeed one of the situations where the perturbation methods show
some of their limitations. However, there are several remarks that should be made. Firstly,
though this layer problem cannot be solved in a closed form, we may still be able to extract
some useful information about the solution. Secondly, this problem can be further dealt
with if we again apply the method of matched asymptotic expansions to this corner, i.e., by

rescaling T1 =
T
ε

, and following almost the same procedure as demonstrated previously.
Fortunately, there is no need to go through such a cumbersome analysis again. In order to
demonstrate the reasons in a clear way, we adopt a new notation x̄ f for the actual optimal
exercise boundary in this case.

As it turns out, when v = O(ε), the location of the optimal exercise boundary should
be located either inside U(0, ε) or outside. However, it is claimed that no matter what is
the truth, the approximation of x f derived before for d < q can still be used here. Firstly, if
x̄ f is located outside U(0, ε), then (33) is defined on

Ω = {−∞ < X1 < +∞, 0 < V < +∞, 0 < T < +∞}.

Taking the corresponding boundary conditions into consideration, it can be identified
that Z2 = εZ21 +O(ε2), with Z21 twice continuously differentiable with respect to X1 or V
on Ω. The stretched x f , which is derived in the previous two cases, reads

X f (V, T) =
x f

ε
= O(1),

which means that X f is finite for any 0 < V < +∞ and 0 < T < +∞. Based on the
continuous property of both Z21 and its first-order derivative with respect to X1, it is clear
that if we adopt the approximation of x f derived previously as the free boundary here,
then the option price Z2 satisfies the free boundary conditions in the O(τ) sense, which is
almost the same as the previous two cases; see (27) and (28) and (31) and (32).

Secondly, if x̄ f is located inside U(0, ε), it is meaningless to derive its actual form,
since x f = O(ε) is already a good approximation for x̄ f .

Based on Case I to Case III, it can be concluded that when D < r, (19) can be used as
an approximation for small τ and 0 ≤ v < ∞. Written in original variables, we obtain the
leading-order term of the optimal exercise price as:

S f (v, t) = K− K
√

v(TE − t)
√

ln
v

8π(TE − t)(r− D)2 , for D < r. (34)

For D = r, (20) is valid for small τ and ε ≤ v < ∞. Therefore,

S f (v, t) = K− K
√

2v(TE − t)

√
ln

1
4
√

π(TE − t)D
, for D = r. (35)

It is quite interesting to note that the leading-order terms of the optimal exercise
price are similar to the ones with constant volatility (see Evans et al. 2002), with σ2 being
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substituted by v. One possible reason is that the moving boundary only occurs along the
S direction, and no critical points appear along the v direction. Furthermore, in Case I
and Case II, the impact of v is less significant, so that v becomes a parameter rather than
a variable; (see (A1)–(A3)). However, the option prices are much more complicated and
totally different than those with constant volatility; (see (A5), (A11), and (A15)).

4. Numerical Results

In this section, we compare the estimated optimal exercise prices with those obtained
from numerical simulations based on a predictor–corrector finite difference scheme (see
Zhu and Chen 2011). We expect our approximation to be useful for options with tenor in
the order of days and weeks.

Depicted in Figure 2 are the optimal exercise prices as a function of the time to expiry
T − t with different fixed values of v. Here, the reference results refer to those obtained by
using the predictor–corrector scheme on extremely fine grids, while the estimated values
are calculated directly from (34). We point out that it is reasonable to use the numerical
results produced by the predictor-correct scheme on extremely fine grids as benchmark
solutions, because the convergence of this method was already tested by Zhu and Chen
(2011). From Figure 2, it is clear that, for reasonably short maturities, our approximation
agrees well with those numerical results, as one would have expected. To show this in a
more quantitative base, we further calculate the accuracy of our approximation, which is
shown in Table 1. Note that model parameters for both Figure 2 and Table 1. are r = 0.1,
σ = 0.2, ρ = 0.1, η = 0.16, and κ = 1.5 and the strike price K = $10.0. There is no
preference in choosing the parameters, and they are all picked randomly. Furthermore,
since the optimal exercise price does not depend on the spot price, it is unnecessary to
provide the value of S. In Table 1, the “rel-err” refers to the relative error for fixed values of
v, which is defined as

rel − err =
| S f (v, τ)− S̃ f (v, τ) |

| S f (v, τ) | ,

and the “overall-err” refers to the overall error across the whole computational domain,
defined as

overall − err =
‖ S f (:, τ)− S̃ f (:, τ) ‖2

‖ S f (:, τ) ‖2
,

and for all v. Here, ‖ · ‖2 denotes the L2-norm for vectors, and S f and S̃ f stand for the
numerical solutions and the estimated values, respectively. From Table 1, it can be seen
that for the maturities in the order of days and weeks, the overall errors are all very small,
which demonstrates that our estimation is quite reasonable.

Table 1. Report on the relative error and the overall error.

Time to Expiry (Year) Rel-Err at v = 0.05 Rel-Err at v = 0.1 Rel-Err at v = 0.2 Rel-Err at v = 0.25

0.002 3.445× 10−2% 2.2791× 10−2% 4.1927× 10−2% 6.1511× 10−2%
0.005 0.16% 0.11% 1.727× 10−2% 9.3112× 10−2%
0.01 0.36% 0.26% 1.0267× 10−2% 0.16%

Time to Expiry (Year) Rel-Err at v = 0.5 Rel-Err at v = 0.6 Rel-Err at v = 0.7 Overall-Err

0.002 0.18% 0.26% 0.47% 0.45%
0.005 0.54% 0.73% 0.94% 0.77%
0.01 1.05% 1.43% 1.84% 1.49%
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Figure 2. Comparison of the numerical results and the estimated values.

5. Conclusions

In this paper, we considered the near-expiry behavior of the optimal exercise price for
American put options on a dividend-paying underlying with stochastic volatility. Based on
the method of matched asymptotic expansions, explicit analytical expressions of the optimal
exercise price and the values of American puts were derived. It turns out that the option
prices are quite different from the corresponding Black–Scholes’ case, while the leading-
order term of the optimal exercise price remains almost the same as the constant volatility
case if the spot volatility given the same value as the constant volatility appearing in the
Black–Scholes model. Numerical experiments suggest that the current approximation
is reasonably accurate, and thus very useful to price American options close to expiry,
say for example, with tenor in the order of days and weeks. Therefore, our asymptotic
analysis complements purely numerical analyses, for which dealing with the singularity
of the optimal exercise price of American puts near expiry always poses a conflict of
balance between numerical accuracy and efficiency. It has of course also enhanced our
understanding of the asymptotic behavior of the optimal exercise price of American puts
near expiry, which is an important aspect of this very fundamental problem in modern
quantitative finance.
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Appendix A

The PDE systems for P0, P1, and P2 are:

∂P0

∂T
=

v
σ2

∂2P0

∂X2 ,

P0(X, v, 0) = max(X, 0),

lim
X→∞

P0(X, v, T) = X,

lim
X→−∞

P0(X, v, T) = 0,

(A1)



∂P1

∂T
=

v
σ2

∂2P1

∂X2 + (q− d− v
σ2 )

∂P0

∂X
+

2ρv
σ

∂2P0

∂X∂v
+ d− q,

P1(X, v, 0) = max(
1
2

X2, 0),

lim
X→∞

P1(X, v, T) =
1
2

X2,

lim
X→−∞

∂P1

∂X
(X, v, T) = 0,

(A2)



∂P2

∂T
=

v
σ2

∂2P2

∂X2 + (q− d− v
σ2 )

∂P1

∂X
+

2ρv
σ

∂2P1

∂X∂v

+ v
∂2P0

∂v2 +
2κ

σ2 (η − v)
∂P0

∂v
+ dX,

P2(X, v, 0) = max(
1
6

X3, 0),

lim
X→∞

P2(X, v, T) =
1
6

X3 + qXT,

lim
X→−∞

∂2P2

∂X2 (X, v, T) = 0.

(A3)

To find the solution of the PDE System (A1), we assume it can be written as

P0(X, v, T) =
√

Th0(ξ; a), (A4)

where ξ =
X

2
√

T
and a =

v
σ2 . By substituting (A4) into (A1), we obtain the ODE system for

h0(ξ; a) as 
ah
′′
0(ξ; a) + 2ξh

′
0(ξ; a)− 2h0(ξ; a) = 0,

lim
ξ→∞

h0(ξ; a) = 2ξ,

lim
ξ→−∞

h0(ξ; a) = 0.

The analytical solution of this ODE system can be readily found as

h0(ξ; a) =
√

a√
π

e−
ξ2
a + ξer f c(− ξ√

a
). (A5)
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Similarly, by assuming that the solution of PDE System (A2) is in the form of

P1(X, v, T) = Th1(ξ; a) = Tah̃1(ξ1),

where ξ1 =
ξ√
a

, we have



h̃
′′
1(ξ1) + 2ξ h̃

′
1(ξ1)− 4h̃1(ξ1) = 2

(a− q + d)
a

er f c(−ξ1)

+
4ρ

σ
√

πa
ξ1e−ξ2

1 + 4
(q− d)

a
,

lim
ξ1→∞

h̃1(ξ) = 2ξ2
1,

lim
ξ1→−∞

h̃
′
1(ξ1) = 0.

(A6)

Suppose that the solution h̃1(ξ1) has the following structure:

h1(ξ) = f (ξ1)e−ξ2
1 + g(ξ1)

∫ ξ1

−∞
e−t2

dt + m(ξ1), (A7)

where f (ξ1), g(ξ1), and m(ξ1) are polynomials in ξ1. By substituting (A7) into (A6), we
obtain

( f
′′ − 2ξ1 f

′
+ 2g

′ − 6 f )e−ξ2
1 + (g

′′
+ 2ξ1g

′ − 4g)
∫ ξ1

−∞
e−t2

dt + m
′′
+ 2ξ1m

′ − 4m

=
4(a− q + d)

a
√

π

∫ ξ1

−∞
e−t2

dt +
4ρ

σa
√

π
ξ1e−ξ2

1 + 4
(q− d)

a
,

which, combined with the boundary conditions at ξ1 = ±∞, yields
m
′′
+ 2ξ1m

′ − 4m =
4(q− d)

a
,

lim
ξ1→−∞

m
′
= 0,

(A8)


g
′′
+ 2ξ1g

′ − 4g =
4(a− q + d)

a
√

π
,

lim
ξ1→∞

√
πg + m = 2ξ2

1,
(A9)

f
′′ − 2ξ1 f

′
+ 2g

′ − 6 f =
4ρ

σ
√

πa
ξ1. (A10)

The polynomial solutions of (A8)–(A10) can be readily found as:

m(ξ1) =
d− q

a
,

g(ξ1) =
2√
π

ξ2
1 +

q− d√
aπ

,

f (ξ1) =
1√
π

(
1− ρ

2σa

)
ξ1.

Therefore,

h1(ξ; a) =
1√
π

(
a− ρ

2σ

) ξ√
a

e−
ξ2
a +

(
2√
π

ξ2 +
q− d√

π

) ∫ ξ√
a

−∞
e−t2

dt + d− q. (A11)
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By means of the above solution technique, it is not hard to find the solution of (A3),
though the expression is quite complicated. By assuming

P2(X, v, T) = T
3
2 h2(ξ; a) = T

3
2 a

3
2 h̃2(ξ1),

and substituting it into (A3), we obtain the ODE system for h̃2(ξ1) as

h̃
′′
2(ξ1) + 2ξ1h̃

′
2(ξ1)− 6h̃2(ξ1) = (Cξ4

1 + Aξ2
1 + B)e−ξ2

1 +
8(a + d− q)

a
√

π

∫ ξ1

−∞
e−t2

dt− 8d
a

ξ1,

lim
ξ→∞

h̃2(ξ1) =
4
3

ξ3
1 +

2q
a

ξ1,

lim
ξ→−∞

h̃
′′
2(ξ) = 0,

where

A =
2(a− q + d)ρ

a2σ
√

π
− ρ

4σ
√

πa2

(
−32ρ

σ
− 16a + 16q− 16d

)
− 2

σ2
√

πa2 ,

B =
2(a− q + d)

a2

(
− ρ

2σ
√

π
+

a√
π

+
q− d√

π

)
− ρ

4σ
√

πa2

(
8a +

4ρ

σ
− 8q + 8d

)
+

1
σ2
√

πa2 −
4κ

σ2
√

πa2

( η

σ2 − a
)

,

C = − 4ρ2

σ2
√

πa2 .

Suppose h̃2(ξ1) can be written as

h̃2(ξ1) = f (ξ1)e−ξ2
1 + g(ξ1)

∫ ξ1

−∞
e−t2

dt + m(ξ1),

where f (ξ1), g(ξ1), and m(ξ1) are polynomials in ξ1. By using the same procedure as in
deriving h1, the systems for f (ξ1), g(ξ1), and m(ξ1) can be easily found as

m
′′
+ 2ξ1m

′ − 6m = −8
d
a

ξ1,

lim
ξ1→−∞

m
′′
= 0, (A12)


g
′′
+ 2ξ1g

′ − 6g =
8(a + d− q)

a
√

π
ξ1,

lim
ξ1→∞

√
πg + m =

4ξ2
1

3
+ 2

q
a

ξ1,
(A13)

f
′′ − 2ξ1 f

′ − 8 f + 2g
′
= Cξ4

1 + Aξ2
1 + B. (A14)

The polynomial solutions of (A12) and (A13) are:

m(ξ1) = 2
d
a

ξ1,

g(ξ1) =
4ξ3

1
3
√

π
+

2(q− d)ξ1

a
√

π
,

f (ξ1) = − C
16

ξ4
1 −

(
C
16

+
Ã
12

)
ξ2

1 −
C
64
− Ã

48
− B̃

8
,
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where

Ã = A− 8√
π

,

B̃ = B− 4(q− d)
a
√

π
.

Therefore,

h2(ξ; a) = a
3
2

[
− C

16
ξ4

a2 −
(

C
16

+
Ã
12

)
ξ2

a
− C

64
− Ã

48
− B

8

]
e−

ξ2
a

+a
3
2

(
4ξ3

3
√

πa
3
2
+

2(q− d)ξ
√

πa
3
2

) ∫ ξ√
a

−∞
e−t2

dt + 2dξ. (A15)

Appendix B

The PDE systems for Z11, Z12, and Z13 are:

∂Z11

∂T
= V

∂2Z11

∂V2 +
2κ

η

∂Z11

∂V
,

Z11(X, V, 0) = max(X, 0),

lim
V→∞

Z11(X, v, T) = max(X, 0),

lim
V→0

P0(X, v, T) = X, for X > 0,

(A16)



∂Z12

∂T
= V

∂2Z12

∂V2 +
2κ

η

∂Z12

∂V
+ (q− d)

∂Z11

∂X
+

2ρV
σ

∂2Z11

∂X∂V
+ d− q,

Z12(X, v, 0) = max(
1
2

X2, 0),

lim
V→∞

Z12(X, v, T) =
1
2

X2, for X > 0,

(d− q)T, for X < 0,

lim
V→0

Z12 =
1
2

X2, for X > 0,

(A17)



∂Z13

∂T
= V

∂2Z13

∂V2 +
2κ

η

∂Z13

∂V
+ (q− d)

∂Z12

∂X
+

2ρV
σ

∂2Z12

∂X∂V

+
V
σ2

∂2Z11

∂X2 −
2κV
σ2

∂Z11

∂V
+ dX,

Z13(X, v, 0) = max(
1
6

X3, 0),

lim
V→∞

Z13(X, v, T) = qTX +
1
6

X3, for X > 0,

dTX, for X < 0,

lim
V→0

Z13(X, v, T) = qTX +
1
6

X3, for X > 0.

(A18)

It is straightforward to derive the solutions of the above PDE systems, i.e.,

Z11(X, V, T) =

 X, for X > 0,

0, for X < 0.
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Z12(X, V, T) =


X2

2
, for X > 0,

(d− q)T, for X < 0.

Z13(X, V, T) =


dTX +

1
6

X3, for X > 0,

dTX, for X < 0.
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