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Abstract: This paper combines the CRSP market index with multiple factors to create a single multi-
factor market index. Empirical tests of different multifactor market indexes indicate that: (1) Sharpe
ratios substantially increase and GRS test statistics decrease as multifactors are incrementally added
to the CRSP index; and (2) the resultant multifactor market indexes are significantly priced in
cross-sectional tests of associated beta loadings with t-values exceeding 3.0 in most cases.
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1. Introduction

Cochrane (2011) has humorously alluded to the growing list of multifactors in asset
pricing as a “factor zoo”. With so many contenders as factors, what factors should be
used in an asset pricing model? Harvey et al. (2016) investigated over 300 proposed
multifactors in asset pricing models in an effort to discern significant factors versus false
discoveries. In addition, Chordia et al. (2020) examined false factor discoveries in asset
pricing by studying 2 million trading strategies with real data. Both studies recommended
that t-statistics associated with factor loadings in Fama and MacBeth (1973) cross-sectional
regression tests should exceed 3 to avoid false factor discoveries. This higher statistical
hurdle substantially reduces the number of acceptable factors.

Given a smaller set of factors, a multifactor mall problem still remains. For example,
assuming 20 valid factors, a large number of models are conceivable. Which combinations
of factors and models should be used? In this paper, we propose a solution to this problem.
Specifically, we aggregate numerous factors into a single market index. We hypothesize
that the CRSP market index (i.e., market portfolio proxy) can be combined with popular
multifactors to create more efficient aggregate market indexes dubbed multifactor market
indexes. The rationale for these new aggregate indexes is straightforward. If the CRSP
index and investable multifactors provide a well-specified asset pricing model for U.S.
stock returns, then combining them into a single mean-variance efficient portfolio should be
possible. Assuming that a multifactor market index is a linear combination that is efficient,
it should be significantly priced as a single factor in a market beta pricing model. Hence, a
large number of investable multifactors can be incorporated into a single market index to
develop low-dimensional and more parsimonious models. While numerous authors have
proven in theory that a combination of factor-mimicking portfolios is minimum variance
efficient (e.g., Huberman and Kandel (1987); Shanken (1987); Fama (1996); Shanken and
Weinstein (2006); Kan and Zhou (2008), and others), no previous studies to the authors’
knowledge have verified this result in empirical tests. Filling this gap in the literature, we
incrementally combine popular factors with the CRSP index to show that the resultant
aggregate market indexes are increasingly efficient and priced in the cross section of average
stock returns.

To construct efficient multifactor market indexes, we utilize portfolio weights for the
CRSP index and each multifactor based on their relative Sharpe ratios. In this regard, we
incrementally add five prominent multifactors, including size, value profit, investment,
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and momentum, to the value-weighted CRSP index. As expected, Sharpe ratios gradu-
ally increase as more multifactors are incorporated into the CRSP index. For example,
in the sample period July 1963 to December 2016, the CRSP index has a Sharpe ratio of
0.12 compared to 0.34 for a market index combining the CRSP index with the aforemen-
tioned five multifactors. GRS time-series regression tests indicate that market indexes
become gradually more efficient as multifactors are added. Importantly, cross-sectional
Fama and MacBeth regression tests show that multifactor market indexes become increas-
ingly significant as multifactors are incorporated into the CRSP index. We obtain t-values
associated with multifactor market index beta loadings greater than 3.0 for numerous
test asset portfolios, which exceeds the recommended threshold for statistical significance.
Hence, multifactors improve approximations of efficient market portfolio returns in the
sense that multifactor market indexes become significantly priced in the cross-section of
average stock returns.

Further analyses construct an aggregate industry index using our relative Sharpe
ratio weighting procedure. It is well known that industry portfolios are not priced by the
CRSP index and popular multifactors. By contrast, we find that our new industry index
is significantly priced using industry portfolios as test assets. We subsequently combine
industry factors and popular multifactors to form a more general multifactor market index
that garners high t-values typically ranging from 3 to 6 for a variety of test assets, in
addition to insignificant mispricing errors and significant pricing of industry portfolios.

Regarding model selection, we find that the momentum factor continues to be sig-
nificantly priced in cross-sectional tests even when incorporated in multimarket indexes.
Hence, we interpret this evidence to mean that momentum is a possible strong factor.
Of course, as more multifactors are incorporated into multifactor market indexes to boost
their efficiency, the hurdle for strong factors is raised. Future studies may well find that
momentum is not a strong factor in the case of more efficient market multifactor indexes.
More generally, it is likely that few strong factors exist, such that low-dimensional models
are possible.

We conclude that combining multifactors with the CRSP index enables the formation
of single market indexes that are efficient. Unlike many studies that reject market beta
using the CRSP market index and other stock market indexes, multifactor market indexes
lend support for the notion that asset returns are a linear function of a general market
index. An important implication is that asset pricing models incorporating a market factor
can benefit from multifactor market factors. Currently, the CRSP index continues to be
used as the market proxy in most asset pricing models even though it is not priced in
the cross section of stock returns. Multifactor market indexes that are significantly priced
can potentially lead to more parsimonious and robust asset pricing models. Since the
market factor is commonly used in many areas of corporate, investment, and institutional
finance, widespread applications of multifactor market indexes are possible in future
studies. Another implication is that similar efficient aggregate indexes can be constructed
in the real world for investment purposes, thereby benefiting many investors including
those saving for retirement.

Section 2 provides background discussion of multifactor market indexes. Section 3
combines the CRSP index with popular multifactors to form a variety of multifactor mar-
ket indexes based on U.S. stock returns. Descriptive statistics, times-series tests, and
cross-sectional tests of multifactor market indexes are provided, in addition to results
for an aggregate industry factor and discussion of momentum as a possible strong factor.
Section 4 concludes.

2. Multifactor Market Indexes

The Capital Asset Pricing Model (CAPM) of Treynor (1961, 1962), Sharpe (1964),
Lintner (1965), Mossin (1966), and Black (1972) is based on a mean-variance efficient market
portfolio computed as the value-weighted return on all marketable assets. Roll (1977), and
others have shown that this portfolio is a minimum variance portfolio if and only if beta
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associated with the market factor is priced for all assets in this portfolio. Unfortunately,
Fama and French (1992, 1993, 1995, 1996a, 1996b) found that CAPM beta loadings associated
with the market portfolio proxied by the CRSP stock index timates were not significantly
priced in the cross section of average stock returns. In view of this failure, they concluded
that CAPM beta was dead and proposed a three-factor model that augments the CRSP
market factor with largely orthogonal size and value factors defined as zero-investment
portfolios with long and short positions. The success of this multifactor innovation triggered
a plethora of related studies.

Due to the CAPM’s failure as discussed in the previous section, multifactor models
have arisen with theoretical support from Ross’ (1976) arbitrage pricing theory (APT)
and Merton’s (1973) intertemporal capital asset pricing model (ICAPM). Carhart (1997)
added a zero-investment momentum factor to the three-factor model to study mutual fund
performance. Subsequently, Chen and Zhang (2010) advanced another three-factor model
by replacing size and value with profit and investment factors. A related paper was later
published by Hou et al. (2014), which proposed a g-factor model with four factors (viz.,
market, size, investment, and return on equity) grounded in neoclassical investment g-
theory. Similar to the g-factor model, Fama and French (2015) added profit and investment
factors to their three-factor model to create a five-factor model. In addition, Stambaugh and
Yuan (2017) proposed a four-factor model including the market and size factors plus two
mispricing factors (viz., management and performance).! Hou et al. (2018) added a growth
factor to the g-model. Barillas and Shanken (2018) formed a six-factor model by including
value and momentum factors. Additionally, Fama and French (2018) added momentum
to their five-factor model to form a six-factor model. Subsequently, Fama and French
(2020) proposed cross-section factors developed from Fama—MacBeth regressions as well
as conditional models with time-varying factor loadings. Many other models containing
different factors have been proposed in the asset pricing literature.” This proliferation of
factors has resulted in a model mall problem. Which model should an academic researcher or
professional investment manager use? Is there a way to condense well-accepted factors
into a more parsimonious model?

Using the notation and discussion in Ferson (1995, 2019), multifactor models of the
expected return on the ith asset take the familiar cross-sectional form:

K
Ei(Rip11) = Aot + ) biggAg, for all 4, 1)
k=1

where bjyy, ..., bk are time t conditional betas for asset i related to K risk factors, and
Ayt are market-wide risk premiums for k = 1,..., K risk factors equal to the incremental
expected return per unit type-j beta. The intercept Ay is the riskless return or expected
zero-beta rate conditionally uncorrelated with the K risk factor loadings if no riskless asset
exists. The conditional betas are estimated from the time-series factor model:

K
Ri,t—i—l =a;; + 2 bi]'tFk,tJrl,fOr all i, 2)
k=1

where E;(yi+1Fct+1) = Et(iry1) = O for all i and k. The model is well-specified when
the factor portfolios form the tangency portfolio (i.e., a;; = 0). As proven by many authors,
Equation (2) implies that a combination of K factor-mimicking portfolios is the minimum
variance efficient (see Grinblatt and Titman (1987); Huberman et al. (1987); Jobson and
Korkie (1982); Gibbons et al. (1989); Kan and Zhou (2008), and Ferson and Siegel (2009),
among others).

Extending this literature, MacKinlay (1993) argued that, if a linear combination of
factor portfolios cannot identify the efficient tangency portfolio, there exists an optimal
orthogonal portfolio of N assets, which when combined with K factor portfolios, forms

the tangency portfolio. This unique portfolio is orthogonal to the factor portfolios.® Using
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this approach, he showed that a bound on the Sharpe ratio exists if the deviation from the
single factor model (e.g., CAPM) can be accomplished by a common component of the
residual variance. In other words, it is possible that the tangency portfolio can be located by
identifying a complete (but limited) set of orthogonal risk factors. This tangency portfolio
has the maximum squared Sharpe measure among all portfolios.

In this paper we employ multifactors to develop more efficient aggregate indexes
of the stock market. The value-weighted CRSP stock market index is used to proxy the
theoretical orthogonal optimal portfolio. We assume that all market information is known
and investors seek the most efficient portfolio based on available information. Given the
long-only portfolio excess return denoted as Ry, we add k = 1,..., K orthogonal factor
portfolios to form new more efficient portfolios with higher Sharpe ratios. Factor portfolios

are investable zero-investment portfolios.* We define the corresponding Sharpe ratios as

5. =
oL
— Pk o _
Se = Uk,k 1,...K €)

where y is the excess return, and ¢ is the volatility of the portfolio. Combining the long
portfolio with the first zero-investment (long/short) factor portfolio Fy, the aggregate index
return R is

Ry =Ry +x1h, (4)
with variance equal to 0? + x3¢7 and Sharpe ratio
5 = Ltk 5)
\/ 07 + x30?
The first order condition 9S;/9dx; gives

S Sim
SLor ST

(6)

Now the Sharpe ratio for market index I can be written as

ST 57
e+ (@gmm A+ 3 s2
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Thus, this new market index portfolio is more efficient than the long-only portfolio
index. Upon continuing this process by incrementally adding more zero-investment factors
to candidate portfolio P, the market index portfolio’s efficiency is increased. As recognized
by MacKinlay (1993), the number of true risk factors will be limited even for increasing
numbers of assets in the market. Of course, if a candidate market index portfolio is the
tangency portfolio, it is not possible to increase the Sharpe ratio by combining it with
another zero-investment factor.’

It is worthwhile noting that Equation (7) can alternatively be written as

5 = /S + 52 (®)
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After iteratively adding k = 1, ..., K factors, the optimized Sharpe ratio is

K
Sp=| ) S2=\/WZ 1y, )
k=1

which is the ex post tangency portfolio defined by Gibbons et al. (1989). Note that this
approach does not provide the weight x; in Equation (6) to form efficient portfolio indexes.

In the next section we conduct empirical tests of these concepts. First, long/short
portfolios based on zero-investment portfolios (or factors) are added to the CRSP index to
determine whether more efficient market indexes can be constructed. The market indexes
should become increasingly efficient as zero-investment portfolios are added based on
size, value, profit, capital investment, and momentum. We also form a market index that
incorporates both the aforementioned multifactors plus zero-investment portfolios that
are long industry portfolios and short Treasury bills. Second, we perform time-series and
cross-sectional tests of multifactor market indexes to determine if they are significantly
priced and therefore efficient.

3. Empirical Tests

Here we report the empirical results for multifactor market indexes based on the
following popular risk factors: market (CRSP index), size (SMB), value (HML), profit
(RMW), capital investment (CMA), and momentum (MOM). Further analyses incorporate
zero-investment industry portfolios as well. Monthly returns for the value-weighted
CRSP market index, zero-investment multifactors, industry portfolios, and Treasury bills
are downloaded from Kenneth French’s website.® Using the weighting procedure in the
previous section, we construct multifactor market indexes that combine the CRSP index
with five multifactors.

Because factors are not uncorrelated, we orthogonalize them as follows. Denoting the
current market index return as R(Ik) (e.g., CRSP index) and the multifactor return (e.g.,
size factor) to be added to this market index as Fy. 1, we regress F; 1 on the excess market
return R(Ix) — Rf, over t sample period months:

Fiy1p = @hy1 + Bry1[R(Ik ) — Ryl + €xppe (10)

The orthogonalized multifactor is F'{7, = Fey1,+ — Brs1[R(Ikt) — Ry ¢]. The portfolio

Ig41 return combining the previous portfolio Ix return plus the multifactor portfolio
return is:

R(IK+1,,5) = R(IK,t) + kaF,fff,t. (11)
After substituting F'(7 , and rearranging terms, we have:
R(Ixt1,4) = R+ (1= xp 1 B) [RUIK 1) — Ryl + X1 Frpn e (12)

This equation decomposes the new multifactor market index return R(Ig 1) into the
riskless rate plus weighted premiums for the previous index excess return R(I ) — R¢;
and newly-added zero-investment factor return Fi ;. Notice that the estimated Bj;
coefficient in Equation (10) affects the relative weights in the construction of return series
R(Ix+14). As noted by an anonymous referee, errors in estimated coefficients will affect
these weights and, in turn, multifactor market index returns. This potential bias is beyond
the scope of the present research and is therefore left for future research.

To determine the weight x; for the new factor in this multifactor market index,
we apply Equation (6). These steps are repeated to incrementally add the five popu-
lar long/short factors Fy1 (k+1 = 2,...,6) to each successive market index Ix 1, in
month f to create five new market indexes with respective monthly return series R(Ix 1)
(i.e., R(Ip,t),...,R(Is,t) ). The return series R(Ix ) = R(I,t) is the CRSP index.
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3.1. Descriptive Statistics

Based on the sample period from July 1963 to December 2016, descriptive statistics in
Table 1 are provided for the CRSP index (denoted I), five multifactors (i.e., SMB, HML,
RMW, CMA, and MOM), and multifactor market indexes combining the CRSP index with
various multifactors (denoted I, to Ig). The familiar CRSP index (I;) has mean excess
returns of 0.51 percent per month, standard deviation of 4.42 percent, and Sharpe ratio of
0.12. With the exception of momentum, the descriptive statistics for the multifactors are not
too different from one another. Momentum (MOM) has a noticeably higher mean return
of 0.66 percent per month compared to the excess return on the CRSP index, whereas the
other multifactors have mean returns less than the excess return on the CRSP index in the
range of 0.24 percent to 0.37 percent.

Table 1. Descriptive statistics for the CRSP indeX, five multifactors, and market indexes combining
the CRSP index with various mult-factors and industry portfolios: July 1963-December 2016. Based
on CRSP stock return data in the sample period July 1963 to December 2016, this table provides
descriptive statistics for monthly excess returns (over the Treasury bill rate) on the value-weighted
CRSP index, zero-investment portfolio returns of five popular multifactors, and excess returns of
seven market indexes combining CRSP index excess returns with these multifactors in addition
to industry excess returns. We downloaded the following multifactors and industry returns from
Kenneth French’s website: size (SMB), value (HML), profit (RMW), capital investment (CMA),
momentum (MOM), and 30 industries. Multifactor market indexes are formed using the following
steps. First, the size (SMB) factor monthly returns are regressed on CRSP index (I;) excess returns
over the Treasury bill rate. The residual term from this regression is utilized as the orthogonalized
factor. Second, this orthogonalized size factor is added to the CRSP index using Equation (11) to
compute the return for the new multifactor market index I as R(I) = R(I;) + x1SMB. Third, value
(HML) factor returns are regressed on the new R(I;) + x1SMB portfolio excess returns to obtain the
orthogonalized value factor. This residual value factor is added to the CRSP + SMB portfolio to get
market index I3 = CRSP + x;SMB + xo,HML. Fourth, the last step is repeated to sequentially create
market index Iy = CRSP + x1SMB + x;HML + x3RMW, market index Is = CRSP + x1SMB + x,HML +
3RMW + x4,CMA, and market index I = CRSP + x{SMB + x,HML + x3RMW + x4,CMA + xsMOM.
We drop the CMA multifactor to form market index I; = CRSP + x;SMB + xHML + x3RMW +
x5sMOM. Lastly, 30 industry excess returns are added to create market index Ig. For comparison
purposes, mean excess returns, standard deviations of returns, and Sharpe ratios for multifactors and
different market indexes are computed.

Portfolios Mean Std. Devw. Sharpe Ratio
I; = CRSP 0.51 442 0.12
SMB 0.27 3.04 0.09
HML 0.37 2.81 0.13
RMW 0.24 2.23 0.11
CMA 0.31 2.01 0.15
MOM 0.66 422 0.16
I, = CRSP + SMB 0.64 494 0.13
I3 = CRSP + SMB + HML 1.71 8.10 0.21
Iy = CRSP + SMB + HML + RMW 2.66 10.09 0.26
Is = CRSP + SMB + HML + RMW + CMA 2.98 10.69 0.28
I¢ = CRSP + SMB + HML + RMW + CMA + MOM 4.49 13.13 0.34
I7 = CRSP + SMB + HML + RMW + MOM 422 12.72 0.33
Iz = CRSP + SMB + HML + RMW + CMA + MOM + 30 Industry Factors 6.19 15.41 0.40

Referring to the market index results, the index portfolio denoted I, = CRSP + SMB
in Table 1 has mean excess return, volatility, and Sharpe ratio characteristics similar to
momentum. As more multifactors are added to the CRSP index, new market indexes have
noticeably higher mean excess returns, volatility, and, more importantly, Sharpe ratios
compared to the CRSP index. For example, for the CRSP index plus all five multifactors
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(denoted Iy = CRSP + SMB + HML + RMW + CMA + MOM), the mean excess return per
month jumps to 4.49 percent, standard deviation of returns to 13.13 percent, and Sharpe
ratio to 0.34. The latter Sharpe ratio is almost three times that of the CRSP index. Hence,
even though this market index has considerably higher total risk compared to the CRSP
index, its excess return per unit risk is much higher than this commonly-used market
index. We computed a variety of multifactor market indexes with different combinations
of multifactors and find that dropping the CMA multifactor from the market index (i.e.,
I7 = CRSP + SMB + HML + RMW + MOM,) has little effect on the descriptive statistics of
the market index (e.g., Tables 1 and 2 show that the Sharpe ratio only decreases from 0.34
to 0.33).

Table 2. Descriptive statistics for scaled portfolio indexes combining the CRSP index with multifactors:
July 1963-December 2016. This table repeats Table 1 by scaling mean monthly portfolio index returns
to contain no leverage. As discussed in the text, to orthogonalize a zero-investment factor (e.g.,
F1), we regress Fy ;’s returns on the CRSP index R(I; ;) over t sample period months as follows:
F1p = a1 + B1R(I1+) + €1,+. The orthogonalized multifactor is R =F;— B1R(I1+). Using notation
from Equation (11), the more efficient portfolio I,’s return is computed as: R(Ip;) = R(I1¢) + x1 Ffjw.
We apply Equation (6) to determine the weight x; for the factor return F'{* in the new market index
I,. Finally, we divide the mean return R(I;) over the sample period by the term 1 + x1 (1 — 7). Each
portfolio index is deleveraged by means of this process.

Portfolios Mean Std. Dev. Sharpe Ratio
I; = CRSP 0.51 4.42 0.12
SMB 0.27 3.04 0.09
HML 0.37 2.81 0.13
RMW 0.24 2.23 0.11
CMA 0.31 2.01 0.15
MOM 0.66 4.22 0.16
I, = CRSP + SMB 0.40 3.07 0.13
Iz = CRSP + SMB + HML 0.38 1.82 0.21
I, = CRSP + SMB + HML + RMW 0.33 1.27 0.26
Is = CRSP + SMB + HML + RMW + CMA 0.33 1.18 0.28
I = CRSP + SMB + HML + RMW + CMA + MOM 0.38 1.11 0.34
I; = CRSP + SMB + HML + RMW + MOM 0.39 1.18 0.33
Is = CRSP + SMB + HML + RMW + CMA + MOM + 30 Industry Factors 0.40 0.98 0.40

In constructing aggregate market indexes combining the CRSP index with the SMB,
HML, RMW, CMA, and MOM multifactors, the weights for factors denoted x4 in Equation (6)
for multifactor market indexes are as follows:”

I = 0.533 CRSP + 0.467 SMB;

I3 =0.313 CRSP + 0.223 SMB + 0.464 HML;

I; = 0.231 CRSP + 0.175 SMB + 0.248 HML + 0.346 RMW;

Is = 0.232 CRSP + 0.175 SMB + 0.073 HML + 0.203 RMW + 0.317 CMA;

Is = 0.197 CRSP + 0.120 SMB + 0.123 HML + 0.159 RMW + 0.203 CMA + 0.198 MOM;

I7 =0.202 CRSP + 0.130 SMB + 0.202 HML + 0.236 RMW + 0.230 MOM.

In most of the indexes, SMB gets a relatively lower weight and therefore contributes
less to increasing the Sharpe ratio of indexes than other factors. No individual factor
appears to dominate the other factors in terms of relative weight. In general, all of the
factors are important in forming aggregate indexes.

Our multifactor market indexes have noticeably higher total risk than the CRSP index
due to increasing leverage in these portfolios. By deleveraging these indexes, a more
accurate assessment of how multifactors affect both mean excess returns and their standard
deviation can be obtained. In this respect, Sharpe ratios adjust mean excess returns for
total risk but do not reveal these component effects. To adjust for leverage, we rescale the
market index portfolios to a zero leverage level. As an example, consider portfolio index
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I, combining the CRSP index with the size factor denoted F;. We initially orthogonalize
size factor returns F;. To simplify the derivation and avoid abusing notations, we sub-
stitute R(Iy ;) for R(Iy,t) — Rfs = Ryt — Ry in Equation (10). Now the orthogonalized
multifactor is Fﬂ‘;w = F1; — B1R(I1¢). Portfolio index I’s risk premium is computed as:
R(Ip¢) = R(I1t) + x1F'§ = R(I1,¢) + x1[F1,+ — B1R(I1+)]. To deleverage the index I’s re-
turn, we divide the mean return R(I,) over the sample period by the term 1 + x1 (1 — B1).%
This process is repeated for portfolio indexes’ returns R(I3) to R(Iy). In this way, each
portfolio index is deleveraged.

Portfolio index returns with no leverage are shown in Table 2. As in Table 1, the highest
Sharpe ratios are attained by indexes I, I7, and Ig at 0.34, 0.33, and 0.40, respectively, which
are approximately three times the CRSP index at 0.12. Notice that most of this gain in
efficiency is due to decreasing the standard derviation of returns. Indexes I, to Ig have
lower mean returns than the CRSP index but substantially lower standard deviations of
returns. Portfolios I5 to Ig have less than one-third of the standard deviation of CRSP index
returns. Thus, adding multifactors and industry factors to the CRSP index provides sizable
diversification benefits in the form of lower total risk. As multifactors and industry factors
are added to the market index, new multifactor market indexes gradually become more
efficient with higher Sharpe ratios due to diversification gains.

3.2. Time-Series Tests of Multifactor Market Indexes

Stambaugh (1982) created alternative market indexes combining common stocks with
bonds, real estate, and consumer durables and found very high correlations between their
time-series returns. Not surprisingly, empirical tests of the CAPM were not sensitive to
the composition of these market indexes. Consistent with these findings, Black (1995)
commented that “ ...all candidates for the U.S. market portfolio are highly correlated...”,
including U.S. domestic and world market indexes, equal- and value-weighted portfolios,
and human capital and real estate portfolios of traded assets.” For this reason, he believed
that the problem of selecting an appropriate market index was not severe (even though it
tends to flatten the line between expected return and beta). Related work by Jagannathan
and Wang (1996) augmented the value-weighted market index with a proxy for human cap-
ital to more comprehensively measure the return on aggregate wealth. Unlike Stambaugh,
rather than combining returns to stock market capital and human capital to form a single
market index, they treated them as two different market factors in a CAPM market model
framework. Subsequent cross-sectional tests indicated that human capital was significantly
priced but not the value-weighted market index.'’

In Table 3 we report the correlation coefficients between the time-series monthly
returns for different multifactors and market indexes. The multifactors themselves tend to
have relatively low correlation coefficients, with the exception of HML and CMA at 0.69. As
a multifactor is added to a market index, their correlation naturally increases (e.g., the CRSP
index and SMB have a correlation of 0.28 compared to the correlation of market index CRSP
+ SMB and SMB at 0.68). In addition, as multifactors are progressively added to create new
market indexes, the correlation of the CRSP index with market indexes decreases. Strikingly,
the correlation between the CRSP index and market index I¢ containing the five multifactors
is only 0.06. Multifactor market indexes are not only more efficient than the CRSP index
but not highly correlated with this index (and other commonly-used market indexes) due
to including the net effects from other risk factors with relatively low correlations with the
CRSP index.

Gibbons et al. (1989) developed a time-series regression test of the CAPM. The GRS
statistic tests estimated whether the a;s in the CAPM market model (1) fori =1,..., A
test assets jointly equal zero. Alternatively, given a set of test assets, a riskfree rate, and
a market index, the results can be interpreted as a test of whether the market index is a
mean-variance efficient portfolio (see Fama 2017). Using monthly returns for Fama and
French'’s 25 size and book-to-market (value) sorted test asset portfolios downloaded from
Kenneth French’s website for the sample period July 1963 to December 2016, we estimated
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market model (1) with different market indexes. The GRS test statistics in Table 4 indicate
that none of the market indexes is a mean-variance efficient portfolio (i.e., all F-values
are statistically significant at the 1 percent level).!! However, as multifactors are added to
create new market indexes, GRS statistics gradually decrease from 4.77 for the CRSP index
to 2.77 for market index I = CRSP + SMB + HML + RMW + MOM. We infer that, for these
test assets, market indexes become gradually more efficient as multifactors are added. In
this regard, more multifactors are needed to achieve an insignificant GRS statistic. Given
the large number of factors proposed by researchers as mentioned in the introduction, this
possibility is plausible.

Table 3. Correlation coefficients between the monthly returns of multifactors and market indexes:
July 1963-December 2016. Based on CRSP stock return data in the sample period July 1963 to
December 2016, this table provides correlation coefficients between different market indexes as well
as multifactor (zero-investment portfolio) returns. Monthly returns for the value-weighted CRSP
index and popular multifactors are downloaded from Kenneth French’s website. The multifactors
are: size (SMB), value (HML), profit (RMW), capital investment (CMA), and momentum (MOM).
The market indexes are: [; = CRSP index, I, = CRSP + SMB, I3 = CRSP + SMB + HML, I, = CRSP +
SMB + HML + RMW, Is = CRSP + SMB + HML + RMW + CMA, I = CRSP + SMB + HML + RMW +
CMA + MOM, I; = CRSP + SMB + HML + RMW + MOM, and Ig = CRSP + SMB + HML + RMW +
CMA + MOM + 30 Industry Factors. The text and Table 1 discuss the process for forming these
market indexes that comprise different combinations of CRSP index excess returns, multifactors, and
industry excess returns.

CRSP SMB HML RMW CMA MOM I I Iy Is I Iz Ig
I 1.00 028 —-026 —023 —038 —013 090 0.51 0.33 015 006 021 027
SMB 1.00 —-0.08 —035 -0.10 -0.02 0.68 0.48 0.23 016 013 0.19 0.8
HML 1.00 0.07 069 —019 —024 0.63 0.63 078 059 045 0.12
RMW 1.00 -0.04 011 —034 —-021 041 034 037 043 026
CMA 1.00 —0.01 —034 029 0.25 055 049 021 0.38
MOM 1.00 —011 -024 —016 —0.14 046 047 050
I 1.00 0.61 0.36 019 011 025 0.29
I 1.00 0.80 079 057 056 0.33
Iy 1.00 094 075 079 047
I 1.00 081 075 053
Is 1.00 096 0.77
I 1.00 0.73
Is 1.00

Table 4. GRS tests using 25 size-value sorted test asset portfolios. This table reports GRS statistic
results proposed by Gibbons et al. (1989), which tests whether all estimated intercepts (as) for the
test assets jointly equal zero. Our test assets are the monthly returns for the 25 size-value portfolios
downloaded from Kenneth French’s data website for the sample period July 1963 to December 2016.
The GRS test is conducted for the CAPM market model estimated with the following market indexes:
I} = CRSP index, I = CRSP + SMB, I3 = CRSP + SMB + HML, I; = CRSP + SMB + HML + RMW,
Is = CRSP + SMB + HML + RMW + CMA, I = CRSP + SMB + HML + RMW + CMA + MOM,
I7 = CRSP + SMB + HML + RMW + MOM, and Ig = CRSP + SMB + HML + RMW + CMA + MOM +
30 Industry Factors. The text and Table 1 discuss the process for forming these market indexes that
represent different combinations of CRSP index excess returns, multifactors, and industry excess
returns. The GRS statistic follows an F(25, 642 — 25 — 1) distribution. Greater GRS test values indicate
larger absolute values of estimated ws.

I, = CRSP I I3 Iy Is I¢ I; Ig
F-value 4.78 470 3.85 3.38 3.55 2.86 2.77 2.81
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3.3. Cross-Sectional Fama-MacBeth Tests of Multifactor Market Indexes

An important test of the efficiency of market indexes augmented with multifactors
is whether they are significantly priced in the cross section of average stock returns. For
this purpose, using monthly excess returns for 25 size-value sorted test asset portfolios
downloaded from French’s website, we conduct Fama and MacBeth (1973) tests of market
beta associated with different market indexes incorporating popular multifactors. Tests
incorporating industry factors are provided in the forthcoming Section 3.6.

We begin by estimating time-series regressions for the full sample period using the
excess returns for each of the 25 portfolios and 1 of the market indexes. Monthly index
returns are scaled to contain no leverage (see Table 2). As such, the estimated index
premiums can be compared to the historical market premium (i.e., 0.51 percent per month
in Table 1). Rolling monthly cross-sectional regressions are estimated with excess returns in
month ¢ and the estimated full sample betas for all sample period months ¢t = 1,...,T. From
these regressions we estimate the market price of beta risk, or A, which are averaged
overt = 1,..., T sample months to obtain A ;. This period-by-period regression approach
has the advantage that the ¢-statistic associated with Aum takes into account the covariance
of regression residuals and the independent variables without requiring estimates of
the covariances (see Fama 2017). The analyses are repeated for each of the portfolio
market indexes.

Results for the cross-sectional tests are reported in Table 5. Consistent with earlier stud-
ies, the CRSP index (I;) is not significantly priced, as the market price of risk Ay = —0.43
(t = —1.06). Additionally, index I, = CRSP + SMB produces a market proxy that is not
priced with Aum = 0.00 (+ = 0.00). However, upon adding both SMB and HML to the CRSP
index to form index I3, we obtain Ay = 0.34 (+ = 3.80), which is economically meaningful
and statistically significant at less than a one percent level. Further adding RMA, CMA, and
MOM multifactors to the CRSP index to form index I yields similar results. Notice that
the strongest finding is for multifactor market index I; = CSRP + SMB + HML + RMW +
MOM (excluding CMA), which yields Ap = 0.38 (t = 4.04). In addition, the estimated
mispricing term & is insignificantly different from zero for the following market indexes:
I3 =CRSP + SMB + HML, I; = CRSP + SMB + HML + RMW, and I; = CRSP + SMB + HML +
RMW + MOM. Finally, adjusted R? values jump from 9 percent for the CRSP index to over
50 percent for the combined CRSP plus multifactor portfolios, with the exception of the
CRSP + SMB portfolio.'? For market index I; = CRSP + SMB + HML + RMW + MOM, the
adjusted R? value is 0.71, which indicates a fairly strong goodness-of-fit.

Importantly, the f-values associated with a number of multifactor market indexes
well exceed recent standards for the significance of an asset pricing factor. As mentioned
earlier, Harvey et al. (2016) and Chordia et al. (2020) have recommended that acceptable
factors should exceed a t-statistic threshold of 3.0 or more. We infer that market indexes
combining the CRSP index and multifactor portfolios provide market portfolio proxies that
are priced in the cross-section of average stock returns and therefore are relatively more
efficient portfolios than the CRSP index.

3.4. Cross-Sectional Fama-MacBeth Tests of Multifactors

Here we compare the cross-sectional test results for the CAPM, three-factor, and five-
factor models, in addition to the five-factor model augmented with the momentum factor.
The results in Table 6 show that the five-factor model plus momentum has insignificant
mispricing (i.e., & = 0) and a higher estimated adjusted R? value (i.e., 83 percent) than the
other models. Momentum has a t-value of 4.71, which exceeds the t-values of other factors.
Across different models, the SMB, HML, and RMW factors are consistently significant and
exceed 3 in some instances, CMA is not priced, and the multifactor models substantially
boost the estimated adjusted R? values relative tthe CAPM. Note that our multifactor
market index I7 (see Table 5) outperforms the three- and five-factor models, with similar R?
value but insignificant & mispricing, and performs almost as well as the five-factor model
plus momentum.
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Table 5. Cross-sectional asset pricing tests of market beta for different market indexes using 25 size-
value sorted test asset portfolios: July 1963-December 2016. Based on CRSP stock return data in
the sample period July 1963 to December 2016, this table provides Fama and MacBeth (1973) cross-
sectional tests of the value-weighted CRSP index as well as market indexes combining the CRSP index
with popular multifactors. Downloaded from Kenneth French’s website, the multifactors are: size
(SMB), value (HML), profit (RMW), capital investment (CMA), and momentum (MOM). Multifactor
market indexes are formed using the following steps. First, the size (SMB) factor monthly returns are
regressed on CRSP index (I;) excess returns over the Treasury bill rate. The residual term from this
regression is utilized as the orthogonalized factor. Second, this orthogonalized size factor is added
to the CRSP index using Equation (11) to compute the return for the new multifactor market index
I as R(I) = R(I}) + x;SMB. Third, value (HML) factor returns are regressed on the new R(I;) +
x1SMB portfolio excess returns to obtain the orthogonalized value factor. This residual value factor
is added to the CRSP + SMB portfolio to get market index I3 = CRSP + x;SMB + x,HML. Fourth,
the last step is repeated to sequentially create market index Iy = CRSP + x{SMB + x,HML + x3RMW,
market index Is = CRSP + x1SMB + x,HML + x3RMW + x4,CMA, and market index [y = CRSP +
x1SMB + xoHML + x3RMW + x4,CMA + xsMOM. In addition, we drop the CMA multifactor to form
market index I; = CRSP + x;SMB + x,HML + x3RMW + xsMOM. Monthly returns for 25 size-value
test assets are downloaded from French’s data website (i.e., the value firm characteristic corresponds
to the book-to-market ratio). A time-series regression using monthly excess returns is run for the
full sample period to estimate CAPM betas for each of the 25 tests assets using the CRSP index.
Time-series regression analyses are repeated for the other market indexes. Following the procedure in
the text and Table 2, monthly market index returns are scaled to contain no leverage. Cross-sectional
tests are conducted by estimating monthly rolling cross-sectional regressions with excess returns
and full sample betas for all sample months. The resultant monthly series of estimated market
prices of beta risk are averaged over all sample months to estimate Ay (and associated t-statistics are
in parentheses).

Indexes % Am Adj. R?
I = CRSP 1.20 —0.43 0.09
(3.19) (—1.06)

I, = CRSP + SMB 0.73 0.00 0.00
(2970 (0.00)

I3 = CRSP + SMB + HML 0.08 0.34 0.54
(0.34) (3.80)

Iy = CRSP + SMB + HML + RMW 0.22 0.28 0.61
(0.86) (3.70)

Is = CRSP + SMB + HML + RMW + CMA 0.48 0.21 0.56
(2.06) (3.27)

Is = CRSP + SMB + HML + RMW + CMA + MOM 0.54 0.26 0.61
(2.44) (3.43)

I; = CRSP + SMB + HML + RMW + MOM 0.24 0.38 0.71
(0.95) (4.04)

We next consider whether a multifactor is priced when the market index contains
the multifactor portfolio. First, we create residual returns for the 25 size-value portfolios
(denoted R;“"i) as follows:

7

Ryt = Rpt — Rpp — Bp[R(Ikt) — Ry, (13)

where R+ — Ry, is the excess portfolio return in month ¢, and R(Ik) — Ry is the excess
market index return as defined in Equation (11), and B, is the estimated beta coefficient for
portfolio p =1, ...,25. We employ market indexes I; to I; defined earlier in this section.
Second, using monthly residual returns and multifactor returns for the full sample period,
we run time-series regressions of residual returns on the multifactor returns for SMB, HML,
RMW, CMA, and MOM for each of the 25 portfolios. Third, and last, using monthly average
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portfolios’ residual returns, monthly rolling cross-sectional regressions are run as before to
estimate the market prices of risk for the multifactors.

Table 6. Cross-sectional asset pricing tests of the CRSP market factor and five popular multifactors:
July 1963-December 2016. Based on CRSP stock return data in the sample period July 1963 to
December 2016, this table provides Fama and MacBeth (1973) cross-sectional tests of the market
factor plus five popular multifactors. Downloaded from Kenneth French’s website, the factors are:
CRSP market index (M), size (SMB), value (HML), profit (RMW), capital investment (CMA), and
momentum (MOM). Test assets are the Fama—French 25 size-value portfolios downloaded from
French'’s data website. For the full sample period, a time-series regression is run using monthly excess
returns for test assets as the dependent variable and the CRSP value-weighted market index excess
return plus different multifactor returns as the independent variables. Using estimated factor loadings
for each of the 25 test asset portfolios, cross-sectional tests are conducted by estimating monthly
rolling cross-sectional regressions with monthly excess returns and full sample betas for all sample
months. Resultant monthly series of estimated prices of beta risk for the kth factor (k =1,...,6) are
averaged over all sample months to estimate A; (and associated t-statistics are in parentheses).

Index & Am Asms ArmL ARMw Acma Amom Adj. R?
CAPM 1.20 —0.43 0.09
(3.19) (—1.06)
Three-factor 1.27 —0.73 0.22 0.40 0.67
(4.83) (—2.31) (1.78) (3.50)
Five-factor 1.02 —0.53 0.30 0.36 0.48 —0.02 0.74
(3.56) (—1.58) (2.47) (3.15) (2.82) (~0.10)
Five-factor + MOM 0.28 0.26 0.33 0.39 0.61 —-0.14 2.94 0.83
(0.82) (0.69) (2.68) (3.47) (3.44) (—0.80) 4.71)

The empirical results in Table 7 indicate that, with the exception of momentum (MOM),
multifactors are not normally priced in the cross-section when the market index contains
the respective multifactors. For example, for market indexes I; and I, comprised of the
CRSP index and CRSP + SML, respectively, HML is significantly priced with Anmr = 0.50
(t =4.91) and 0.61 (t = 4.93). However, for market index I5 (viz., CRSP + SMB + HML)
containing the HML portfolio, the multifactor HML is not priced with Ay = —0.25
(t = —1.13). RMW is priced using market indexes I, I, I3, and I but not for I and I5
containing the RMW portfolio.'® Unlike the other multifactors, MOM consistently remains
significantly priced across all market indexes, even when the MOM portfolio is included in
market indexes Iy and I7. For this reason, we will refer to MOM as a possible strong factor
in forthcoming analyses of two-factor models comprised of multifactor market indexes
and the momentum factor. From these results we infer that, with the exception of MOM,
multifactors are not generally priced when they are incorporated in the market index. Lastly,
as multifactors are added to the market index, the explanatory power of the multifactors
diminishes (e.g., from 90 percent for the CRSP market index [; to only 42 percent for the
multifactor market index Iy containing SMB, HML, RMW, and MOM).#
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Table 7. Cross-sectional asset pricing tests of multifactors using the excess residual returns of 25 size-
value sorted test assets with respect to market index excess returns: July 1963-December 2016. Based
on CRSP stock return data in the sample period July 1963 to December 2016, this table provides Fama
and MacBeth (1973) cross-sectional tests of five popular multifactors. Downloaded from Kenneth
French’s website, the multifactors are: size (SMB), value (HML), profit (RMW), capital investment
(CMA), and momentum (MOM). Test assets are monthly excess returns (denoted R;; — Ry ) for
Fama-French 25 size-value portfolios downloaded from French’s data website. The residuals for
test assets are computed as R[® = R;; — Ryt — BiR(Ix;), i =1,...,25 where R(I ) is the monthly
excess return for one of seven different market indexes (K = 1,...,7). The text and Table 1 discuss
the process for forming market indexes that represent different combinations of the CRSP index
and multifactors. We denote these market indexes as follows: [; = CRSP index, I, = CRSP + SMB,
I3 = CRSP + SMB + HML, I = CRSP + SMB + HML + RMW, I5 = CRSP + SMB + HML + RMW +
CMA, and Ig = CRSP + SMB + HML + RMW + CMA + MOM, in addition to I; = CRSP + SMB +
HML + RMW + MOM. For the full sample period, a time-series regression is run using monthly
residual returns as the dependent variable and multifactor returns as the independent variables to
estimate multifactor betas for each of the 25 test asset portfolios. Cross-sectional tests are conducted
by estimating monthly rolling cross-sectional regressions with monthly residual returns and full
sample betas for all sample months. The resultant monthly series of estimated multifactor prices of
beta risk for the kth factor (k = 1,...,5) are averaged over all sample months to estimate )A\k (and
associated t-statistics are in parentheses).

Index & Asmp Armr ARMw Acma Amom Adj. R?

L 0.03 0.11 0.59 0.76 0.08 3.42 0.90
(1.21) (0.83) (4.91) (4.30) (0.38) 6.01)

I 0.09 —0.33 0.61 0.87 0.09 3.34 0.91
(539)  (~159)  (4.93) (4.88) (0.40) (5.98)

I3 0.15 —0.20 —0.25 0.79 —0.35 3.50 0.72
@81)  (-1.02) (~113)  (437)  (=217)  (6.11)

Iy 0.63 0.22 0.17 0.38 —0.12 2.44 0.66
(3.60) (1.31) (0.57) (170)  (~086)  (4.18)

Is 0.24 0.14 —0.47 0.32 —0.58 3.23 0.80
(1.39) 097)  (~145)  (138)  (-274) (548

I 0.83 0.35 0.57 0.62 —0.01 1.51 0.70
(3.63) (2.40) (1.69) 2.63)  (-0.03)  (2.63)

I7 0.90 0.37 0.53 0.58 0.03 1.25 0.42
(3.94) 2.27) (2.10) 2.37) (0.17) (2.34)

3.5. Robustness Tests with Different Test Asset Portfolios

As a robustness check, we repeat the cross-sectional tests in Table 8 using 25 size-value
sorted portfolios for a variety of different test asset portfolios available on French’s data
website. The following test assets are used: 25 value-investment portfolios, 25 profit-
investment portfolios, 25 size-investment portfolios, 25 size-profit portfolios, 32 size-value-
investment portfolios, 32 size-value-profit portfolios, 32 size-profit-investment portfolios,
and 30 industry portfolios. In general, the results for these portfolios corroborate our
findings in Table 5. The t-values associated with market indexes I4 to Iy have ranges as
follows: 2.32 to 2.52 for 25 value-investment portfolios in Panel A; 3.34 to 3.61 for 25 profit-
investment portfolios in Panel B; 4.16 to 4.54 for 25 size-investment portfolios in panel C;
3.85 to 3.89 for 25 size-profit portfolios in Panel D; 3.33 to 3.61 for 32 size-value-investment
portfolios in Panel E; 4.49 to 4.91 for 32 size-value-profit portfolios in Panel F; 5.85 to 6.53 for
32 size-profit-investment portfolios in Panel G; and —0.01 to 0.59 for 30 industry portfolios
in Panel H. Highlighting the results for the size-profit-investment portfolios in Panel G,
the results are as follows: Ay = 0.45 (+ = 5.85) for Iy, Aps = 0.37 (t = 6.20) for I5, Aps = 0.42
(t = 6.53) for Iy, and Ay = 0.51 (+ = 6.36) for I. Mispricing terms a are insignificant
for these multifactor market indexes with the exception of Is. Adjusted R? values range
from 0.67 to 0.76. Together, these results corroborate our earlier findings in Table 5 using
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size-value test asset portfolios. In addition, the results are comparable to the the three-factor,
five-factor, and five-factor plus momentum models in Table 6.

Table 8. Robustness checks for cross-sectional asset pricing tests of market beta for different market
indexes using a variety of test asset portfolios: July 1963-December 2016. Based on CRSP stock return
data in the sample period July 1963 to December 2016, this table provides Fama and MacBeth (1973)
cross-sectional tests of the value-weighted CRSP index as well as market indexes combining the
CRSP index with popular multifactors. Downloaded from Kenneth French’s website, the multifactors
are: size (SMB), value (HML), profit (RMW), capital investment (CMA), and momentum (MOM).
Multifactor market indexes are formed using the following steps. First, the size (SMB) factor monthly
returns are regressed on CRSP index (I7) excess returns over the Treasury bill rate. The residual term
from this regression is utilized as the orthogonalized factor. Second, this orthogonalized size factor is
added to the CRSP index using Equation (11) to compute the return for the new multifactor market
index I as R(I;) = R(I1) + x;SMB. Third, value (HML) factor returns are regressed on the new R(I;) +
x1SMB portfolio excess returns to obtain the orthogonalized value factor. This residual value factor is
added to the CRSP + SMB portfolio to get market index I3 = CRSP + x1SMB + x,HML. Fourth, the last
step is repeated to sequentially create market index Iy = CRSP + x1SMB + x;HML + x3RMW, market
index I5 = CRSP + x1SMB + x,HML + x3RMW + x,CMA, and market index Ig = CRSP + x{SMB +
xHML + x3RMW + x4,CMA + xsMOM. In addition, we drop the CMA multifactor to form market
index I7 = CRSP + x1SMB + x;HML + x3RMW + xsMOM. Following the procedure in the text and
Table 2, monthly market index returns are scaled to contain no leverage. Monthly returns for a variety
of test assets are downloaded from French’s data website: 25 value-investment portfolios, 25 profit-
investment portfolios, 25 size-investment portfolios, 25 size-profit portfolios, 32 size-value-investment
portfolios, 32 size-value-profit portfolios, 32 size-profit-investment portfolios, and 30 industry portfo-
lios (see French’s website for details of these portfolios). A time-series regression is run using monthly
excess returns for the CRSP index for the full sample period to estimate CAPM betas for each of the
tests assets. Time-series regression analyses are repeated for the other market indexes. Cross-sectional
tests are conducted by estimating monthly rolling cross-sectional regressions with excess returns and
full sample betas for all sample months. The resultant monthly series of estimated market prices
of beta risk are averaged over all sample months to estimate A (and associated t-statistics are in
parentheses).

Panel A: 25 Value-Investment Portfolios

Indexes 4 t-Value Am t-Value Adj. R?
I; = CRSP 0.77 2.93 -011  —-0.34 —0.04
I = CRSP + SMB 0.49 241 0.13 0.75 —0.01
I3 = CRSP + SMB + HML 0.32 1.60 0.21 2.40 0.51
I4 = CRSP + SMB + HML + RMW 0.33 1.60 0.19 2.32 0.48
Is = CRSP + SMB + HML + RMW + CMA 0.45 2.40 0.16 2.47 0.54
Is = CRSP + SMB + HML + RMW + CMA + MOM 0.49 2.60 0.21 2.52 0.53
I7 = CRSP + SMB + HML + RMW + MOM 0.30 1.38 0.29 2.39 0.50
Panel B: 25 Profit-Investment Portfolios
Indexes 4 t-Value Am t-Value Adj. R?
I; = CRSP 1.29 491 —-0.69  —223 0.25
I = CRSP + SMB 1.05 5.13 -035 —1.95 0.19
I3 = CRSP + SMB + HML 0.45 2.10 0.09 0.74 —0.02
Iy = CRSP + SMB + HML + RMW 0.00 0.01 0.43 3.61 0.52
Is = CRSP + SMB + HML + RMW + CMA 0.36 1.70 0.26 3.36 0.54
Is = CRSP + SMB + HML + RMW + CMA + MOM 0.46 2.32 0.29 3.34 0.59

I; = CRSP + SMB + HML + RMW + MOM 0.17 0.65 0.44 3.40 0.56
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Table 8. Cont.

Panel C: 25 Size-Investment Portfolios

Indexes & t-Value Ay  t-Value Adj. R?
I; = CRSP 1.04 3.83 —0.28 —0.84 0.01
I = CRSP + SMB 0.62 2.94 0.07 0.43 —0.03
I3 = CRSP + SMB + HML 0.20 0.94 0.30 2.32 0.39
Iy = CRSP + SMB + HML + RMW 0.07 0.31 0.41 4.16 0.60
Is = CRSP + SMB + HML + RMW + CMA 0.42 1.90 0.30 4.52 0.62
Is = CRSP + SMB + HML + RMW + CMA + MOM 0.53 243 0.34 4.54 0.64
I; = CRSP + SMB + HML + RMW + MOM 0.16 0.70 0.48 4.35 0.63
Panel D: 25 Size-Profit Portfolios
Indexes 14 t-Value Am t-Value Adj. R?
I = CRSP 0.47 1.41 0.21 0.55 —0.02
I, = CRSP + SMB 0.31 1.37 0.24 1.40 0.15
I3 = CRSP + SMB + HML 0.18 0.83 0.29 212 0.39
Iy = CRSP + SMB + HML + RMW 0.19 0.91 0.30 3.86 0.85
Is = CRSP + SMB + HML + RMW + CMA 0.39 1.87 0.30 3.85 0.75
Is = CRSP + SMB + HML + RMW + CMA + MOM 0.52 2.54 0.31 3.85 0.75
I; = CRSP + SMB + HML + RMW + MOM 0.32 1.57 0.32 3.89 0.84
Panel E: 32 Size-Value-Investment Portfolios
Indexes 4 t-Value Am t-Value Adj. R?
I; = CRSP 0.51 1.53 0.22 0.56 —0.01
I, = CRSP + SMB 0.33 1.49 0.27 1.63 0.19
I3 = CRSP + SMB + HML 0.22 1.11 0.29 3.06 0.58
Iy = CRSP + SMB + HML + RMW 0.29 1.39 0.25 3.33 0.46
Is = CRSP + SMB + HML + RMW + CMA 0.48 2.40 0.20 3.40 0.44
Is = CRSP + SMB + HML + RMW + CMA + MOM 0.52 2.64 0.27 3.61 0.48
I; = CRSP + SMB + HML + RMW + MOM 0.26 1.27 0.36 3.56 0.54
Panel F: 32 Size-Value-Profit Portfolios
Indexes & t-Value Am t-Value Adj. R?
I; = CRSP 1.17 3.54 —0.42 -1.15 0.02
I, = CRSP + SMB 0.60 2.71 0.08 0.48 —0.02
I3 = CRSP + SMB + HML —0.01 —0.05 0.40 423 0.56
Iy = CRSP + SMB + HML + RMW 0.13 0.58 0.32 4.79 0.73
I5 = CRSP + SMB + HML + RMW + CMA 0.40 1.87 0.26 4.49 0.66
Is = CRSP + SMB + HML + RMW + CMA + MOM 0.49 2.38 0.31 4.54 0.67
I; = CRSP + SMB + HML + RMW + MOM 0.21 0.92 0.40 491 0.75
Panel G: 32 Size-Profit-Investment Portfolios
Indexes 14 t-Value Am t-Value Adj. R?
I; = CRSP 1.04 3.62 —0.33 —0.94 0.00
I, = CRSP + SMB 0.57 2.78 0.08 0.50 —0.02
I3 = CRSP + SMB + HML 0.15 0.75 0.32 2.59 0.26
Iy = CRSP + SMB + HML + RMW —0.03 —0.12 0.45 5.85 0.67
I5 = CRSP + SMB + HML + RMW + CMA 0.30 1.45 0.37 6.20 0.69
Is = CRSP + SMB + HML + RMW + CMA + MOM 0.43 2.16 0.42 6.53 0.75
I; = CRSP + SMB + HML + RMW + MOM 0.10 0.50 0.51 6.36 0.76
Panel H: 30 Industry Portfolios
Indexes 14 t-Value Am t-Value Adj. R?
I; = CRSP 0.67 2.99 —0.06 —0.20 —0.03
I, = CRSP + SMB 0.66 3.64 —0.03 —0.18 —0.03
I3 = CRSP + SMB + HML 0.71 424 —0.06 —0.52 0.01
Iy = CRSP + SMB + HML + RMW 0.60 3.42 0.01 0.11 —0.03
I5 = CRSP + SMB + HML + RMW + CMA 0.61 3.31 0.00 —0.01 —0.04
Is = CRSP + SMB + HML + RMW + CMA + MOM 0.60 3.04 0.03 0.35 —0.02
I; = CRSP + SMB + HML + RMW + MOM 0.55 2.88 0.05 0.59 —0.01
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Not surprisingly, in Panel H’s results for industry portfolios, market indexes I to Iy
are not significantly priced. It is well-known that common market indexes and popular
multi-factors are not priced using exogenous industry portfolios. Hence, a shortfall in the
asset priciing literature is the absence of an aggregate industry factor.

3.6. Index Construction with Industry Factors

Our findings above indicate that efficient market indexes can be constructed from the
CRSP index in combination with popular multifactors. These market indexes do a good
job of pricing widely-used test assets with characteristics similar to the multifactors, but
are not useful in pricing industry portfolios. Unfortunately, there is no single industry
factor available.

Industry returns are different from other common risk factors based on firm charac-
teristics (e.g., size, book-to-market, profit, and capital investment) or stock characteristics
(e.g., winner and loser stock returns). A problem in forming an aggregate industry index is
that different industries tend to be independent of one another.'> A shared common risk
factor across industries (other than the market factor) is not directly observed. We propose
a possible solution to this problem. Using the 30 industry test assets, we initially form a
pure long/short portfolio that is long a particular industry and short an equal quantity of
Treasury bills. We then combine these 30 industry factors to construct a single industry
index based on our multifactor market index methods using relative Sharpe ratio weights
in Section 2. In addition, we combine the CRSP index, multifactors, and industry factors to
construct a new multifactor market index.

Regarding our earlier cross-sectional tests, we found that the results for a multifactor
market index were independent of the order with which multifactors were added one-by-
one to the obtained more efficient index. This robustness holds as long as the multifactors
themselves are priced factors. Each time we add a new factor to the base market index, we
only add in the net part which is not included in the base market index obtained in previous
step. It is important to note that, if the new factor has large noise, it will not contribute
to increasing the efficiency of the market index. Its noise component will be treated as
the net part to add to the base market index and, subsequently, will remain embedded in
the market index through the iterative steps of adding different multifactors to the index.
To mitigate this potential noise, we add industry factors with relatively smaller volatility
prior to higher volatility industry factors. Following this ordered procedure, we compute a
single industry index denoted IND.

Cross-sectional asset pricing tests of industry index IND are provided in Table 9. As
shown there, when using the 30 industry portfolios as the test assets, this industry index
is positively priced, i.e., Ajyp = 0.82 (t = 2.50).'° For other test assets based on firm
characteristics, however, IND is normally significantly priced but negatively so and not
priced for profit-investment and size-profit portfolios.

For comparison purposes, we also construct a simple industry index denoted SIND,
which is defined as an equal-weighted portfolio of the 30 industry factors. The cross-
sectional test results in Table 10 show that SIND is not priced in the 30 industry portfo-
lios and most other test assets, with the exceptions of being negatively priced for value-
investment and profit-investment portfolios.

As a last step, we add the five popular multifactors plus 30 industry portfolios to
the CRSP index using relative Sharpe ratio weights as defined in Section 2. Factors are
added in the order discussed above, i.e., smaller volatility factors before other factors.
The obtained multifactor market index denoted Ig yields the cross-sectional test results in
Table 11. All test assets, including industry portfolios (i.e., significant at the 5 percent level),
are priced by this aggregate market index. Most of the t-values for different test assets
exceed the recommended 3.0 threshold. For size-profit-investment portfolios the t-value
reaches a high of 5.9, which is extraordinary in view of the very low and insignificant
t-values associated with the market factor in almost all published asset pricing studies.
Except for the value-investment portfolios, R? values range from 41 percent to 76 percent,
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which implies relatively high goodness-of-fit for a single factor model. Interestingly, all
of the estimated mispricing terms & using Ig as the market factor are insignificant. These
mispricing results bode well for the single factor CAPM. We infer that multifactor market
index Ig provides a superior market index for researchers to employ in asset pricing studies.

Table 9. Cross-sectional asset pricing tests of a single industry index incorporating 30 industry factors
using relative Sharpe ratio weights for a variety test asset portfolios: July 1963—December 2016. Based
on CRSP stock return data in the sample period July 1963 to December 2016, this table provides Fama
and MacBeth (1973) cross-sectional tests of a single industry index incorporating 30 industry factors
denoted IND. Each industry factor is defined as a pure long/short portfolio that is long a particular
industry and short an equal quantity of Treasury bills. The single industry index IND is formed by
combining the 30 industry factors based on the relative Sharpe ratio weighted methods defined in
Section 2. Monthly returns for a variety of test assets are downloaded from French’s data website:
30 industry portfolios, 25 size-value portfolios, 25 value-investment portfolios, 25 profit-investment
portfolios, 25 size-investment portfolios, 25 size-profit portfolios, 32 size-value-investment portfolios,
32 size-value-profit portfolios, and 32 size-profit-investment portfolios (see French’s website for
details of these portfolios). A time-series regression using monthly excess returns is run for the full
sample period to estimate industry betas for each of the tests assets with respect to industry index
IND. Following the procedure in the text and Table 2, monthly industry index returns are scaled to
contain no leverage. Cross-sectional tests are conducted by estimating monthly rolling cross-sectional
regressions with excess returns and full sample industry betas for all sample months. The resultant
monthly series of estimated market prices of industry beta risk are averaged over all sample months
to estimate A;yp (and associated t-statistics are in parentheses).

Test Assets & AND Adj. R?
30 industry portfolios 0.06 0.82 0.65
(0.19) (2.50)
25 size-value portfolios 2.08 —-223 0.29
(5.26) (=3.71)
25 value-investment portfolios 1.63 —1.54 0.32
(3.56) (—2.28)
25 profit-investment portfolios 0.47 0.19 —0.04
(1.24) (0.32)
25 size-investment portfolios 2.47 —2.85 0.57
(5.46) (—4.27)
25 size-profit portfolios -0.15 1.39 0.12
(0.416) (2.74)
32 size-value-investment portfolios 245 —2.79 0.49
(5.11) (—4.11)
32 size-value-profit portfolios 1.92 —1.94 0.07
(3.98) (—2.50)
32 size-profit-investment portfolios 1.53 —1.37 0.04
(4.43) (—2.69)

3.7. Is Momentum a Strong Factor?

Because momentum was significantly priced after removing the excess returns of
different multifactor market indexes from the 25 size-value test assets (see Table 7), we
designated it as a possible strong factor. As mentioned earlier, strong factors supplement
multifactor market indexes to improve model specification.

In Table 12 we report the cross-sectional tests for two-factor models comprised of
multifactor market indexes I5, Is, I7, and Ig augmented with the momentum factor (MOM).
Note that Is, I7, and Ig contain the momentum multifactor. Referring to Table 12, we find
that momentum loadings are significantly priced in the following tests: Panel A for the
25-size-value test asset portfolios in combination with I5, I, and Iy but not Ig; Panel D for
25 size-investment portfolios in combination with Ig; Panel F for 32 size-value-investment
portfolios in combination with I5, I, and I; but not Ig; and Panel H for 32 size-profit-
investment portfolios in combination with all four multifactor market indexes.
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Table 10. Cross-sectional asset pricing tests of a simple industry index incorporating equal-weighted
industry factors for a variety test asset portfolios: July 1963-December 2016. Based on CRSP stock
return data in the sample period July 1963 to December 2016, this table provides Fama and MacBeth
(1973) cross-sectional tests of a simple industry index denoted as SIND. Each industry factor is
defined as a pure long/short portfolio that is long a particular industry and short an equal quantity of
Treasury bills. The single industry index SIND is formed by combining the 30 industry factors into an
equal-weighted portfolio. Monthly returns for a variety of test assets are downloaded from French’s
data website: 25 value-investment portfolios, 25 profit-investment portfolios, 25 size-investment
portfolios, 25 size-profit portfolios, 32 size-value-investment portfolios, 32 size-value-profit portfolios,
32 size-profit-investment portfolios, and 30 industry portfolios (see French’s website for details of
these portfolios). A time-series regression using monthly excess returns is run for the full sample
period to estimate industry betas for each of the tests assets with respect to market index SIND.
Cross-sectional tests are conducted by estimating monthly rolling cross-sectional regressions with
excess returns and full sample industry betas for all sample months. The resultant monthly series of
estimated market prices of industry beta risk are averaged over all sample months to estimate Agyap
(and associated t-statistics are in parentheses).

Test Assets [ AsIND Adj. R?
30 industry portfolios 0.64 —0.03 —0.03
(2.98) (—0.09)
25 size-value portfolios 0.89 —0.16 —0.03
(2.27) (—0.34)
25 value-investment portfolios 0.51 0.16 —0.03
(3.56) (—2.28)
25 profit-investment portfolios 1.21 —0.67 0.16
(4.45) (—1.89)
25 size-investment portfolios 0.81 —0.08 —0.04
(2.78) (—0.20)
25 size-profit portfolios 0.06 0.62 0.14
(0.17) (1.52)
32 size-value-investment portfolios 0.23 0.51 0.08
(0.66) (1.22)
32 size-value-profit portfolios 0.63 0.08 —0.03
(1.83) (0.20)
32 size-profit-investment portfolios 0.67 0.02 —0.03
(2.23) (0.05)

We interpret these results to suggest that momentum is a possible strong factor for all
four multifactor market indexes tested, as it continues to be significantly priced in some
test assets even if included in respective multifactor market indexes. Nonetheless, as the
efficiency of multifactor market indexes increases via the addition of more feasible factors
(e.g., based on cross-sectional f-values), the hurdle for strong factors such as momentum
will increase. It is conceivable that future research using more efficient multifactor market
indexes will eliminate momentum as a possible strong factor.

3.8. Discussion

Multifactor market indexes have both academic and practical applications. In aca-
demic studies, as discussed in Section 2, many different asset pricing models are popular in
the literature nowadays. Certainly more models with innovative factors will be proposed
in coming years. Which factors should be used by researchers? Our multifactor market
index approach enables researchers to reduce this problem to a manageable set of aggregate
indexes and strong factors. In this way, not only can all discovered factors be incorporated
into multifactor aggregate indexes, but parsimonious models can be specified for broad
usage in academic research. For practitioners, multifactor market indexes represent in-
vestable strategies to construct efficient portfolios for investment purposes. Hence, portfolio
managers can utilize significant factors in academic studies to boost their returns per unit
risk for clients. In turn, Markowitz’s (1959) mean-variance portfolio theory can be applied
to create well diversified, efficient portfolios.
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Table 11. Cross-sectional asset pricing tests of a multifactor market index incorporating five popular
multifactors and 30 industry factors for a variety test asset portfolios: July 1963—December 2016.
Based on CRSP stock return data in the sample period July 1963 to December 2016, this table provides
Fama and MacBeth (1973) cross-sectional tests of a multifactor market index denoted Ig incorporating
five popular multifactors and 30 industry factors. Each industry factor is defined as a pure long/short
portfolio that is long a particular industry and short an equal quantity of Treasury bills. Index Ig is
formed by adding five popular multifactors (viz., size, value, profit, investment, and momentum)
plus 30 industry factors to the CRSP index based on the relative Sharpe ratio weighted methods
defined in Section 2. Monthly returns for a variety of test assets are downloaded from French’s
data website: 30 industry portfolios, 25 value-investment portfolios, 25 profit-investment portfolios,
25 size-investment portfolios, 25 size-profit portfolios, 32 size-value-investment portfolios, 32 size-
value-profit portfolios, and 32 size-profit-investment portfolios (see French’s website for details of
these portfolios). A time-series regression using monthly excess returns is run for the full sample
period to estimate CAPM betas for each of the tests assets with respect to market index Ig. Following
the procedure in the text and Table 2, monthly market index returns are scaled to contain no leverage.
Cross-sectional tests are conducted by estimating monthly rolling cross-sectional regressions with
excess returns and full sample betas for all sample months. The resultant monthly series of estimated
market prices of beta risk are averaged over all sample months to estimate Ay, (and associated
t-statistics are in parentheses).

Test Assets & Am Adj. R?

30 industry portfolio 0.33 0.20 0.41
(1.27) (2.01)

25 size-value portfolios —0.20 0.59 0.63
(—0.82) (4.43)

25 value-investment portfolios 0.36 0.20 0.12
(1.49) (.11

25 profit-investment portfolios 0.06 0.39 0.76
(0.25) (4.15)

25 size-investment portfolios —0.02 0.47 0.65
(—0.08) (4.02)

25 size-profit portfolios 0.12 0.38 0.79
(0.56) (3.51)

32 size-value-investment portfolios —0.00 0.46 0.62
(—0.02) (3.82)

32 size-value-profit portfolios -0.17 0.59 0.68
(—0.71) (5.03)

32 size-profit-investment portfolios —0.07 0.49 0.71

(—0.34) (5.91)
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Table 12. Cross-sectional asset pricing tests of a two-factor model containing different multifactor
market indexes augmented with the momentum factor for a variety of test asset portfolios: July 1963—
December 2016. Based on CRSP stock return data in the sample period July 1963 to December 2016,
this table provides Fama and MacBeth (1973) cross-sectional tests of two-factor models comprised
of different multifactor market indexes augmented with the momentum factor. Downloaded from
Kenneth French’s website, the multifactors are: size (SMB), value (HML), profit (RMW), capital
investment (CMA), and momentum (MOM). Multifactor market indexes are formed using the
following steps. First, the size (SMB) factor monthly returns are regressed on CRSP index (I;)
excess returns over the Treasury bill rate. The residual term from this regression is utilized as the
orthogonalized factor. Second, this orthogonalized size factor is added to the CRSP index using
Equation (11) to compute the return for the new multifactor market index I, as R(I;) = R([;) +
x1SMB. Third, value (HML) factor returns are regressed on the new R(I;) + x1SMB portfolio excess
returns to obtain the orthogonalized value factor. This residual value factor is added to the CRSP +
SMB portfolio to get market index I3 = CRSP + x;SMB + x;HML. Fourth, the last step is repeated to
sequentially create market index Iy = CRSP + x1SMB + x,HML + x3RMW, market index I5 = CRSP +
x1SMB + x;HML + x3RMW + x4,CMA, and market index I = CRSP + x1SMB + x,HML + x3RMW +
x4CMA + xsMOM. We drop the CMA multifactor to form market index I; = CRSP + x;SMB +
xHML + x3RMW + x5MOM. In addition, we form market index Ig = CRSP + x{SMB + x,HML +
23RMW + xsMOM + (x4 to x35) X (1 to 30) industry factors, which are defined as the industry
index return minus the Treasury bill rate. Following the procedure in the text and Table 2, monthly
market index returns are scaled to contain no leverage. Monthly returns for a variety of test assets
are downloaded from French’s data website: 25 value-investment portfolios, 25 profit-investment
portfolios, 25 size-investment portfolios, 25 size-profit portfolios, 32 size-value-investment portfolios,
32 size-value-profit portfolios, 32 size-profit-investment portfolios, and 30 industry portfolios (see
French’s website for details of these portfolios). A time-series regression is run for the full sample
period to estimate multifactor market and momentum factors” betas for each of the tests assets.
Time-series regression analyses are repeated for the I5, Is, Iy, and Ig multifactor market indexes.
Cross-sectional tests are conducted by estimating monthly rolling cross-sectional regressions with
excess returns and full sample betas for all sample months. The resultant monthly series of estimated
market prices of beta risk are averaged over all sample months to estimate Ay (and associated
t-statistics are in parentheses).

Panel A: 25 Size-Value Portfolios

Factors 14 t-Value Am t-Value Arom t-Value Adj. R?
Is, MOM 0.74 3.43 0.25 3.82 1.87 342 0.65
Is, MOM 0.74 343 0.50 4.50 1.87 342 0.65
I;, MOM 0.37 1.43 0.73 5.43 2.47 3.93 0.79
Is, MOM -0.27 —1.02 0.48 2.65 0.55 0.66 0.64

Panel B: 25 Value-Investment Portfolios

Factors 14 t-Value Am t-Value Amom t-Value Adj. R?
Is, MOM 0.46 2.65 0.17 2.36 0.06 0.10 0.52
Is, MOM 0.46 2.65 0.15 1.20 0.06 0.10 0.52
I, MOM 0.30 1.36 0.27 1.48 0.43 0.64 0.48
Is, MOM 0.18 0.73 0.08 0.73 —0.57 —1.10 0.44

Panel C: 25 Profit-Investment Portfolios

Factors ) t-Value Am t-Value Arom t-Value Adj. R?
Is, MOM 047 2.46 0.25 3.27 0.53 1.02 0.57
Is, MOM 0.47 2.46 0.29 2.74 0.53 1.02 0.57
I, MOM 0.09 0.36 0.42 2.99 0.45 0.86 0.55

Is, MOM 0.00 0.01 0.37 3.47 0.59 1.11 0.76
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Table 12. Cont.

Panel D: 25 Size-Investment Portfolios

Factors ) t-Value Am t-Value Avom t-Value Adj. R?
Is, MOM 0.51 2.94 0.29 4.49 0.49 0.74 0.62
Is, MOM 0.51 2.94 0.32 2.76 0.49 0.74 0.62
I, MOM 0.16 0.76 0.48 3.82 0.82 1.43 0.62
Is, MOM 0.03 0.14 0.57 4.02 1.66 2.65 0.65

Panel E: 25 Size-Profit Portfolios

Factors 14 t-Value Am t-Value Arom t-Value Adj. R?
I5, MOM 0.44 2.50 0.29 3.65 0.11 0.19 0.75
Is, MOM 0.44 2.50 0.26 2.67 0.11 0.19 0.75
I;, MOM 0.25 1.35 0.27 2.70 0.16 0.27 0.84
Is, MOM —0.03 —-0.14 0.30 3.15 0.10 0.17 0.81

Panel F: 32 Size-Value-Investment Portfolios

Factors 14 t-Value Am t-Value Amom t-Value Adj. R?
Is, MOM 0.60 3.25 0.26 4.18 1.27 2.56 0.49
Is, MOM 0.60 3.25 0.41 4.05 1.27 2.56 0.49
I, MOM 0.30 1.45 0.68 4.08 2.15 3.29 0.60
Is, MOM —0.14 —0.57 0.33 2.82 0.02 0.04 0.70

Panel G: 32 Size-Value-Profit Portfolios

Factors ) t-Value Am t-Value Arom t-Value Adj. R?
Is, MOM 0.46 2.26 0.26 4.56 0.31 0.53 0.66
Is, MOM 0.46 227 0.27 2.56 0.31 0.53 0.66
I, MOM 0.20 0.85 0.38 342 0.57 1.04 0.74
Is, MOM —0.34 —1.26 0.35 291 —0.26 —0.44 0.77

Panel H: 32 Size-Profit-Investment Portfolios

Factors 14 t-Value Am t-Value Amom t-Value Adj. R?
Is, MOM 0.54 3.02 0.34 5.54 1.36 2.85 0.76
Ig, MOM 0.54 3.02 0.50 6.20 1.36 2.85 0.76
I, MOM 0.21 1.09 0.59 6.96 1.51 3.30 0.76
Is, MOM —0.04 —0.18 0.51 7.01 1.24 2.81 0.71

Panel I: 30 Industry Portfolios

Factors 14 t-Value Am t-Value Amom t-Value Adj. R?
Is, MOM 0.65 3.79 0.02 0.28 0.32 0.65 —0.01
Is, MOM 0.65 3.79 0.06 0.61 0.32 0.65 —0.01
I, MOM 0.60 3.36 0.11 0.96 0.43 0.87 0.03
Is, MOM 0.30 1.34 0.20 1.98 0.37 0.84 0.39

4. Conclusions

This paper sought to mitigate the model mall problem associated with the growing list
of factors in asset pricing. To do this, we proposed the construction of efficient multifactor
market indexes that combine the CRSP index with popular investable multifactors. To
demonstrate this approach, size, value, profit, capital investment, and momentum mul-
tifactors were sequentially added to the CRSP index. In the sample period July 1963 to
December 2016, as multifactors were added to the CRSP index, multimarket market in-
dexes became increasingly less correlated with the CRSP index and more efficient than the
CRSP index. Importantly, market betas associated with most of these multifactor market
indexes were significantly priced in cross-sectional asset pricing tests with economically
meaningful market prices of risk. With the exception of industry portfolio test assets, the
t-values associated with multifactor market index betas generally exceeded the recom-
mended 3.0 threshold for the significance of an asset pricing factor. In addition, we found
that multifactors were less likely to be significantly priced in cross-sectional tests when the
market index contained the respective multifactors. One exception was the momentum
factor, which was significantly priced even when contained in multifactor market indexes.
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We inferred that momentum may be a strong factor in the sense that it can serve to augment
multifactor market indexes in models comprised of two or more factors.

Further analyses demonstrated how a single industry index can be constructed by com-
bining numerous industry indexes. This new aggregate industry index was significantly
priced among industry portfolios, for which the CRSP index and multifactors are typically
not priced. When popular multifactors and industry factors were combined with the CRSP
index into a multifactor market index, the resultant market factor was significantly priced
across a wide variety of test assets including industry portfolios. Exemplary of our findings,
a very high t-value of 5.91 was achieved for size-value-investment portfolios. In tests of
this market index across different test assets, the goodness-of-fit was relatively high and
comparable to traditional multifactor models, and no mispricing was detected.

When multifactor market indexes were augmented with the momentum factor in a
two-factor model, momentum loadings were significant in a number of different test assets,
but not all test assets. We conclude that momentum is a possible strong factor that is priced
at times even when contained in the two-factor model’s multifactor market index. Future
research is needed to determine if, as multifactor market indexes become more efficient
with the inclusion of more feasible factors, momentum remains a priced factor.

Based on our empirical results, we conclude that: (1) multifactor market indexes are
more efficient than the CRSP market index, and (2) market beta is significantly priced for
these multivariate market index proxies. Hence, we infer that multifactors are not separate
risk factors but rather help jointly in combination with a general stock market index to better
proxy efficient market portfolios. An important implication of our findings is that asset
pricing models incorporating a market factor (including unconditional and conditional
empirical models) would benefit from employing multifactor market indexes rather than
the CRSP index or other general market indexes. More parsimonious low-dimensional
models can be developed that incorporate multifactor market indexes to substantially
reduce factor and model selection problems. That is, rather than creating an increasing
number of asset pricing models featuring different multifactors, most of the multifactors
can be productively utilized to form more efficient multifactor market indexes. Most
investable factors will likely be absorbed into a multifactor market index. Noninvestable
factors, such as market volatility, macroeconomic state variables, etc., cannot be combined
into an investable multifactor market index and, therefore, could be prospects as strong
factors in a low-dimensional model. More generally, by combining many proven factors
into a single aggregate market index, it is possible that better asset pricing models can be
constructed that capture the collective significance of numerous risk dimensions associated
with a wide array of factors.

Future research is recommended on efficient multifactor market indexes to reduce
the problems of factor and model selection in various asset pricing applications, such as
event studies of corporate and other major events, investment performance studies of
mutual funds and hedge funds, and other studies that rely upon asset pricing models in
their empirical analyses. Importantly, a practical implication is that investors can readily
form multifactor market indexes by combining (for example) a tradeable S&P 500 index
with ETFs related to size, value, momentum, and other multifactors. These new aggregate
indexes have the potential to outperform the S&P 500 index, a common benchmark used
to evaluate institutional investors. Investors seeking portfolios with higher returns per
unit risk would benefit from efficient ETFs and other multifactor index products, especially
those saving for retirement.
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Notes

1

12

13

16

See also Lettau and Pelger (2020), who utilized Principal Component Analysis (PCA) methods to reduce the number of potential
factors to a parsimonious set of latent factors. They found that five factors with economic content help to explain the cross-section
and time-series of returns.

For example, the three moment CAPM (Rubinstein (1973) and Kraus and Litzenberger (1976)), consumption CAPM (Breeden 1979),
conditional CAPM (Jagannathan and Wang (1996) and Ferson and Harvey (1999)), liquidity-based models (Pastor and Stambaugh
(2003), Acharya and Pedersen (2005), and Li et al. (2019)), intertemporal CAPM (ICAPM) (Petkova 2006), interest-rate-based
models Campbell (1996), cross-factor models Fama and French (2020), among others.

As such, the intercept equals zero, and the beta factor loading matrix is unchanged.

Numerous papers have found that various long-only market indexes are not mean-variance efficient portfolios (e.g., see Gibbons
et al. (1989); Gibbons (1982); Jobson and Korkie (1982); Kandel (1984); Shanken (1985, 1986); Kandel and Stambaugh (1987a,
1987b); Gibbons et al. (1989); Haugen and Baker (1991); MacKinlay and Richardson (1991); Zhou (1993); Briere et al. (2013), and
others). According to Brennan and Lo (2010), it is virtually impossible for long-only market indexes to be efficient portfolios.
Supporting this proposition, many studies have found that short positions are needed to achieve efficiency (e.g., see Pulley (1981);
Levy (1983); Kallberg and Ziemba (1983); Kroll et al. (1984); Green and Hollifield (1992); Jagannathan and Ma (2003); Brennan and
Lo (2010); Levy and Ritov (2010), and others). More generally, Kothari et al. (1995) have argued that the equity portfolio most
highly correlated with the market portfolio is efficient.

Also, if the expected return of the zero-cost factor portfolio is zero, the Sharpe ratio will not be increased by adding it to a
candidate market index. Note that any zero-cost asset that is uncorrelated with the tangency portfolio has an expected return
equal to the riskless rate such that its excess return is zero.

As shown there, the definitions of the multifactors are as follows: size (SMB) is the average return on the nine small stock
portfolios minus the average return on the nine big stock portfolios; value (HML) is the average return on the two value
portfolios minus the average return on the two growth portfolios; profit (RMW) is the average return on the two robust operating
profitability portfolios minus the average return on the two weak operating profitability portfolios; capital investment (CMA) is
the average return on the two conservative investment portfolios minus the average return on the two aggressive investment
portfolios; and momentum (MOM) is the average return on the two high prior return portfolios minus the average return on the
two low prior return portfolios.

These weights are averages using different orders of entry in forming indexes based on a rotation of factors. For example, I3 can
be formed by starting with CRSP, adding SMB, and then adding HML. Alternatively, we can start with SMB, add HML, and then
CRSP. Finally, we could add them in the order HML, SMB, and CRSP. We average weights for each factor across these rotational
combinations of order entry. While the order in which portfolios is combined changes their relative weights, the Sharpe ratios
and other performance metrics of respective aggregate indexes as well as forthcoming cross-sectional tests were little changed.
Rearranging terms, we have: R(Ip+) = R(I1+) + x1 Fjiew — R(I¢) + x1[F1 s — B1R(I1+)]. Since both R(I; ;) and F; ¢ are deleveraged
portfolios, we can deleverage R(Ip;) by dividing its return by 1+ x1 (1 — B1).

See also Roll (1977, p. 130), who also observed that most proxies for the market portfolio are very highly correlated.

They also included a time-varying market factor to capture beta instability over time (i.e., the BAA minus AAA bond yield
spread), which was found to be significantly priced. Hence, they concluded that, even though the static CAPM assuming constant
beta over time is not supported, the conditional CAPM allowing betas and expected returns to vary over time is supported.

The GRS test statistic has a noncentral F distribution with degrees of freedom N (25 portfolios) and T — N — 1 (T 654 months). As
the noncentrality parameter increases, the probability of rejecting a false null hypothesis tends to increase. According to tests in
Gibbons et al. (1989, pp. 1130-38), the power of our tests should be sufficient to detect deviations from the efficiency of the index.

Following standard practice, adjusted R? values are estimated by regressing the average excess returns for test asset portfolios in
the full sample period on their full sample beta estimates.

By contrast, CMA is positive but not significantly priced for market indexes I; and I, based on the CRSP index and CRSP +
SML market index, respectively, but it is significantly priced with market indexes I3 and I5 containing the CMA portfolio. These
unexpected results for CMA are difficult to interpret due to being negatively (rather than positively) priced when significant.

Multifactor market index Iy does not eliminate the significance of the SMB, HML, RMW, and MOM factors even though these
factors are contained in this index. However, the markedly lower R? value of 42 percent for this market index indicates that these
factors’ residual explanatory power is substantially diminished by market index I7.

Early work on industry as an asset pricing factor by King (1966) and Meyers (1973) found that, based on principal components
analyses of U.S. stock returns, most components could not be identified with specific industry groups. Components were only
weakly associated with industry classifications.

Unreported in Table 9, we also tested a two-factor model with the excess return on the CRSP index (I;) and industry factor (IND).
Using 30 industry portfolios as test assets, both factors are significantly priced with t-values of 2.12 and 2.98, respectively. The
correlation between these two factors was relatively high at 0.60.
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