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Abstract: We formulate a measure of information efficiency in a general, no-arbitrage semimartingale
model of the price process. The market quality measure is applied to a high-frequency dataset from
the interdealer FX market to identify changes in market efficiency after a decimalization of tick size.
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1. Introduction

It is a fundamental theorem of asset pricing that the no-arbitrage condition of price
is characterized by semimartingales in the continuous-time setting.1 In this framework,
a substantial body of the high-frequency econometrics literature has been devoted to
estimating semimartingale characteristics of price series that are also of economic interest—
see Barndorff-Nielsen and Shephard (2004), Lee and Mykland (2008), and Aït-Sahalia and
Jacod (2009) for theoretical discussions and Andersen et al. (2007b), Andersen et al. (2007a),
and Andersen et al. (2010) for empirical implementations. On the other hand, the notion
of efficient markets formulated by Fama (1970), which led to a martingale benchmark,
has been tested in a many empirical contexts. Most tests derive from regression-based
statistics in discrete-time settings (see, for example, Hendershott et al. (2011), Brogaard
et al. (2014), Hasbrouck and Saar (2013), and Chaboud et al. (2014). The question of
information efficiency can be posed in the high-frequency setting just as well as in the
discrete-time setting. The no-arbitrage condition contains an informationally efficient
market as the special case where the equivalent martingale measure and physical measure
coincide. It is, therefore, natural to consider whether the null hypothesis of informationally
efficiency can be tested in a general semimartingale model. This question is given further
impetus as researchers continue to confront fundamental issues of market quality as market
participants and technology operate at an ever-increasing frequency. In this paper, we
formulate a measure of price impact and information efficiency in a general, continuous-
time semimartingale framework. Our measure can be directly taken to data via high-
frequency econometric techniques, thereby extending the consideration of market efficiency
from discrete-time settings to continuous-time, as demanded by high-frequency data.2

Our measure is demonstrated in the setting of the interdealer FX market. We observe
that prices from the interdealer FX market became informationally efficient after a deci-
malization of tick size. The implications of this observation are discussed in the context
of FX market microstructure. In particular, our information efficiency measure, together
with a complementary analysis from the limit order book, point to the conclusion that
the decimalization of tick size led to more intensified market-making by high-frequency
traders, relative to their manual counterparts. This intensified competition among liquidity
providers, in turn, made prices more efficient.

In addition to the martingale framework of market efficiency, there has been a new and
growing literature addressing the impact of social networks on the information efficiency
of financial markets. Social networks and media allow market participants to acquire
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and exchange information. Cai et al. (2016) document a significant relationship between
stock transaction costs and a company’s social network ties to the investment community.
Gu and Kurov (2020) find that Twitter sentiment predicts stock returns without subse-
quent reversals. Jing and Zhang (2021) show that there is a positive relationship between
connection through social networks and inter-firm investment similarity. While social
network is becoming increasingly relevant to price discovery in various other markets, its
impact on the inter-dealer FX market is negligible, to the best of our knowledge, and the
primary information transmission mechanism remains the limit order book. Therefore,
our high-frequency market efficiency measure, derived in the martingale framework, is
appropriate in this empirical setting.3

The rest of this paper is organized as follows. Section 2 formulates the market efficiency
null hypothesis in the semimartingale model. Section 3 derives the corresponding test
statistic. Section 4 applies our methodology to high-frequency exchange rate series from
the interdealer FX market. Section 5 discusses our findings on market efficiency in the FX
context and compares with earlier studies. Section 6 concludes.

2. Market Efficiency in Semimartingale Model
2.1. Semimartingale Model

According to the First Fundamental Theorem of Asset Pricing, an arbitrage-free price
process is necessarily a semimartingale. The corresponding empirical formulation that can
be taken to data is an Itô-semimartingale model of the following specification4

y(t) = α(t) +
∫ t

0
σ(s)dw(s) +

N(t)

∑
i=1

ji (1)

where the summand processes are independent and

1. α(t) is a process for which almost all sample paths are continuous and of finite
variation.

2. w is a standard Brownian motion.
3. The Itô integrand σ, the spot volatility process, is pathwise strictly positive, cádlág,

and locally bounded away from zero.
4. N(t) is a finite-activity, simple counting process such that, for all t > 0, N(t) < ∞

almost surely and {ji, i = 1, 2, · · · } is a countable family of non-zero random variables.
The i-th jump occurs at stopping time τi = mint≥0 N(t) ≥ i with magnitude ji.
In particular, the time series {ji, i = 1, 2, · · · } is adapted to the filtration {Fi, i =
1, 2, · · · }, where Fi is the σ-algebra generated by τi.

5. (α, σ) is independent of w.

Assumptions 1 and 2 describe general Itô-semimartingales. Assumption 3, the strict
positivity of the spot volatility process means that asset price is always risky. Assumption 4
specifies that, with probability 1, the sample paths of the price process have a finite number
of jumps on [0, t] for all 0 < t < ∞. While a semimartingale can have an infinite number of
jumps on a compact interval, e.g., an infinite activity Lévy process, this can be excluded
on empirical grounds, because jumps are caused by trades from large market orders and
time-between-trades is bounded below by the latency limit in the market.5 Assumption 5
precludes the leverage effect, i.e., the negative correlation between volatility and returns.

2.1.1. Large- and Small-Order Flows

The causes of price changes in the market are market orders that are executed against
limit orders. It is natural to classify market orders according to whether they lead to contin-
uous or discrete price changes. When a market order leads to a continuous adjustment of
price, we will classify this order as a small order. On the other hand, market orders that
causes discrete jumps in price will be classified as a large order. This classification directly
translates to the model of Equation (1). A continuous adjustment of price corresponds to
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the y(t) component with continuous sample paths, α(t) +
∫ t

0 σ(s)dw(s). Discrete jumps in

price correspond to the jump component
N(t)
∑

i=1
ji.

2.1.2. Liquidity Jumps and Information Jumps

Price impact is a measure of information asymmetry between liquidity providers
and their counterparties. A large and persistent price impact occurs when prevailing
prices are not informative and liquidity providers face adverse selection. The following
classification of jumps captures the notions of price impact and information efficiency in
the continuous-time semimartingale framework.

Definition 1. In the Itô semimartingale model of price given by Equation (1), the jump component
N(t) is said to generate liquidity jumps. if the sequence of jumps {ji, i = 1, 2, · · · } is a martingale
difference sequence with respect to the filtration {Fi, i = 1, 2, · · · }. Otherwise, it is said to generate
information jumps.

Our classification of jumps given in Definition 1 is the high-frequency analogue of the
discrete-time price impact regression

∆Pt = λQt + εt

where price revision ∆Pt is regressed on a signed order flow Qt and the coefficient λ is price
impact.6 When λ = 0, there is no information content in incoming orders and price revision
∆Pt = εt is white noise. When price follows the semimartingale model of Equation (1), a
market order arriving at time s has a price impact y(s)− y(s−), which is reflected in the
jump component of the process y(t). The jumps series, indexed by random jump times, are,
therefore, continuous-time analogue of the price revision series ∆Pt. When price revision
follows a martingale, corresponding to the case λ = 0, there is no information content in
incoming market orders, i.e., the jumps are liquidity jumps.7

Liquidity jumps and information jumps are attributable to uninformed and informed
order flow, respectively. Liquidity jumps are caused by noise trades made for liquidity
reasons; they generate zero price impact on average and have no directional trend. On the
other hand, a large order flow from informed traders may leave a non-zero price impact, as
well as exhibiting serial correlation. Staggered jumps in the same direction, arriving in a
clustered manner point to an informed order flow as informed traders, attempt to disguise
their private information by order-splitting.

In this formulation, price is, therefore, informationally efficient, in the sense of Fama
(1970) and Fama (1991), when jumps only consists of liquidity jumps. That is, price follows
a continuous-time martingale if jumps only consist of liquidity jumps. This is the statement
of the following proposition, whose proof is a straightforward application of Lèvy Optional
Sampling Theorem.

Proposition 1. The semimartingale

y(t) = α(t) +
∫ t

0
σ(s)dw(s) +

N(t)

∑
i=1

ji

is a martingale when the jump component N(t) generate liquidity jumps, as defined in Definition 1,
and α(t) = 0.

The estimated drift α̂ from high-frequency data is typically statistically insignificant.8

Therefore, in light of Proposition 1, the null hypothesis of information efficiency can be
empirically tested by estimating jumps from prices then testing the martingale hypothesis
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in the jump times series. Next, we outline the jump estimation methodology used in this
paper.

3. Empirical Methodology
3.1. Estimation of Jumps

We used the bipower variation technique of Barndorff-Nielsen and Shephard (2006)
for jump estimation, which exploits the fact that bipower variation contains no contribution
from the jump component because large jumps do not occur between two adjacent intervals
as the intervals become sufficiently small.

In the same notation as Equation (1), the jump component of y(t),
N(t)
∑

i=1
ji = y(t)− y(t−)

is denoted by ∆y(t). The integrated variance of y(t) is c(t) =
∫ t

0 σ2(s)ds < 0 for all t < ∞.9

The quadratic variation, or square bracket process, of y(t) is defined as

[y](t) = c(t) + ∑
s∈[0,t]

(∆y(s))2

and can be consistently estimated by realized volatility

[y](t) = plimM→∞

M

∑
j=1

(y(tj)− y(tj−1))
2

where t0 = 0 < t1 < · · · < tM = t are stopping times with lim
M→∞

sup
1≤j≤M

tj − tj−1 → 0 almost

surely.10

Denote the r-th absolute moment of u ∼ N (0, 1) by

µr = E[|u|r] = 2
r
2

Γ( 1
2 (r + 1))

Γ( 1
2 )

,

where Γ denotes the Gamma function. For r ∈ (0, 2),

1
µrµ2−r

{yM}
[r,2−r]
i

p→
∫ hi

h(i−1)
σ2(u)du,

where {yM}[r,2−r] is the bipower variation

{yM}[r,2−r] =
M

∑
j=2
|y(tj − 1)− y(tj−2)|r|y(tj)− y(tj−1)|2−r. (2)

The difference between realized volatility and bipower variation can, therefore, be
used to detect jumps.11 Under the null that the sample path has no jumps, one can obtain
the asymptotic result.

S =
log(∑

[ t
δ ]−1

j=1 y2
j )− log( 1

µ2
1

∑
[ t

δ ]−1
j=1 |yj||yj+1|)

(0.6091 ·max{ δ
t ,

∑
[ t

δ
]−3

j=1 |yj ||yj+1||yj+2||yj+3|

(∑
[ t

δ
]−1

j=1 |yj ||yj+1|)2
}) 1

2

−−−→
in law

N (0, 1) (3)

The statistic S in Equation (3) was the test statistic used to detect jumps. In other
words, given a price series {yj} (viewed as a continuous-time process sampled at discrete
times over a finite interval—of 30 s in our application), one computes the statistic S . If
|S| > 1.96, the null hypothesis is rejected at a 5% level of significance, and one concludes
that there is a jump within the given interval.
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3.2. Microstructure Noise

As the sampling frequency increases, the price data series begins to contain not only
the no-arbitrage price dynamics of Equation (1) but also microstructure noise from effects
such as price discreteness, bid-ask bounce, etc. There is, therefore, a trade-off between
approaching the high-frequency limit and facing contamination by microstructure noise. In
dealing with this issue, we adopt an approach similar to that of Andersen et al. (2007b). To
choose a sampling frequency, we compare the difference between realized volatility [y] and
normalized bipower variation

{yM}
[2]
i −

1
µrµ2−r

{yM}
[r,2−r]
i (4)

across different frequencies. In the absence of microstructure noise, the difference in
Equation (4) is a consistent estimate of the quadratic variation in the jump component

N(h(i))
∑

k=N(h(i−1))+1
j2k . It is, therefore, reasonable to choose the frequency threshold at which the

difference in Equation (4) stabilizes as the sampling frequency.

3.3. Test Procedure

In summary, the market efficiency hypothesis under model of Equation (1), as charac-
terized in Proposition 1, can be empirically tested in a high-frequency dataset using the
following procedure:

1. Choose the highest sampling frequency that is free of microstructure noise by com-
puting the quantity given by Equation (4) across different frequencies.

2. At the chosen frequency, estimate the jumps {ji, i = 1, 2, · · · } using the statistic S of
Equation (3).

3. Test the martingale null hypothesis on the time series of estimated jumps.

4. Application to FX Market

This section applies our market efficiency test in the setting of an interdealer foreign
exchange market. Specifically, using our measure, we compare market efficiency before
and after a tick size change. Previous studies have considered the effect of tick size
change on market quality and market participant behavior in a low-frequency discrete-time
framework—see, e.g., Lawrence (1991), Gwilym et al. (1998), Huang and Stoll (2001), and
Ohta (2006). Our measure extends the same consideration to a high-frequency setting.

4.1. Martket Setting and Data
4.1.1. Interdealer FX Spot Market and EBS Platform

The FX market practice of trading via “vehicle currencies“ leads to concentration in
trading venues and liquidity being concentrated in a handful of currency pairs. The two
dominant currencies are the US dollar and Euro. The EUR/USD currency pair accounts
for 28% of global FX turnover. Individually, the US dollar and Euro are involved in
approximately 75% and 46% of all spot transactions, respectively. 12 The primary interdealer
platform for major currency pairs—EUR/USD, USD/JPY, EUR/JPY, USD/CHF and EUR/CHF—
is Electronic Broking Services (EBS), where large banks and institutions trade with each
other in units of million in base currency.13 The EBS limit order books for the major currency
pairs are where price discovery occurs for global spot FX trading.14

4.1.2. Data

The dataset we used consists of the EBS limit order book at a 100-millisecond frequency
for major currency pairs. This is the same as tick-frequency snapshots of the limit order
book observed in real-time by traders. The period we analyzed was the two-year period
from January 2010 to December 2011. For each major currency pair, we had an exchange rate
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time series of a sample size of approximately 500 million and approximately 24–36 million
recorded transactions. The transaction prices were the highest buying or lowest selling deal
price between two consecutive snapshots of the order book, rounded to 100 milliseconds.
The FX market operates continuously and each trading day is 24 h, beginning and ending at
17:00 US Eastern Standard Time (21:00 Greenwich Mean Time). We excluded thin weekend
trading periods and holidays, as the liquidity can be limited during these periods. We
present our results for the EUR/USD currency pair, for space considerations.15

4.1.3. Tick Size Change

On 7 March 2011, EBS implemented a change in tick size, i.e., minimum price incre-
ment, from four to five decimal places—from pip to decimal pip pricing, in FX market
vernacular.16 This decimalization of tick size led to a fundamental change in the high-
frequency property of exchange rates. We will test the information efficiency hypothesis
before and after this event.

4.2. Information Efficiency Hypothesis
4.2.1. Microstructure Noise Threshold

We chose an appropriate sampling frequency to filter out microstructure noise by
comparing the difference between realized volatility and bipower variation, as defined in
Equation (4), across different frequencies. For EUR/USD, the difference between hourly
averages of realized volatility and bipower variation at different frequencies is shown
in Figure 1.17 Figure 2 shows the same plot for USD/JPY. For all major currency pairs,
the difference stabilizes at the same frequency—30 s—which was chosen as the sampling
frequency. Microstructure noise became absent at the same frequency threshold for all
five major currency pairs. The magnitude of the stabilized gap decreased with respect
to the degree of liquidity of the currency pair. The pair with the most liquid currency,
EUR/USD, had the smallest difference between realized volatility and bipower variation
at the stabilized frequency of 30 s. As expected, the more liquid was found in a currency
pair, the more of its variation was due to the continuous part of the exchange rate process,
instead of the jump component.
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Figure 1. RV-BP, EUR/USD.
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Figure 2. RV-BP, USD/JPY.

4.2.2. Information Efficiency and Tick Size Change

We now apply the information efficiency hypothesis test to exchange rates before and
after tick size change. From an exchange rate series sampled at a 30-second frequency,
jumps were estimated and tested under the martingale null hypothesis. For the EUR/USD
currency pair, the jump-testing procedure showed that there are 10150 and 4214 jumps
before and after tick size change, respectively. Figures 3 and 4 shows the daily time series
of number of jumps, spanning the two-year sample period of 2010-2011. The martingale
property of the estimated jumps was tested using the frequency-domain test of Durlauf
(1991). Before a tick size change, the martingale hypothesis was rejected at the 5%-level of
significance and not rejected with a large p-value of 0.64 after tick size change. Therefore,
the market became informationally efficient after tick size change. This result is reinforced
by tests of serial correlation.18 Standard battery of serial correlation tests—the Box-Ljung,
Box-Pierce, and Durbin-Watson tests—were also applied to the jump time series before and
after tick size change. All were rejected at the 5%-level before tick size change and none
were rejected after tick size change. Therefore, we conclude that market was not efficient
before tick size change and became efficient after tick size change. Results are summarized
in the top block of Table 1.

Figures 3 and 4 show the time series plot of the number of daily jumps before the tick
size change, respectively.
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Figure 3. Daily Number of Jumps of EUR/USD, Before Tick Size Change.
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Table 1. Jump Component of EUR/USD Process Before and After Tick Size Change.

Jump Time Series Before After

Durlauf Test p = 0.0245 p = 0.6438
Box-Ljung Test p = 0.0055 p = 0.8185
Box-Pierce Test p = 0.0356 p = 0.4681
Durbin-Watson Test p = 0.0177 p = 0.2297

Inter-Arrival Times Before After

Daily average number of jumps 33 20
Arrival intensity (exponential fit) 3.98× 10−4 2.35× 10−4

Autoregressive order 27 2

Jump Sizes Before After

Mean 6.28× 10−6 1.05× 10−5

Standard deviation 3.68× 10−4 4.49× 10−4

Skewness 1.19 −0.13
Kurtosis 67.61 4.54
Mira symmetry Test p = 0.0000 p = 0.3928

4.3. Further Evidence

Other observed changes in exchange rate series before and after tick size change
further support the conclusion of Section 4.2.

4.3.1. Jump Magnitudes

Figures 5 and 6 show the histogram of jumps for EUR/USD, i.e., the cross-sectional
distribution of jump sizes, before and after tick size change, respectively. Not surprisingly,
the introduction of decimal pip cuts a neighborhood of around zero from the distribution
of jump sizes. The size of a typical jump, measured by the standard deviation of the series,
remained around 4 pip before and after decimalization. While the mean jump sizes were
statistically zero, both before and after tick size change, the Mira test for symmetry rejected
the symmetry hypothesis before tick size change at p = 0 and did not reject this after tick
size change. Before tick size change, jumps were heavy-tailed and skewed toward the
positive side. Jumps in the exchange rate clearly became a symmetric distribution centered
at zero after tick size change. Results are summarized in the bottom block of Table 1.

4.3.2. Jump Inter-Arrival Times

Figures 7 and 8 show the histograms of inter-arrival times of jumps before and after
tick size change. Both can be reasonably fitted by exponential distributions. The arrival
intensity parameters from the exponential fits is lower after tick size change—see the second
block of Table 1. The degree of autocorrelation of inter-arrival times also exhibits material
difference before and after tick size change. Fitting auto-regressive models to the before and
after inter-arrive times series yields AR(27) and AR(2) models, respectively. Therefore, the
autoregressive lag decreased sharply across tick size changes. Diagnostic tests of residuals,
shown in Figures 9 and 10, confirm model specification of the autoregressive model. This
means that the arrivals of jumps in exchange rate became significantly less clustered after
tick size change.
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Figure 5. Jump Sizes of EUR/USD, Before Tick Size Change.
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Figure 6. Jump Sizes of EUR/USD, After Tick Size Change.

Figures 5 and 6 show the histograms of jump sizes before and after tick size change,
respectively.
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Figure 8. Jump Inter-Arrival Times After Tick Size Change, EUR/USD.

Figures 7 and 8 show the histograms of jump inter-arrival times before and after tick
size change, respectively. Exponential distributions are fitted, with results shown in the
middle block of Table 1.
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Figure 9. Jump Inter-Arrival Times, Before Tick Size Change.
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Figure 10. Jump Inter-Arrival Times, After Tick Size Change.

Autoregressive time series fit and diagnostics for jump inter-arrival times. The Akaike
Information Criterion achieved the minimum value of zero for the chosen AR orders,
indicating the correct specification.

4.3.3. Realized and Effective Spreads

We also considered two standard measures of adverse selection—realized and effective
spreads—before and after tick size change. This was complementary to our analysis of
jumps. While jumps corresponded to a large-order flow, realized and effective spreads also
reflect price movement due to a small-order flow. The spread realized at time t, denoted by
RSt, is defined by
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RSt = 2Qt(Pt −Mt+s)

where Pt is the transaction price at time t, Qt is the trade direction indicator, and Mt+s is
the midpoint at time t + s for a chosen time interval s. RSt is the difference between current
deal price and the quoted midpoint at a future time. After a transaction at time t, price
movements favorable to the market-maker from t to t + s result in a positive RSt, and vice
versa.

Realized spread was measured at a 5-second lag in Figure 11 and computed using
1.3 million deals before the tick size change and 7.3 million deals after the tick size change.
Time series of daily averages are plotted. Tick size change is demarcated by a blue line.
Adverse selection proxy before and after tick size change in Figure 12 shows a clear
downward level shift. For all considered empirical proxies, the Chow test rejected a
constant level across tick size change at 0.1% level of significance.
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Figure 11. EUR/USD Realized Spread, Five-Second Frequency.
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Figure 12. EUR/USD Adverse Selection Proxy, Five-Second Frequency.

Figure 11 shows the daily average realized spread of EUR/USD pair for 2011, before
and after tick size change at 5-second frequency.19 There is a clear positive shift in realized
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spread across tick size change. This shows that price movement for the market marker
tends to be unfavorable with a negative realized spread before tick size changes, while
realized spread is nearly zero after the tick size change.

Realized spread was measured at a 10-second lag in Figure 13 and computed using
1.3 million deals before the tick size change and 7.3 million deals after the tick size change.
A time series of daily averages was plotted. Tick size change is demarcated by the blue line.
The adverse selection proxy before and after tick size change in Figure 14 shows a clear
downward level shift.
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Figure 13. EUR/USD Realized Spread, Ten-Second Frequency.
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Figure 14. EUR/USD Adverse Selection Proxy, Ten-Second Frequency.
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The effective spread at time t is defined by ESt = |Pt − Mt|, which measures the
revenue of the market maker from supplying immediacy. A measure of the adverse
selection of market-making is the statistic

ESt −
RSt

2

i.e., revenue from supplying immediacy minus loss due to adverse price moves. Figure 12
shows a clear downward shift in the adverse selection measure for EUR/USD across tick
size changes at 5-second frequency. Figures 13 and 14 show identical results at 10-second
frequency, for realized spread and the adverse selection measure, respectively.

Therefore, the non-rejection of the market efficiency test, together with supporting
results—such as an increased symmetry in jump sizes and less clustering of jump arrivals,
and the reduction in adverse selection implied by realized and effective spreads—all point
to a reduction in the information content of the large-order flow. The quoted prices became
more informative after a tick size change.

5. Discussion

Our measure shows that a high-frequency FX rate in the interdealer market becomes
informationally efficient after a decimalization of tick size. This can be explained by the fact
that the decimalization of tick size led to intensified high-frequency competition among
liquidity providers, which, in turn, led to a more efficient price discovery.

There are two types of traders on the EBS platform: manual traders and automated
traders. Manual traders use proprietary EBS workstations for manual order manage-
ment.20 Automated traders—e.g., proprietary trading firms specializing in high-frequency
trading—place orders algorithmically with little or no human intervention.21 It is known
that automated (high-frequency) market makers mostly submit limit orders of the mini-
mum size of one million, while manual market makers place larger limit orders—in fact,
all orders larger than 4 million are from the manual market-makers (see Schmidt (2012)).

After tick size changes, one additional decimal place (the fifth) became available to
quote prices. However, only high-frequency market makers made use of the additional
decimal place. As a result, the top of the limit order book, the best bid and ask, became
dominated by high-frequency traders. In the context of our dataset, this can be inferred by
examining the placement of best bid and ask quotes, as well as order sizes at the best bid
and ask.

The placement of best bid and ask quotes can be analyzed by examining the last digits
of the best bid and ask prices. After tick size change, a last digit of zero corresponds to
prices quoted at a pre-decimalized level. Figures 15 and 16 show the last digits of the best
bid prices before and after decimalization, respectively. Before decimalization, last digits
are uniformly distributed—all market-makers make equal use of the available prices when
placing quotes. After decimalization, the distribution of last digits undergo a clear change,
with approximately 30% concentrated at 0. Therefore, 30% of the best quotes were placed
at pre-decimalized levels and 70% of the best quotes were placed using the newly available
fifth decimal place. Figures 17 and 18 show the same findings on the ask side.
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Figure 17. Best Ask Last Digits, Before Tick Change.
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Figure 18. Best Ask Last Digits, After Tick Change.

By considering the order sizes at the best bid and ask, it can be further inferred that
70% of the best quotes at newly decimalized levels the can be attributed to high-frequency
traders. Table 2 shows the average order size at the best bid and the last digits of the
best bid, before and after decimalization. Before decimalization, the average order size
is uniformly distributed with respect to last digits. After decimalization, average order
size at prices with the last digit zero, i.e., at pre-decimalized levels, is twice as large as
those at the newly available decimal levels. In fact, orders placed at the newly available
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decimal level have an average size very close to the minimum order size of one million.
That is, whenever a best quote is placed using the newly available fifth decimal place (70%
of the time), it is very likely to have the minimal size of one million, suggesting a quote
attributable to a high-frequency trader. Table 3 shows very similar results for the best ask.
This suggests that manual traders price-clustered at pre-decimalized levels and effectively
conceded the top of the limit order book to high-frequency traders 70% of the time.

Table 2. Size of Average Order (Million) at the Best Bid.

Last digit of quoted price 0 1 2 3 4 5 6 7 8 9
Before tick size change 1.59 1.43 1.57 1.52 1.54 1.61 1.54 1.60 1.50 1.41
After tick size change 2.12 1.06 1.05 1.08 1.08 1.58 1.05 1.01 1.07 1.10

Table 3. Size of Average Order (Million) at the Best Ask.

Last digit of quoted price 0 1 2 3 4 5 6 7 8 9
Before tick size change 1.53 1.32 1.62 1.59 1.45 1.54 1.53 1.54 1.43 1.48
After tick size change 2.19 1.03 1.02 1.10 1.09 1.32 1.06 1.04 1.07 1.09

In view of the above discussion, our result is in line with other findings in the literature
regarding the impact of high-frequency trading on market quality. In particular, using EBS
data from 2004 to 2008, Chaboud et al. (2014) showed that high-frequency trading activity
has a negative Granger-causal effect on the serial correlation of returns and conclude that
high-frequency trading activity improves market efficiency. Similar conclusions have been
reached for equity markets. For example, Hendershott et al. (2011) conclude that high-
frequency trading enhances the informativeness of quotes and improves liquidity in NYSE
limit order books. Brogaard et al. (2014) and Hasbrouck and Saar (2013) obtained similar
findings for NASDAQ.

6. Conclusions

In this paper, we incorporated considerations of price impact and information effi-
ciency in a semimartingale framework. Our framework is a an extension of discrete-time
settings, where market efficiency corresponds to the martingale property. In the high-
frequency setting, the price semimartingale is the sum of a finite-variation process, a
continuous local martingale, and a jump process. In other words, the price has a locally
riskless component, an informationally efficient component, and a jump component. When
the jump component is white noise, large orders have no permanent price impact and
price is a martingale. In this high-frequency framework, we analyze the impact of tick
size decimalization on the information efficiency of the price process. Our overall analysis
shows that a smaller tick size improves information efficiency.

As the speed and latency envelope of today’s markets continue to evolve, and high-
frequency data continue to become more widely available, questions regarding market
quality remain of fundamental interest and require continuous adaption of the empirical
toolset used to address the issue.22 Our measure of information efficiency contributes to
this endeavor. Extending such considerations to the full limit order book, and further to
multiple limit order books, remains to be explored in future research.23
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Notes
1 See Harrison and Kreps (1979) for the seminal discussion and Delbaen and Schachermayer (1994) for a contemporary treatment.
2 Due to the nature of high-frequency asymptotics, minimum assumptions for time series regressions, such as the mixing property—

see, for example, White (2014)—need not be valid.
3 Extending the martingale framework to incorporate information sharing via the social network is an interesting question and

remains to be explored in future research.
4 Adaptedness with respect to an underlying filtration is assumed throughout. Similarly, stopping times are defined with respect

to the underlying filtration.
5 For the dataset analyzed in Section 4.2, the minimum and average time-between-trades are 1 and 2.5 s, respectively. See Lee and

Hannig (2010) for a jump test that allows for infinite activity, with small Lèvy jumps.
6 λ is referred to as Kyle’s λ after Kyle (1985).
7 In our definition, liquidity jumps are jumps driven by liquidity, not jumps in the series of liquidity measures, e.g., jumps in the

series of Amihud (2002) measures of illiquidity.
8 This is also true for the FX data analyzed in Section 4.2.
9 By Itô isometry, c(t) = Var(

∫ t
0 σ(s)dw(s)).

10 In our specific case, we chose to sample at regular time intervals. Therefore, the stopping times are, in fact, deterministic.
11 Boudt et al. (2011) shows that the bipower variation estimator of Equation (2) can be made robust with respect to periodicity by

filtering the computed returns using Weighted Standard Deviation (WSD) or Truncated Maximum Likelihood (TML). For the
WSD filter, the weights depend on the value of the standardized return divided by the periodicity estimate. For the Truncated
Maximum Likelihood (TML) estimator, introduced by Marazzi and Yohai (2004), zero weight is given to observations that are
outliers according to the value of the ML loss function. In our empirical application, this periodicity-robust improvement leads to
no material difference being detected in the estimated jumps. This is because, in the semimartingale model of Equation (1), the
periodicity enters into the finite-variation, or drift, component α(t). In our ultra-high-frequency setting, the drift component is
negligible. Peridocity bias were observed at a lower frequency (e.g., the five-minute frequency of Boudt et al. (2011)) was not
observed in our setting.

12 See, for example, the BIS report: http://www.bis.org/publ/rpfx10.pdf (accessed on 15 December 2021).
13 FX market customarily lists base currency first. For example, EUR/USD is read as “US dollar per Euro”.
14 The spot market makes up 37% of the global FX market daily turnover of 1.5 trillion USD, and 35% of this volume are interdealer

trades. See the report by the Bank for International Settlements (BIS): http://www.bis.org/publ/rpfx13fx.pdf (accessed on 15
December 2021).

15 Results on the other major currency pairs do not qualitatively differ from EUR/USD and are available upon request.
16 “Pip“ is abbreviation for Price Increment Point.
17 The hourly averages of realized volatility and bipower variation were computed over our two-year sample.
18 Non-serial correlation is weaker than the martingale property. Therefore, a rejection of the no-serial correlation null hypothesis is

a rejection of the martingale hypothesis.
19 While the customary choice of lag s of realized spread is 5 min (e.g., Hendershott et al. (2011)), this was not appropriate in our

high-frequency setting. According to our analysis in Section 4.2, the microstructure effect ceased to be present at frequencies
lower than 30 s. Our computation shows that the realized spread exhibited the same behavior across tick size changes at all
frequencies higher than 30 s, that is, under different degrees of microstructure effect. The same remarks apply to the effective
spread and adverse selection proxy.

20 See http://www.ebs.com/access-methods/ebs-workstation.aspx (accessed on 15 December 2021) for details on EBS workstations
provided to Manual Traders.

21 See http://www.ebs.com/access-methods/ebs-ai.aspx (accessed on 15 December 2021) for details on EBS interface technology
for automated trading. EBS estimates that around 30%-35% of the volume on its trading platform is driven by high-frequency
market makers.

22 See, for example, O’Hara (2015).

http://www.bis.org/publ/rpfx10.pdf
http://www.bis.org/publ/rpfx13fx.pdf
http://www.ebs.com/access-methods/ebs-workstation.aspx
http://www.ebs.com/access-methods/ebs-ai.aspx
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23 Considerations of the full limit order book include, for example, translating the bid-ask spread price impact regression Huang and
Stoll (1997) to the semi-martingale setting. This would for allow the analysis of the price impact of small orders, complementing
the analysis of large orders presented in this paper.
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