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Abstract: In a recent book, Kolari et al. developed a new theoretical capital asset pricing model
dubbed the ZCAPM. Based on out-of-sample cross-sectional tests using U.S. stocks, the ZCAPM con-
sistently outperformed well-known multifactor models popular in the finance literature. This paper
presents further evidence that expands their sample period from 1927 to 2020. Results are provided
for the subperiods 1927 to 1964 and 1965 to 2020. Our results corroborate those of KLH. In cross-
sectional tests, the ZCAPM outperforms the CAPM as well as the Fama and French three-factor
model and Carhart four-factor model. Outperformance is found in terms of both higher goodness
of fit and the statistical significance of factor loadings. Interestingly, the earlier subperiod results
highlight problems with the endogeneity of test assets in cross-sectional tests of multifactor models.

Keywords: asset pricing; zero-beta CAPM; return dispersion; expectation-maximization (EM)
regression; latent variable

1. Introduction

This paper extends the recent work by Kolari et al. (2021) (hereafter KLH) in which they
developed a new theoretical model of capital asset prices dubbed the ZCAPM. The authors
derived the ZCAPM from Black’s (1972) renowned zero-beta CAPM as a special case based
on two unique efficient and inefficient orthogonal portfolios. This special case enabled
the derivation of an alternative specification of the zero-beta CAPM. The ZCAPM is a
parsimonious two-factor model comprised of beta risk associated with average market
returns and zeta risk related to the cross-sectional return dispersion of assets in the market.1

Based on the theoretical ZCAPM, an innovative empirical ZCAPM was developed using
expectation–maximization (EM) regression methods.2

Subsequent empirical tests by KLH demonstrated that the ZCAPM is a superior asset
pricing model that outperforms the CAPM as well as popular multifactor models, including
the Fama and French (1992, 1993, 1995, 2015, 2018, 2020) three-, five-, and six-factor models
in addition to the Carhart (1997), Hou et al. (2015), and Stambaugh and Yuan (2017) four-
factor models. In their empirical tests of U.S. stock returns, out-of-sample Fama and
MacBeth (1973) cross-sectional regression tests were conducted for the sample period 1965
to 2018. The ZCAPM consistently outperformed the aforementioned models in terms of
both goodness-of-fit and statistical significance of zeta risk factor loadings. In some test
asset portfolios, the empirical ZCAPM was able to achieve cross-sectional R2 estimates
as high as 95 percent and normally had values exceeding 70 percent: this goodness-of-
fit is near perfect. It means that estimated risk parameters in an earlier period almost
completely explain out-of-sample (next month) returns in the cross section of average
stock returns. By comparison, other popular multifactor models typically had R2 values
noticeably lower than the ZCAPM in different test asset portfolios and sample periods.
Regarding the statistical significance of factor loadings, zeta risk loadings associated with
cross-sectional return dispersion in the ZCAPM almost always had t statistics in the range of

J. Risk Financial Manag. 2022, 15, 137. https://doi.org/10.3390/jrfm15030137 https://www.mdpi.com/journal/jrfm

https://doi.org/10.3390/jrfm15030137
https://doi.org/10.3390/jrfm15030137
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jrfm
https://www.mdpi.com
https://doi.org/10.3390/jrfm15030137
https://www.mdpi.com/journal/jrfm
https://www.mdpi.com/article/10.3390/jrfm15030137?type=check_update&version=1


J. Risk Financial Manag. 2022, 15, 137 2 of 23

3 to 6. However, factors in popular multifactor models did not reach this level of statistical
significance in cross-sectional tests. These findings are important in light of the recent
work by Harvey et al. (2016) and Chordia et al. (2020), who found that factor loadings
should attain t statistics of three or more to avoid false discoveries in asset pricing studies.
The ZCAPM was the only model that passed the recommended validity tests.

Where does the ZCAPM fit into the prior literature? From a theoretical perspective, it
is based on the general equilibrium framework of the capital asset pricing model (CAPM)
of Treynor (1961, 1962), Sharpe (1964), Lintner (1965), and Mossin (1966). It applies the foun-
dational mean–variance Markowitz (1959) portfolio theory and the Tobin (1958) equilibrium
pricing methods to derive an alternative form of Black’s zero-beta CAPM. Compared to
extant asset pricing models that have been tested in the literature, the empirical ZCAPM is a
new econometric model based on EM regression and mixture model methods. No previous
asset pricing studies employ these methods in the estimation of factor models. The two
factors in the empirical ZCAPM have precedent in the financial literature. Mean market
returns are used to estimate beta risk. In addition, cross-sectional return dispersion is used
to estimate zeta risk. Regarding this factor, a limited number of studies by Jiang (2010),
Demirer and Jategaonkar (2013), Garcia et al. (2014), and Chichernea et al. (2015) augmented
the market model form of the CAPM with a return dispersion factor. However, they used
standard ordinary least squares (OLS) regression methods to estimate a coefficient related
to return dispersion, rather than EM regression in a mixture model. The ZCAPM is different
in its empirical estimation of this coefficient in that it explicitly models both positive and
negative sensitivity to changes in return dispersion over time. A signal variable denoted
Djt = +1,−1 for asset j at time t (e.g., one day) is introduced to capture the potential
two-sided effects of return dispersion on asset returns. As cross-sectional return dispersion
increases in the population of assets at a point t in time, assets in the upper part of the
distribution of returns experience increasing returns, and conversely those in the lower
part of the distribution experience decreasing returns. If the return dispersion decreases,
the opposite return effects occur for assets in the upper and lower parts of the distribution
of returns. Since Djt is a latent, unobservable variable, KLH estimated its probability using
EM regression. This probability is multiplied by the coefficient on the return dispersion
to obtain an estimate of the zeta risk, which is different from other previous studies that
incorporated a return dispersion factor.

It is important to distinguish between cross-sectional return dispersion from time-
series return dispersion. An example of the latter is the work of Bekaert et al. (2012),
who employed the time-series standard deviation of returns for stocks as a factor in an
asset pricing model. They used daily returns in a one-month period to compute monthly
time-series standard deviations of returns for individual stocks and then averaged this
idiosyncratic risk metric for N firms in the market to compute an aggregate idiosyncratic
variance measure. Numerous studies have utilized a time-series market volatility factor,
including those of Ang et al. (2006b, 2009), Adrian and Rosenberg (2008), Da and Schaum-
burg (2011), Chang et al. (2013), Bansal et al. (2014), Bollerslev et al. (2016), and Chen et al.
(2021), among others.3 Relevant to the ZCAPM, cross-sectional return dispersion is quite
different from time-series dispersion. Earlier work by Jiang (2010) showed that, for U.S.
stock returns in the period of 1963 to 2005, these two measures of return volatility are
uncorrelated with one another in many sample periods. This evidence led Jiang to conclude
that time-series and cross-sectional return dispersion are different market risk measures.
Hence, the ZCAPM extends the small set of studies that incorporate cross-sectional return
dispersion in an asset pricing model but has little or no connection to the larger body of
time-series volatility studies.

The present study contributes further evidence on the ZCAPM. First, using U.S. stock
return series available on Kenneth French’s data library website4, we extend the analysis
period back to the 1928 to 1964 period. Second, we update their analyses to the period
1965 to 2020. ZCAPM results are benchmarked against the CAPM as well as the Fama
and French (1992, 1993, 1995) three-factor model and Carhart (1997) four-factor model.
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We do not test other multifactor models for which factors and test asset portfolios are
not available on French’s website. Test assets include 25 size and book-market equity
ratio (BM) sorted, 25 size and momentum sorted, and 40 industry portfolios. We report
results for out-of-sample, cross-sectional Fama and MacBeth tests. In general, our results
support those of KLH. The empirical ZCAPM outperforms the CAPM as well as three-
and four-factor models, in some cases by large margins. Zeta risk loadings are highly
significant, with t statistics exceeding the recommended three hurdle rate in all cases. While
multifactor loadings in the three- and four-factor models have t statistics exceeding 3.0 in
the 1928 to 1964 subperiod, they generally do not in the more recent 1965 to 2020 subperiod.
Additionally, we find that estimated zeta risk premiums are economically meaningful with
a range from 0.47 percent to 1.29 percent per month per unit estimated zeta coefficient.

Graphical analyses of the ZCAPM, CAPM, and three- and four-factor models are
also provided. In these cross-sectional analyses, fitted (or predicted) one-month-ahead
excess stock returns are compared to realized (or actual) excess stock returns of test asset
portfolios. Hence, these analyses are out-of-sample investable strategies. In general, we
find that the ZCAPM outperforms other models. When industry portfolios are included
in the test assets, the ZCAPM outperforms other models by considerable margins. These
analyses demonstrate a major problem in testing the three- and four-factor models with
endogenous test asset portfolios created from sorts on the same firm-level variables (i.e.,
size and BM) used to construct the size and value factors. In the earlier period of 1928
to 1964, this endogeneity problem worsened relative to the more recent 1965 to 2020
period due to smaller sample sizes of stocks, as the data go back in time. Our results
support Lewellen et al. (2010), Daniel and Titman (2012), and others who have advocated
for combining exogenous industry portfolios with other portfolios in asset pricing tests.
In sum, our graphical analyses confirm the findings of KLH in support of the ZCAPM
over the CAPM as well as three- and four-factor models, using long/short zero-investment
portfolios as multifactors.

We conclude from these findings that the ZCAPM dominates other popular asset
pricing models. Given that size, BM, and momentum sorted portfolios as test assets
are exogenous to the ZCAPM’s mean market return and return dispersion factors, this
dominance is remarkable. Further research is recommended for applying the ZCAPM to
different countries and asset classes (e.g., bonds, commodities, and real estate) to assess
its performance relative to the existing asset pricing models. Additionally, applications to
event studies, mutual and hedge funds, investment analysis, and other areas of finance
are recommended.

The plan of this study is as follows. Section 2 overviews the ZCAPM. Section 3
describes our methodology, including data and empirical tests. Section 4 presents the
empirical results. The last Section 5 gives the conclusion.

2. Overview of the ZCAPM

Here, we overview the theoretical ZCAPM and its companion empirical ZCAPM.
Again, Kolari et al. (2021) (KLH) derived the ZCAPM as a special case of Black’s zero-beta
CAPM.5 In their derivation, they focused on two orthogonal portfolios on the boundary of
the mean–variance investment parabola—one that is efficient and one that is inefficient—
with the same time-series variance of returns. Formulas of the expected returns for these
two portfolios are written based on new insights concerning the mean–variance parabola.
Upon substituting these expected returns into the zero-beta CAPM, the theoretical ZCAPM
is obtained. Subsequently, the authors proposed a novel empirical ZCAPM for estimation
purposes, using real world data. Unlike prior asset pricing models that use ordinary
least squares (OLS) regression for estimation, the empirical ZCAPM utilizes expectation–
maximization (EM) regression methods. In the forthcoming discussion, we abbreviate
the derivations in the work of KLH to conserve space and highlight the main ideas of
the theoretical and empirical ZCAPM. Readers interested in more details are referred to
their book.
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2.1. Theoretical ZCAPM

KLH mathematically proved two new insights about the Markowitz mean–variance
investment parabola. First, they provided two mathematical proofs6 to show that the width
or span of the parabola is largely determined by the cross-sectional standard deviation
of returns of all assets’ returns. Second, given that this return dispersion defines the width
of the parabola, the mean return of all assets should lie somewhere in the middle of the
parabola on its axis of symmetry. The latter finding implies that the mean market portfolio
used to proxy the market portfolio is inefficient. Regardless of whether all assets are equal-
or value-weighted to form portfolios, the market portfolio in the CAPM, which lies on
the efficient frontier, is far above the mean market portfolio that is located on the axis of
symmetry. Consistent with the Roll (1977) critique, because the CAPM cannot be tested
without an efficient portfolio, previous empirical tests of the CAPM using the mean market
model returns to proxy market portfolio returns are invalid. The CAPM cannot be declared
dead because it was never legitimately tested using efficient portfolios (see Fama and
French 1996, 2004).

Figure 1 illustrates the return dispersion and mean market return characteristics of
the mean–variance parabola. The x-axis is the time-series variance of returns for an asset
or portfolio denoted as σ̃2

P. In a one-day period of time, this variance can be measured by
computing returns in, say, 10 min intervals during the day. On the y-axis is the expected
returns of assets. The cross-sectional variance of returns of all assets in the market during
the day is denoted as σ̃a. Naturally, the mean market return denoted E(R̃a) must be located
in the middle of the cross-sectional distribution of asset returns. In turn, it must be true that
E(R̃a) ≈ E(R̃G), where the latter is the expected return on the global minimum variance
portfolio G. Clearly, the mean market portfolio a is located far below the efficient frontier
in Figure 1.

•G

•

•

𝐸( ෨𝑅𝐺)

𝐸( ෨𝑅𝐼∗)

𝐸( ෨𝑅𝑍𝐼∗)

𝐸( ෨𝑅𝑃)

I*

ZI*

0
* *

2 2

I ZI
 = 2

P

2

a

𝐸( ෨𝑅𝑎)

Cross-sectional 

variance of returns 

or return dispersion

Time-series variance of returns

Expected

returns

Figure 1. Geometric approach of the theoretical ZCAPM based on the Markowitz mean–variance
investment parabola.

Next, KLH used this framework to identify two unique portfolios, I∗ and ZI∗, that
are uncorrelated with one another. These portfolios have the same time-series variance
of returns or total risk, i.e., σ̃2

I∗ = σ̃2
ZI∗ .

7 Notice that portfolio I∗ is on the efficient frontier,
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and portfolio ZI∗ is inefficient on the parabola’s lower boundary. A new geometry is
introduced in this analysis. In the CAPM, the market portfolio M is geometrically located
at the tangent point from a ray extending from the riskless rate to the efficient frontier.
In the ZCAPM, portfolios I∗ and ZI∗ are located by moving along the axis of symmetry at
the expected rate E(R̃a) and then up or down, respectively, by the cross-sectional return
dispersion σ̃a. Using this geometry, KLH defined the expected returns for portfolios I∗ and
ZI∗ as follows:

E(R̃I∗) ≈ E(R̃a) + f (θ)σa (1)

E(R̃ZI∗) ≈ E(R̃a)− f (θ)σa, (2)

where f (θ) is a complex expression approximately equal to one (due to almost completely
random risky asset returns8).

Assuming f (θ) = 1, KLH substituted the expected returns for portfolios I∗ and ZI∗

into Black’s zero-beta CAPM to derive the theoretical ZCAPM without a riskless asset.
The zero-beta CAPM specifies the expected return for the ith asset as

E(R̃i) = E(R̃ZM) + βi,M[E(R̃M)− E(R̃ZM)] (3)

E(R̃i) = βi,ME(R̃M) + (1− βi,M)[E(R̃ZM)], (4)

where βi,M is the sensitivity or beta risk of asset i’s return with respect to the excess return
of the expected market portfolio return, E(R̃M) and its zero-beta (uncorrelated) portfolio
expected return, or E(R̃ZM). The latter is the borrowing rate in Black’s model, unlike the
riskless rate R f in the CAPM.9

For portfolios I∗ and ZI∗, their expected returns are

E(R̃I∗) = β I∗ ,ME(R̃M) + (1− β I∗ ,M)E(R̃ZM) (5)

E(R̃ZI∗) = βZI∗ ,ME(R̃M) + (1− βZI∗ ,M)E(R̃ZM), (6)

where β I∗ ,M and βZI∗ ,M are beta risks of portfolios I∗ and ZI∗ associated with market
portfolio M, respectively. Solving these equations10, we obtain the general form of the
zero-beta CAPM:

E(R̃i) = βi,I∗E(R̃I∗) + (1− βi,I∗)E(R̃ZI∗), (7)

where βi,I∗ = (βi,M − βZI∗ ,M)/(β I∗ ,M − βZI∗ ,M). As observed by Roll (1980), the above ex-
pression shows that the zero-beta CAPM can be specified in terms of any efficient portfolio
and its orthogonal zero-beta (inefficient) counterpart on the mean–variance parabola. Here,
KLH re-wrote the zero-beta CAPM using the unique portfolios I∗ and ZI∗.

Upon substituting E(R̃I∗) and E(R̃ZI∗) in Equations (1) and (2) into Equation (7),
the theoretical ZCAPM can be specified as follows:

E(R̃i) = βi,I∗E(R̃I∗) + (1− βi,I∗)E(R̃ZI∗)

= E(R̃ZI∗) + βi,I∗ [E(R̃I∗)− E(R̃ZI∗)]

= E(R̃a)− σa + βi,I∗{[E(R̃a) + σa]− [E(R̃a)− σa]}
= E(R̃a) + (2βi,I∗ − 1)σa

E(R̃i) = E(R̃a) + Z∗i,aσa, (8)

where Z∗i,a = 2βi,I∗ − 1.
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Adding a third riskless asset rate R f , and again using the definitions of E(R̃I∗) and
E(R̃ZI∗) in Equations (1) and (2), the expected return of the ith asset is

E(R̃i) = wI∗E(R̃I∗) + wZI∗E(R̃ZI∗) + w f R f

= wI∗ [E(R̃a) + σa] + wZI∗ [E(R̃a)− σa] + w f R f

= (wI∗ + wZI∗)E(R̃a) + (wI∗ − wZI∗)σa + w f R f , (9)

where I∗, ZI∗, and f are orthogonal assets with corresponding weights wI∗ , wZI∗ , and w f
that sum to one with both long and short positions in the assets allowed. By rearranging
terms and using Equation (9), the final form of the theoretical ZCAPM becomes

E(R̃i)− R f = (wI∗ + wZI∗)[E(R̃a)− R f ] + (wI∗ − wZI∗)σa (10)

E(R̃i)− R f = βi,a[E(R̃a)− R f ] + Z∗i,aσa, (11)

where beta risk coefficient βi,a = wI∗ + wZI∗ measures the sensitivity of the ith asset’s
excess returns to average market excess returns of all assets, and zeta risk coefficient
Z∗i,a = wI∗ − wZI∗ measures the sensitivity of an asset’s excess returns to the market return

dispersion of all assets.11 KLM used the notation βi,a to denote beta risk with respect to the
average returns on the portfolio of n assets in the market. This beta is distinguished from
CAPM market beta βi,M with respect to the market portfolio (typically denoted simply
as βi).

Returning to the mean–variance parabola, it is interesting that beta risk and zeta
risk in the theoretical ZCAPM can be used to describe its architecture, including not only
boundary portfolios, but locations of assets and portfolios within the parabola. Assets
and portfolios with positive (negative) zeta risk lie in the upper (lower) portion of the
investment parabola. On any zeta risk curve in the parabola, as beta risk increases, the time-
series variance of returns increases. As shown in Kolari et al. (2021, Figure 10.1, p. 272
and Figure 10.2, p. 274), an interlocking web of beta and zeta risks result that shape the
parabola with zeta risk increasing vertically and beta risk increasing horizontally. Hence,
the parabola contains a risk structure based on the systematic risks of assets with respect
to average market returns and market return dispersion. Interestingly, in Chapter 10 of
their book, KLH confirmed this architecture using out-of-sample (next month) empirical
evidence for U.S. stock portfolios. Portfolios along the highest zeta risk curve comprise
the efficient frontier.12 Additionally, the mean market portfolio a lies approximately on the
axis of symmetry of the parabola. Supporting this conjecture, in Chapter 9 of their book,
KLH constructed relatively efficient portfolios and showed that the CRSP market index lies
along the axis of symmetry of the parabola.

2.2. Empirical ZCAPM

Figure 2 shows how assets in the upper and lower portions of the mean–variance
parabola are affected over time in response to changes in the mean market returns and cross-
sectional return dispersion of all assets in the market.13 Comparing t = 1 to t = 2, when
the average market returns do not change, we see that asset returns in the upper (lower)
portion of the parabola experience increasing (decreasing) returns as the return dispersion
increases. At t = 3, the return dispersion decreases, which tends to decrease (increase)
the asset returns in the upper (lower) portion of the parabola. Of course, as mean market
returns decrease in this period, all asset returns decrease in concert with lower mean market
returns. In period t = 4, mean market returns increase but the return dispersion changes
little, if at all. In this period, all assets’ returns tend to increase under these conditions.
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Figure 2. As the investment parabola moves over time t, its level and width change. The level
changes with average market returns, and the width changes with cross-sectional return dispersion
of all assets in the market. Assets in the upper (lower) half of the parabola experience opposite return
effects of changing return dispersion, whereas as all assets’ returns move up and down in concert
with the average market returns.

How did KLH empirically model the time-series behavior of the mean–variance
parabola depicted in Figure 2? The positive and negative effects of return dispersion on
asset returns in the upper and lower portions of the parabola need to be taken into account.
To solve this problem, they introduced a dummy signal variable denoted Dit for each ith
asset. The following novel empirical ZCAPM is proposed:

R̃it − R f t = αi + βi(R̃at − R f t) + ZiDitσ̃at + ũit, t = 1, · · · , T (12)

where Rit − R f t is the excess return for the ith asset over the riskless rate at time t, βi
measures sensitivity to excess average market returns equal to Rat − R f t, Zi measures
sensitivity to return dispersion σat, Dit is a signal variable with values +1 and−1 represent-
ing positive and negative return dispersion effects on stock returns at time t, respectively,
and uit ∼ iid N(0, σ2

i ). No previous studies modeled two-sided return dispersion risk using
positive and negative risk loadings. A previous study by Ang et al. (2006a) estimated
downside and upside market betas, i.e., β− and β+, using excess market returns over time,
below and above the mean market return, but did not introduce a dummy variable in their
analyses. Similarly, Lettau et al. (2014) found that the cross section of currency returns can
be explained by downside market beta risk. More recently, Bollerslev et al. (2016) proxied
good and bad stock return volatility by utilizing a relative difference in the semi-variance
measure but again did not use a dummy variable approach to simultaneously model their
effects to predict returns.

Departing from previous literature, signal variable Dit is modeled by KLH as an
unknown or latent (hidden) variable. They defined Dit as an independent random variable
with the following two-point distribution:

Dit =

{
+1 with probability pi

−1 with probability 1− pi,
(13)

where pi (or 1− pi) is the probability of a positive (or negative) return dispersion effect,
and Dit are independent of uit.14



J. Risk Financial Manag. 2022, 15, 137 8 of 23

To estimate the empirical ZCAPM’s parameters θi = (βi, Zi, pi), KLH employed the
expectation–maximization (EM) algorithm of Dempster et al. (1977) (See also Jones and
McLachlan 1990; McLachlan and Peel 2000; McLachlan and Krishnan 2008). Their book
gives detailed step-by-step estimation procedures. Unlike any previous asset pricing model,
the empirical ZCAPM can be characterized as a probabilistic mixture model with two
mixture components. Each component itself is a two-factor regression model (see Equations
in Note 14). Hidden dummy variable Dit determines the operative regression model.

Notice that the coefficient of the return dispersion in regression Equation (12) is a
random variable Zi,aDi,t with two possible values, +Zi,a or −Zi,a, based on the sign of
signal variable Di,t. Here, the signal variable has mean E(Dit) = 2pi − 1 and variance
Var(Dit) = 4pi(1− pi). They separate the mean from the random coefficient Zi,aDit associ-
ated with σat as follows:

Zi,aDit = Zi,a(2pi − 1) + Zi,a[Dit − (2pi − 1)]. (14)

Thus, using definitions Z∗i,a = Zi,a(2pi − 1) and u∗it = Zi,a[Dit − (2pi − 1)]σat + uit, the
marginal form of the empirical ZCAPM relation (12) becomes

Rit − R f t = βi,a(Rat − R f t) + Z∗i,aσat + u∗it, t = 1, · · · , T. (15)

where the term Z∗i,aσat results from integrating out the probability distribution of the
unobservable signal variable in the term Zi,aDitσat in model (12). Regression parameter Z∗i,a
represents the zeta risk loading in the theoretical ZCAPM as specified in Equation (11).

It should be mentioned that there is no mispricing error term (i.e., αi = 0) in empirical
ZCAPM relation (15). In tests using U.S. stock returns, KLH found that introducing an
αi term did not lower the residual variance and therefore did not improve in-sample
data fitting. In the present study, the α term is not needed, as we test the empirical
ZCAPM using standard Fama and MacBeth (1973) cross-sectional regression analyses, to
be discussed shortly.15

The positive or negative sign of zeta risk loading Z∗i,a is determined by the probability
pi of signal variable Dit in sample period t = 1, · · · , T. If pi > 1/2 (or < 1/2), Z∗i,a has a
positive (or negative) sign. By way of interpretation, Z∗i,a measures the average increase or
decrease in asset returns in response to a one unit change in market return dispersion σat.

Setting the empirical ZCAPM apart from other studies that include a return dispersion
factor cited earlier in Section 1, the variance of the error term u∗it in relation (15) is not
constant. This heterogeneity of error variance can be defined as follows:

Var(u∗it) = 4 pi(1− pi) Z2
i,a σ2

at + Var(uit). (16)

Due to this property, other studies incorporating return dispersion as a factor are mis-
specified.

KLH provided Matlab, R, and Python programs for EM estimation of the empirical
ZCAPM at GitHub (https://github.com/zcapm (accessed on 1 September 2021)): Programs
to run cross-sectional Fama and MacBeth regression tests are provided also. In this study,
we employ their R programs due to the faster estimation speed relative to the Matlab and
Python programs.

3. Cross-Sectional Tests
3.1. Data

U.S. stock returns for all common stocks on the Center for Research in Security Prices
(CRSP) database are used. Daily stock returns are gathered for two subperiods: (1) January
1928 to December 1964, and (2) January 1965 to December 2020. CRSP value-weighted
index returns and 30-day U.S. Treasury bill rates, in addition to size, value, and momentum
factors, are downloaded from Kenneth French’s online database website.

https://github.com/zcapm
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We compute the return dispersion factor for the ZCAPM as the daily cross-sectional
standard deviation of returns of all stocks in the market:

σat =

√
n

n− 1

n

∑
i=1

wit−1(Rit − Rat)
2, (17)

where n is the total number of stocks, wit−1 is the previous day’s market vale weight for the
ith stock, Rit is the return of the ith stock on day t, and Rat is the value-weighted average
return of all available stocks in the country on day t.

To benchmark the performance of the ZCAPM in our empirical tests, we employ the
following asset pricing models:

• CAPM in market model form (See Sharpe 1963; Fama 1968). with an excess market
return factor (MKT-RF) defined as the value-weighted CRSP return minus the U.S.
Treasury bill rate;

• The Fama and French (1992, 1993, 1995) three-factor model based on augmenting
the CAPM with a size factor (viz. small minus large firms’ stock returns denoted
as SMB) and a value factor (viz. high value minus low value firms’ stock returns
denoted HML);

• The Carhart (1997) four-factor model based on augmenting the three-factor model
with a momentum factor (viz. stocks with high past returns minus stocks with low
past returns denoted MOM).

French’s website contains construction details for the multifactors SMB, HML, and
MOM. As defined there, based on portfolio deciles, SMB is the average return on the three
small portfolios minus the average return on the three big portfolios. HML is the average
return on the two value portfolios minus the average return on the two growth portfolios.
Additionally, MOM is the average return on the two high prior return portfolios minus the
average return on the two low prior return portfolios.

Descriptive statistics for our data are provided in Table 1. Compared to the market,
size, value, and momentum factors, the magnitude of the cross-sectional return dispersion
is much larger at 1.56 percent, compared to a range of only 0.003 percent to 0.03 percent
for the other factors. In addition, with the exception of return dispersion, notice that the
standard deviations of factors are quite large relative to their mean values; hence, these
factors can fluctuate widely over time.

Table 1. Descriptive statistics for U.S. stock returns in the sample period of January 1928 to Decem-
ber 2020.

Panel A. 1928 to 1964

90 Portfolios MKT-RF SMB HML MOM Ret Disp

Mean 0.09 0.03 0.003 0.02 0.02 1.56
Std dev 1.80 1.16 0.66 0.68 0.79 0.86

Panel B. 1965 to 2020

90 Portfolios MKT-RF SMB HML MOM Ret Disp

Mean 0.07 0.03 0.007 0.01 0.03 1.79
Std dev 1.21 1.03 0.54 0.55 0.76 0.60

Table 1 gives the means and standard deviations of returns for test asset portfolios
and asset pricing factors also. The 90 test assets are formed by combining 25 size and
book-to-market ratio (BM) portfolios, 25 size and momentum portfolios, and 40 industry
portfolios. Two subperiods are used: (1) January 1928 to December 1964, and (2) January
1965 to December 2020.



J. Risk Financial Manag. 2022, 15, 137 10 of 23

3.2. Cross-Sectional Regression Tests

We provide two different cross-sectional regression tests. The first test is based on
the standard two-step Fama and MacBeth (1973) regression analyses. Step one estimates
the time-series regression equation for the asset pricing model, using daily returns in a
one-year period for each of the test asset portfolios. Estimated factor loadings for beta and
zeta coefficients are retained for use in the next step. Step two is a cross-sectional regression
with one-month-ahead returns for test asset portfolios as the dependent variable and beta
and zeta risk factor loadings from the previous year as the independent variables. This
procedure is rolled forward one month at a time until the end of the sample period. This
procedure represents an investable strategy in the sense that an investor could implement
it in the real world. Out-of-sample returns are related to prior risk parameter estimates to
assess the validity of models. No tampering or manipulation is possible in this setup. In this
regard, Simin (2008, p. 356) commented that the use of step-ahead (e.g., one-month-ahead)
returns in this procedure to assess the predictive ability of asset pricing models mitigates
a number of evaluation problems, including data snooping, the use of R2 as a measure
of goodness-of-fit, and efficiency issues. Likewise, Ferson et al. (2013) argued that the
practical value of asset pricing models should be assessed using out-of-sample tests as in
the two-step Fama and MacBeth procedure discussed above.

In the second step of the Fama–MacBeth procedure, we run the following cross-
sectional regression to test the empirical ZCAPM based on estimates of beta and zeta
risk coefficients (or loadings) from time-series regression (15):

Ri,T+1 − R f T+1 = λ0 + λβ β̂i + λZ∗ Ẑ∗i + uit, i = 1, ..., N, (18)

where λβ and λZ∗ are coefficient estimates of the market price of beta risk (associated
with sensitivity to mean market returns) and the market price of zeta risk (associated
with sensitivity to cross-sectional market volatility or return dispersion) in percent terms,
respectively, and the other notation is as before. According to Ferson (2019), estimated
risk premiums λβ and λZ∗ approximate mimicking portfolio returns that are long stocks
with higher betas or zetas and short stocks with lower betas or zetas. As observed by
Cochrane (2005, pp. 250–51), t-statistics associated with estimated factor prices λ̂k using
the monthly rolling approach are corrected for cross-sectional correlation of residual errors
(and therefore, are similar to Shanken (1992) corrected OLS standard errors).

It should be noted that beta loadings (β̂i) are time invariant for the most part with
similar values, using daily or monthly returns. The reason for this invariance is that they
are benchmarked to one corresponding to the beta risk of the average market return of all
assets. By contrast, KLH noted that zeta risk loadings (Ẑ∗i ) are time variant (i.e., the holding
period can affect their estimated values) due to not being benchmarked to one. By way of
interpretation, the estimated market price λZ∗ related to the return dispersion measures the
risk premium per unit zeta risk. Given that time-series regression (15) is used to estimate
risk parameters with daily returns, and the cross-sectional regression Equation (18) uses
one-month-ahead excess returns as the dependent variable, Ẑ∗i can be rescaled from a daily
to monthly basis as follows:

Ri,T+1 − R f T+1 = λ0 + λβ β̂i + λZ∗ Ẑ∗i NT+1 + uit, i = 1, ..., N, (19)

where NT+1 is the number of trading days in month T + 1 (i.e., 21 days), Z∗i NT+1 is the
monthly estimated zeta risk, and λZ∗ is the monthly risk premium associated with zeta
risk. This rescaling does not change the risk premium λ̂Z∗ per unit zeta risk.16

Another important statistic in the cross-sectional regressions is the R2 estimate. Follow-
ing Jagannathan and Wang (1996) and Lettau and Ludvigson (2001, footnote 17, p. 1254),
we compute this goodness-of-fit measure by using the R2 statistic from a single regression
approach. Using the 1928 to 1964 (1965 to 2020) subperiod, we obtain 444 (672) monthly
estimates of λ̂k for each test asset portfolio as we roll forward month by month to the end of
the analysis subperiod. We also have the same number of one-month-ahead realized excess
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returns for each portfolio. After taking the averages of the λ̂ks and realized excess returns
for each portfolio, the average realized excess returns for the n portfolios are regressed on
the average λ̂ks to obtain an estimate of R2.

The above discussion of R2 estimation leads to a second cross-sectional test. In this
test, we compute the one-month-ahead average realized excess returns for the n portfolios
as before. Additionally, we compute the one-month-ahead average fitted excess returns
for each portfolio. To do this, for each portfolio, the empirical ZCAPM is estimated, and βi
and Z∗i risk parameters are retained. In the next month T + 1, these risk parameters are
multiplied by estimated factor prices of risk, or λks to compute the fitted excess return for
each portfolio. Rolling forward month by month to the end of the subperiod, a series of
fitted excess returns are available to compute the average fitted excess return. Finally, plots
of average realized excess returns (x-axis) and average fitted excess returns (y-axis) for the
n portfolios are created. If the model works perfectly, all points will lie on a 45-degree line
from the origin.

4. Cross-Sectional Regression Results

Tables 2 and 3 report the results for the out-of-sample Fama and MacBeth cross-sectional
regression tests in subperiods 1928 to 1964 and 1965 to 2020, respectively.

Table 2. Out-of-sample Fama–MacBeth cross-sectional regressions for U.S. stocks: January 1928 to
December 1964.

Panel A: 25 Size and BM Sorted Portfolios

Model λ̂0 λ̂β λ̂Z∗ λ̂SMB λ̂HML λ̂MOM R2

CAPM 2.57 −0.73 0.00
(4.89) (−2.12)

Three-factor 1.86 −1.05 1.37 1.24 0.79
(4.71) (−2.65) (5.44) (5.19)

Four-factor 1.82 −1.12 1.25 1.37 −1.44 0.92
(5.20) (−2.88) (5.07) (5.25) (−2.84)

ZCAPM 1.42 −0.18 0.92 0.98
(3.80) (−0.54) (6.19)

Panel B: 25 Size and Momentum Sorted Portfolios

Model λ̂0 λ̂β λ̂Z∗ λ̂SMB λ̂HML λ̂MOM R2

CAPM 4.64 −2.68 0.07
(4.60) (−3.38)

Three-factor 3.47 −3.27 1.57 3.28 0.85
(5.07) (−4.86) (4.62) (3.68)

Four-factor 4.46 −4.17 1.44 3.22 0.22 0.94
(5.89) (−5.68) (4.32) (3.93) (0.76)

ZCAPM 1.73 −0.39 1.29 0.98
(3.44) (−0.93) (10.22)

Panel C: 90 Total Portfolios

Model λ̂0 λ̂β λ̂Z∗ λ̂SMB λ̂HML λ̂MOM R2

CAPM 2.86 −0.95 0.00
(5.62) (−2.88)

Three-factor 1.92 −1.27 1.65 1.33 0.59
(5.45) (−3.70) (6.80) (4.48)

Four-factor 1.97 −1.33 1.57 1.41 −0.05 0.59
(5.36) (−3.73) (6.62) (4.83) (−0.20)

ZCAPM 1.65 −0.28 1.00 0.95
(5.18) (−1.06) (9.53)

The portfolio MKT in the ZCAPM is the value-weighted mean market portfolio rather than a proxy for the market
portfolio M as in the CAPM.
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Table 3. Out-of-sample Fama–MacBeth cross-sectional regressions for U.S. stocks: January 1965 to
December 2020.

Panel A: 25 Size and BM Sorted Portfolios

Model λ̂0 λ̂β λ̂Z∗ λ̂SMB λ̂HML λ̂MOM R2

CCAPM 2.18 −1.41 0.72
(8.82) (−6.11)

Three-factor 2.45 −1.75 0.36 0.26 0.83
(10.78) (−7.93) (2.46) (1.93)

Four-factor 2.45 −1.77 0.36 0.23 −0.43 0.86
(10.43) (−7.79) (2.50) (1.74) (−1.47)

ZCAPM 1.48 −0.77 0.47 0.98
(5.82) (−3.25) (4.00)

Panel B: 25 Size and Momentum Sorted Portfolios

Model λ̂0 λ̂β λ̂Z∗ λ̂SMB λ̂HML λ̂MOM R2

CCAPM 1.53 −0.78 0.38
(6.90) (−3.52)

Three-factor 1.81 −1.23 0.54 0.03 0.76
(7.77) (−5.41) (3.75) (0.11)

Four-factor 2.06 −1.42 0.52 −0.20 0.47 0.80
(9.05) (−6.70) (3.61) (−0.91) (2.48)

ZCAPM 0.87 −0.19 0.69 0.93
(4.06) (−0.85) (6.07)

Panel C: 90 Total Portfolios

Model λ̂0 λ̂β λ̂Z∗ λ̂SMB λ̂HML λ̂MOM R2

CAPM 1.82 −0.94 0.26
(9.06) (−4.45)

Three-factor 1.52 −0.93 0.57 0.26 0.48
(9.42) (−5.04) (3.72) (1.85)

Four-factor 1.58 −0.97 0.53 0.23 0.26 0.54
(9.91) (−5.37) (3.37) (1.82) (1.39)

ZCAPM 1.22 −0.43 0.63 0.87
(6.81) (−2.29) (8.50)

The portfolio MKT in the ZCAPM is the value-weighted mean market portfolio rather than a proxy for the market
portfolio M as in the CAPM.

4.1. Subperiod 1928 to 1964

The cross-sectional regression results for the 1928 to 1964 subperiod based on three
different test asset portfolios are shown in Panels A to C in Table 2. In Panel A for the
25 size and BM portfolios, we see that the CAPM performed the worst with virtually no
explanatory power at R2 = 0 and a marginally significant negative market price for beta
λ̂β = −0.73 (t = −2.12). Since beta risk should be positively priced in the CAPM, our
results confirm those of Fama and French (1992, 1993, 1995) and many others that do not
support the CAPM. By contrast, the best performing models are the four-factor model and
ZCAPM with estimated R2 values of 92 percent and 98 percent, respectively. In assessing
the relative performance of different models, it is important to recognize that the three- and
four-factor models use endogenous test asset portfolios; that is, size, BM, and momentum
test asset portfolios are constructed from the same firm-level characteristics as the respective
factors. Notably, these firm-level characteristics are exogenous to the ZCAPM, which makes
the almost perfect goodness-of-fit of the ZCAPM quite remarkable.

In terms of the significance of factor loadings, again the ZCAPM outperforms the
other models. The λ̂Z∗ market price of zeta risk loadings is 1.29 percent per month with a
very high t-statistic of 6.19. The t-statistics for λ̂SMB and λ̂HML are very high also in the
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range of 5.07 to 5.44. As discussed earlier, Harvey et al. (2016) and Chordia et al. (2020)
recommended that asset pricing factors have t statistics greater than 3.0 to avoid false
discoveries. Our findings suggest that the size and value factors of Fama and French are
not false discoveries. This inference holds for the return dispersion factor in the ZCAPM
also. The estimated market price of momentum risk loadings λ̂MOM with t = −2.98, which
is borderline significant relative to the threshold hurdle rate. However, its market price
has a negative sign that is difficult to explain (i.e., higher risk should imply higher risk
premiums). Even so, adding momentum to the three-factor model noticeably boosts its
goodness-of-fit from 79 percent to 92 percent in the four-factor model.

The results in Panel B for the 25 size and momentum portfolios are similar to those
in Panel A. Again, the ZCAPM has almost perfect goodness-of-fit at a 98 percent R2

estimate, and λ̂Z∗ has the highest t statistic of all factors tested. Regarding the latter, the t
statistic equals 10.22, which is extremely high. No previous studies to our knowledge have
reported a t statistic this high in cross-sectional regression tests. As before, the four-factor
model outperforms the three-factor model, and the CAPM does the worst in terms of very
low goodness-of-fit.

Lastly, Panel C contains the results for 90 combined portfolios including 40 industry
portfolios. These results mitigate endogeneity problems by incorporating exogenous
industry test assets. Upon doing so, the three- and four-factor models’ performance
diminishes substantially compared to Panels A and B. Now their R2 values only reach
59 percent, which is far below that of the ZCAPM with near perfect goodness-of-fit at
95 percent. While the t statistics for λ̂SMB and λ̂HML are high in the range of 4.48 to 6.80,
they are well below that of the market price of zeta risk λ̂Z∗ at 9.53.

Another finding in Panels A to C of Table 2 is that the intercept term λ̂0 is somewhat
lower for the ZCAPM compared to the other models. This pattern is most clearly seen
in Panel B, wherein λ̂0 = 1.73 percent per month (t = 3.44) for the ZCAPM, compared
to estimates in the range of 3.47 percent to 4.64 percent for the other models. This lower
mispricing error further supports the ZCAPM.

In sum, the ZCAPM outperforms the popular three- and four-factor models, even when
endogenous test assets are used (which are exogenous to the ZCAPM factors). Consistent
with earlier studies, the CAPM performs poorly in cross-sectional tests. When exogenous
industry portfolios are added to the test assets, the ZCAPM outperforms other models by a
large margin. The latter results are the most reliable and highlight the dominance of the
ZCAPM, compared to often-used multifactor models.

4.2. Subperiod 1965 to 2020

In Table 3, we repeat the cross-sectional analyses in Table 2 for the subperiod 1965
to 2020. The results are similar to those in the earlier subperiod, with the exception that
the three- and four-factor models’ performance diminishes noticeably. For example, these
models now have R2 values of 83 percent and 86 percent, compared to 72 percent and
92 percent in Panel A of Table 2. None of the t statistics for these multifactor models
breaks the recommended 3.0 threshold—namely, they range from 1.74 to 2.50. In addi-
tion, the market price of momentum loadings λ̂MOM is insignificant with a negative sign.
By contrast, the ZCAPM has a near perfect R2 value of 98 percent, and the market price of
zeta risk loadings λ̂Z∗ is highly significant with t = 4.00. The CAPM performs better in
this subperiod with R2 = 72 percent, but the market price of beta risk is again significantly
negative at λ̂β = −1.41 percent (t = −6.11).

In Panel B, the results using 25 size and momentum portfolios are little changed.
The ZCAPM continues to outperform the multifactor models, even with endogenous
assets (that are exogenous to the ZCAPM). Now the market prices of size loadings λ̂SMB
have t statistics exceeding the 3.0 threshold at 3.75 and 3.61 in the three- and four-factor
models. The market price of momentum loadings λ̂MOM is positive and significant at
t = 2.48, but falls below the 3.0 threshold. Recall that it was negative and significant in the
earlier subperiod for the 25 size and BM portfolios. So here, we see some instability in the
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momentum factor results over time. By comparison, the ZCAPM’s λ̂Z∗ = 0.47 percent has
t = 6.07, which is much higher than the size loadings. As in Panel A, the goodness-of-fit of
the ZCAPM surpasses the other models by a larger margin than in the earlier subperiod.
These results suggest that the earlier subperiod has greater endogeneity problems than the
later subperiod due to smaller sample sizes as you go back in time before 1965. Hence,
the earlier subperiod findings underscore the endogeneity problem in the three- and four
factor models.

Finally, Panel C provides the results for the 90 combined portfolios with industry port-
folios included. As before, the inclusion of exogenous test assets reduces the performance
of the multifactor models. The ZCAPM has R2 = 87 percent and t = 8.50 with respect to
the market price of zeta risk λ̂Z∗ = 0.63 percent, which exceeds the R2 values of the three-
and four-factor models at 0.48 percent and 0.54 percent, respectively, and t-statistics of
3.72 and 3.37 for λ̂SMB at 0.57 percent and 0.53 percent. The market prices of value and
momentum loadings are insignificant at the 5 percent level in these test assets. The inability
of these factors to consistently be significant from over time and across test assets suggests
that they are false discoveries. Only the size factor continues to pass the 3.0 threshold, even
when exogenous assets are included in the test assets.

We should mention that previously cited studies that incorporated a return dispersion
factor in an OLS time-series regression model obtain much weaker and ambiguous findings
than the EM ZCAPM regression model with a dummy latent variable. Unlike the present
study, Verousis and Voukelators (2015) found that return dispersion loadings are negatively
priced. Other studies by Jiang (2010), Demirer and Jategaonkar (2013), Garcia et al. (2014),
and Chichernea et al. (2015) reported positive prices of return dispersion loadings, but the
significance levels did not consistently exceed the 3.0 threshold. In this regard, because they
used in-sample cross-sectional tests rather than out-of-sample tests as in the present study,
their results cannot be directly compared to our results.

Another noteworthy finding is that, as in the earlier subperiod, the intercept terms λ̂0
for the ZCAPM are lower than those for the other models in Panels A to C in Table 3. We
infer that this is likely due to the better goodness-of-fit of the ZCAPM compared to the
other models.

In sum, the ZCAPM outperforms the CAPM and commonly used multifactor models
in terms of both goodness-of-fit and significance of return dispersion factor loadings. Dif-
ferences in performance are greater, using exogenous industry assets, which call attention
to the endogeneity problem in using tests assets sorted on firm-level characteristics that are
used to construct long-short, zero-investment factors. We infer that our results corroborate
those in KLH—that is, the ZCAPM consistently dominates multifactor models in out-of-
sample cross-sectional regression tests. According to KLH, the return dispersion factor
outperforms multifactors due to the fact that the latter are actually rough return dispersion
measures that capture different slices within the total return dispersion. The size factor is
long small stocks’ returns and short big stocks’ returns, and so captures a portion of the
total return dispersion. Sometimes, multifactors switch from positive to negative market
prices of risk in cross-sectional tests; for example, the market prices of momentum factor
loadings switch from negative in the earlier subperiod to negative in the later subperiod in
Tables 2 and 3, respectively. The reason for this erratic pricing behavior is that momentum
was capturing negative zeta risk in the earlier subperiod and positive zeta risk in the later
subperiod. Surely, momentum is a return dispersion measure, as it is defined as past winner
stocks’ turns minus past loser stocks’ returns. These multifactors can shift around within
the total return dispersion of stocks over time and at times become insignificant, which is
what we find in our results in Tables 2 and 3. Because multifactors are proxies for different
slices of return dispersion, they are related to the ZCAPM. As the theoretical ZCAPM posits,
return dispersion is needed to span the return and risk dimensions of the mean–variance
Markowitz investment parabola. To locate efficient and orthogonal inefficient portfolios
per Black’s zero-beta CAPM, the return dispersion is a critical asset pricing factor that is
needed to augment the mean market return factor.
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4.3. Cross-Sectional Fitted and Realized Excess Returns

Fama and MacBeth (1973, p. 613) observed that: “As a normative theory the model
only has content if there is some relation between future returns and estimates of risk
that can be made on the basis of current information”. Following this logic, Lettau and
Ludvigson (2001) and other researchers typically generated graphs of cross-sectional fitted
excess returns and realized excess returns for different test asset portfolios. We discussed
details for computing these out-of-sample returns in the previous section. We next display
in Figures 3–10 illustrations of the relation between actual and fitted excess returns.

In Figures 3–6 corresponding to the earlier subperiod, we provide the cross-sectional
results for the CAPM, three-factor model, four-factor model, and ZCAPM. In Figure 3,
the CAPM demonstrates no relation between past beta estimates (used to compute future
fitted excess returns) and future realized excess returns. The three- and four-factor models
in Figures 4 and 5, respectively, do a much better job. Even so, they have difficulties
with portfolios with average realized excess returns greater than about 4 percent per
month. For these higher risk portfolios, fitted excess returns tend to underestimate the
realized excess returns. We infer that some portion of risk is left out of these models
which explains this downward bias. By contrast, the ZCAPM in Figure 6 correctly prices
these higher risk portfolios. Hence, the ZCAPM more completely measures risk than the
multifactor models. Additionally, and of major importance as a normative theory, based on
the ZCAPM, portfolios fall fairly close to the 45-degree line from the origin for fitted and
realized excess returns.

Turning to Figures 7–10 related to the later subperiod, we find similar patterns in fitted
versus realized excess returns. In Figure 7, the CAPM does better than in the previous
subperiod but a markedly flat relation is obvious that fails to capture a linear relation
between risk and return. The three- and four-factor models in Figures 8 and 9, respectively,
do a much better job than the CAPM but again have difficulties with underestimating
the fitted excess returns of high return (risk) portfolios. In Figure 10, the ZCAPM clearly
demonstrates a closer fit between fitted and realized excess returns than the other models
in the cross section of average stock returns. Additionally, the ZCAPM better prices high
return (risk) portfolios.

Figure 3. Out-of-sample cross-sectional relationships for the CAPM between average one-month-
ahead fitted (predicted) excess returns in percent (y-axis) and average one-month-ahead realized
excess returns in percent (x-axis): January 1928 to December 1964.
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Figure 4. Out-of-sample cross-sectional relationships for the Fama and French three-factor model
between average one-month-ahead fitted (predicted) excess returns in percent (y-axis) and average
one-month-ahead realized excess returns in percent (x-axis): January 1928 to December 1964.

Figure 5. Out-of-sample cross-sectional relationships for the Fama and French four-factor model
between average one-month-ahead fitted (predicted) excess returns in percent (y-axis) and average
one-month-ahead realized excess returns in percent (x-axis): January 1928 to December 1964.
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Figure 6. Out-of-sample cross-sectional relationships for the ZCAPM between average one-month-
ahead fitted (predicted) excess returns in percent (y-axis) and average one-month-ahead realized
excess returns in percent (x-axis): January 1928 to December 1964.

Figure 7. Out-of-sample cross-sectional relationships for the CAPM between average one-month-
ahead fitted (predicted) excess returns in percent (y-axis) and average one-month-ahead realized
excess returns in percent (x-axis): January 1965 to December 2020.
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Figure 8. Out-of-sample cross-sectional relationships for the Fama and French three-factor model
between average one-month-ahead fitted (predicted) excess returns in percent (y-axis) and average
one-month-ahead realized excess returns in percent (x-axis): January 1965 to December 2020.

Figure 9. Out-of-sample cross-sectional relationships for the Fama and French four-factor model
between average one-month-ahead fitted (predicted) excess returns in percent (y-axis) and average
one-month-ahead realized excess returns in percent (x-axis): January 1965 to December 2020.
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Figure 10. Out-of-sample cross-sectional relationships for the ZCAPM between average one-month-
ahead fitted (predicted) excess returns in percent (y-axis) and average one-month-ahead realized
excess returns in percent (x-axis): January 1965 to December 2020.

In sum, confirming Fama and French (1992, 1993, 1995) and others, graphical results
for the CAPM suggest that there is no relation between the one-month-ahead fitted ex-
cess returns based on market beta risk and realized excess returns in the cross section of
the average stock returns. Fama and French’s three-factor model noticeably boosts the
goodness-of-fit compared to the CAPM. Additionally, Carharts’ four-factor model further
improves the goodness-of-fit, especially in the earlier subperiod of 1928 to 1964. When
industry portfolios are added to the test assets, the performance of the three- and four-
factor models decreases considerably, whereas the ZCAPM continues to perform quite well.
Graphs of average fitted and realized excess returns show that test asset portfolio returns
fall closer to the 45-degree line from the origin for the ZCAPM, compared to the multifactor
models. Unlike the ZCAPM, the latter multifactor models have difficulty in pricing higher
return (risk) portfolios. Thus, the ZCAPM outperforms other models in cross-sectional
analyses of stock returns.

5. Conclusions

This study extended the previous work by Kolari et al. (2021) (KLH) on tests of a
new asset pricing model derived as a special case of Black’s (1972) zero-beta CAPM,
dubbed the ZCAPM. KLH investigated U.S. stock returns in the sample period 1965 to
2018. After reviewing the theoretical and empirical versions of the ZCAPM, we expanded
their analyses by taking into account the earlier subperiod 1928 to 1964 as well as the
later subperiod of 1965 to 2020. Standard out-of-sample Fama and MacBeth (1973) cross-
sectional regression analyses were applied to a variety of test asset portfolios, including
25 size and BM portfolios, 25 size and momentum portfolios, and 90 combined portfolios
with 40 industry portfolios. We benchmarked the ZCAPM results against the CAPM with a
single market factor, the Fama and French (1992, 1993, 1995) three-factor model augmented
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with size and value factors, and the Carhart (1997) four-factor model augmented with a
momentum factor.

Our results corroborate those in KLH that the ZCAPM consistently dominates multi-
factor models, especially when using exogenous industry portfolios. Our CAPM results
are similar to previous authors that find little or no support for the hypothesized posi-
tive relation between beta and average returns. The three- and four-factor models did
much better than the CAPM but primarily showed strength using endogenous test asset
portfolios based on size and momentum characteristics that are contained in the size and
momentum factors. Even so, the ZCAPM outperformed these popular multifactor models.
Interestingly, multifactor models did better in the earlier subperiod in all likelihood due to
the smaller sample sizes of stocks relative to the later subperiod; that is, smaller sample
sizes exacerbate the endogeneity problem in cross-sectional tests. When using exogenous
industry portfolios, the multifactor models’ performance declined substantially, whereas
the ZCAPM continued to perform quite well in both earlier and later subperiods.

We conclude that, similar to the findings of KLH, the ZCAPM consistently outper-
formed multifactor models. A key reason for this outperformance is that the cross-sectional
standard deviation of all stock’s returns more comprehensively captures the return dis-
persion than the selected multifactors that are themselves rough measures of the return
dispersion. While popular multifactors show significance in our tests, and can surpass the
recommended 3.0 t-statistic thresholds in terms of the market prices of factor loadings in
some test asset portfolios, their results tend to be inconsistent across subperiods and test
asset portfolios. By contrast, t statistics associated with the market price of return dispersion
loadings in the ZCAPM always exceed 3.0 in different subperiods and test asset portfolios.
Additionally, near perfect goodness-of-fit was achieved by the ZCAPM for portfolios sorted
on firm-level characteristics, even though these characteristics are exogenous to the mean
market return and cross-sectional return dispersion factors of the ZCAPM.

Cochrane (2011, p. 1061) observed that, “. . . the world would be much simpler if
betas on only a few factors, important in the covariance matrix of returns, accounted for a
larger number of mean characteristics”. The ZCAPM embodies a parsimonious two-factor
model with mean market return and return dispersion factors. Regarding the latter return
dispersion factor, the ZCAPM takes into account long/short, zero-investment factors based
on firm-level characteristics that themselves are rough measures of total return dispersion.
Future research is recommended on different countries17 as well as other asset classes,
including bonds, commodities, real estate, etc. Moreover, further work on applications
to other areas of finance is recommended, such as investment analysis, the cost of equity,
event studies, etc.
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Notes
1 Numerous authors link return dispersion to economic fundamentals, including the business cycle, economic uncertainty,

and macroeconomic shocks, including Loungani et al. (1990), Christie and Huang (1994), Bekaert and Harvey (1997, 2000),
Connolly and Stivers (2003), Stivers (2003), Pastor and Veronesi (2009), Angelidis et al. (2015), and others.

2 See seminal work by Dempster et al. (1977) on the development of EM regression as well as applications in other areas of finance
by Harvey and Liu (2016) and Chen et al. (2017). Wikipedia provides an excellent overview of EM regression and further citations
to statistics literature.

3 These studies compute a variety of market volatility factors, including the time-series volatility index (VIX) of the Chicago Board
of Options Exchange (CBOE), time-series variance of market returns, and volatility-of-volatility metrics. See (Ferson 2019, chp. 34)
for an excellent discussion of studies using time-series volatility factors in the asset pricing literature.

4 See https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library (accessed on 1 September 2021)
5 See also their earlier work in Liu et al. (2012) and Liu (2013).
6 One proof uses random matrix mathematics, and the second proof is based on Markowitz mathematical methods.
7 This result was proved by KLH by means of two different geometric methods, including the Roll’s (1980) well-known geomet-

ric approach.
8 By contrast, the riskless rate is constant and therefore nonrandom.
9 In early CAPM studies, such as that of Black et al. (1972), it was found that E(R̃ZM) > R f , which implied that security market

line (SML) had a higher intercept and lower slope than the theoretical CAPM.
10 To do this, KLH use the latent variable approach in conditional asset pricing (see Gibbons and Ferson 1985; Ferson and Locke 1998).
11 The following conditions hold: (1) assuming all funds are invested in either I∗ or ZI∗, then β I∗ ,a = βZI∗ ,a = 1 and Z∗I∗ ,a = 1 or

Z∗ZI∗ ,a = −1, respectively; (2) assuming no riskless asset, Equation (11) reduces to Equation (8) (i.e., βi,a ≡ wI∗ + wZI∗ = 1); and
(3) assuming the restriction w f > 0 (i.e., no borrowing at the riskless rate is allowed), then βi,a < 1.

12 The market portfolio M lies on the efficient frontier at the tangent point of a ray from the riskless rate.
13 This diagram is based on Figure 3.3 in Kolari et al. (2021, p. 68).
14 More specifically, KLH defined T+ = {t : 1 ≤ t ≤ T, Dit = +1} and T− = {t : 1 ≤ t ≤ T, Dit = −1} as sets of time indices

associated with positive and negative signs of the signal variable. As such, the empirical ZCAPM Equation (12) becomes a two
equation model:

Rit − R f t = βi,a(Rat − R f t) + Zi,aσat + uit, t ∈ T+
Rit − R f t = βi,a(Rat − R f t)− Zi,aσat + uit, t ∈ T−,

where first equation has probability pi, and the second equation has probability 1− pi.
15 As we will see, the goodness-of-fit of the empirical ZCAPM was exceptional, with estimated adjusted R2 values as high as 98

percent in some tests. These results imply that the absence of a time-series αi term in the empirical ZCAPM did not affect the
cross-sectional results.

16 Without recaling Z∗i to a monthly basis, estimates of λZ∗ would be much larger and not comparable to λβ estimates related to
beta loadings.

17 See the working paper by Kolari et al. (2021) on international stock market tests of the ZCAPM in Canada, France, Germany,
Japan, the United Kingdom, and the United States.

References
Adrian, Tobias, and Joshua Rosenberg. 2008. Stock returns and volatility: Pricing the short-run and long-run components of market

risk. Journal of Finance 63: 2997–3030. [CrossRef]
Ang, Andrew, Joseph Chen, and Yuhang Xing. 2006a. Downside risk. Review of Financial Studies 19: 1191–239. [CrossRef]
Ang, Andrew, Robert J. Hodrick, Yuhang Xing, and Xiaoyan Zhang. 2006b. The cross-section of volatility and expected returns. Journal

of Finance 61: 259–99. [CrossRef]
Ang, Andrew, Robert J. Hodrick, Yuhang Xing, and Xiaoyan Zhang. 2009. High idiosyncratic volatility and low returns: International

and further U.S. evidence. Journal of Financial Economics 91: 1–23. [CrossRef]
Angelidis, Tinotheos, Athanasios Sakkas, and Nikolaos Tessaromatis. 2015. Stock market dispersion, the business cycle and expected

factor returns. Journal of Banking and Finance 59: 256–79. [CrossRef]

https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library
http://doi.org/10.1111/j.1540-6261.2008.01419.x
http://dx.doi.org/10.1093/rfs/hhj035
http://dx.doi.org/10.1111/j.1540-6261.2006.00836.x
http://dx.doi.org/10.1016/j.jfineco.2007.12.005
http://dx.doi.org/10.1016/j.jbankfin.2015.04.025


J. Risk Financial Manag. 2022, 15, 137 22 of 23

Bansal, Ravi, Dana Kiku, Ivan Shaliastovich, and Amir Yaron. 2014. Volatility, the Macroeconomy, and Asset Prices. Working Paper.
Durham: Duke University; Philadelphia: University of Pennsylvania.

Bekaert, Geert, and Campbell Harvey. 1997. Emerging equity market volatility. Journal of Financial Economics 43: 29–77. [CrossRef]
Bekaert, Geert, and Campbell Harvey. 2000. Foreign speculators and emerging equity markets. Journal of Finance 55: 565–613. [CrossRef]
Bekaert, Geert, Robert J. Hodrick, and Xiaoyan Zhang. 2012. Aggregate idiosyncratic volatility. Journal of Financial and Quantitative

Analysis 47: 1155–85. [CrossRef]
Black, Fischer. 1972. Capital market equilibrium with restricted borrowing. Journal of Business 45: 444–54. [CrossRef]
Black, Fischer, Michael C. Jensen, and Myron Scholes. 1972. The Capital Asset Pricing Model: Some Empirical Tests. In Studies in the

Theory of Capital Markets. Edited by Michael C. Jensen. New York: Praeger.
Bollerslev, Tim, Sophia Zhengzi Li, and Bingzhi Zhao. 2016. Good Volatility, Bad Volatility, and the Cross-Section of Stock Returns. Working

Paper. Durham: Duke University; East Lansing: Michigan State University.
Carhart, Mark M. 1997. On persistence in mutual fund performance. Journal of Finance 52: 57–82. [CrossRef]
Chang, Bo Young, Peter Christoffersen, and Kris Jacobs. 2013. Market skewness risk and the cross-section of stock returns. Journal of

Financial Economics 107: 46–68. [CrossRef]
Chen, Te-Feng, Tarun Chordia, San-Lin Chung, and Ji-Chai Lin. 2021. Volatility-of-volatility risk in asset pricing. Review of Asset Pricing

Studies 12: 289–335. [CrossRef]
Chen, Yong, Michael Cliff, and Haibei Zhao. 2017. Hedge funds: The good, the bad, and the lucky. Journal of Financial and Quantitative

Analysis 52: 1081–109. [CrossRef]
Chichernea, Doina C., Anthony D. Holder, and Alex Petkevich. 2015. Does return dispersion explain the accrual and investment

anomalies? Journal of Accounting and Economics 60: 133–48. [CrossRef]
Chordia, Tarun, Amit Goyal, and Alessio Saretto. 2020. Anomalies and false rejections. Review of Financial Studies 33: 2134–79.

[CrossRef]
Christie, William Gary, and R. D. Huang. 1994. The changing functional relation between stock returns and dividend yields. Journal of

Empirical Finance 1: 161–91. [CrossRef]
Cochrane, John H. 2005. Asset Pricing: Revised Edition. Princeton: Princeton University Press.
Cochrane, John H. 2011. Presidential address: Discount rates. Journal of Finance 56: 1047–108. [CrossRef]
Connolly, Robert, and Chris Stivers. 2003. Momentum and reversals in equity index returns during periods of abnormal turnover and

return dispersion. Journal of Finance 58: 1521–56. [CrossRef]
Da, Zhi, and Ernst Schaumburg. 2011. The Pricing of Volatility Risk across Asset Classes. Working Paper. Notre Dame: University of Notre

Dame; New York: Federal Reserve Bank of New York.
Daniel, Kent, and Sheridan Titman. 2012. Testing factor-model explanations of market anomalies. Critical Finance Review 1: 103–39.

[CrossRef]
Demirer, Riza, and Shrikant P. Jategaonkar. 2013. The conditional relation between dispersion and return. Review of Financial Economics

22: 125–34. [CrossRef]
Dempster, Arthur P., Nan M. Laird, and Donald B. Rubin. 1977. Maximum likelihood from incomplete data via the EM algorithm.

Journal of the Royal Statistical Society 39: 1–38.
Fama, Eugene F. 1968. Risk, return, and equilibrium: Some clarifying comments. Journal of Finance 23: 29–40. [CrossRef]
Fama, Eugene F., and James D. MacBeth. 1973. Risk, return, and equilibrium: Empirical tests. Journal of Political Economy 81: 607–36.

[CrossRef]
Fama, Eugene F., and Kenneth R. French. 1992. The cross-section of expected stock returns. Journal of Finance 47: 427–65. [CrossRef]
Fama, Eugene F., and Kenneth R. French. 1993. Common risk factors in the returns on stocks and bonds. Journal of Financial Economics

33: 3–56. [CrossRef]
Fama, Eugene F., and Kenneth R. French. 1995. Size and book-to-market factors in earnings and returns. Journal of Finance 50: 131–56.

[CrossRef]
Fama, Eugene F., and Kenneth R. French. 1996. The CAPM is wanted, dead or alive. Journal of Finance 51: 1947–58. [CrossRef]
Fama, Eugene F., and Kenneth R. French. 2004. The capital asset pricing model: Theory and evidence. Journal of Economic Perspectives

18: 25–46. [CrossRef]
Fama, Eugene F., and Kenneth R. French. 2015. A five-factor asset pricing model. Journal of Financial Economics 116: 1–22. [CrossRef]
Fama, Eugene F., and Kenneth R. French. 2018. Choosing factors. Journal of Financial Economics 128: 234–52. [CrossRef]
Fama, Eugene F., and Kenneth R. French. 2020. Comparing cross-section and time-series factor models. Review of Financial Studies 33:

1892–926. [CrossRef]
Ferson, Wayne E. 2019. Empirical Asset Pricing: Models and Methods. Cambridge: The MIT Press.
Ferson, Wayne E., and Dennis H. Locke. 1998. Estimating the cost of capital through time: Analysis of sources of error. Management

Science 44: 485–500. [CrossRef]
Ferson, Wayne E., Suresh K. Nallareddy, and Biqin Xie. 2013. The “out-of-sample” performance of long-run risk models. Journal of

Financial Economics 107: 537–56. [CrossRef]
Garcia, René, Daniel Mantilla-Garcia, and Lionel Martellini. 2014. A model-free measure of aggregate idiosyncractic volatility and the

prediction of market returns. Journal of Financial and Quantitative Analysis 49: 1133–65. [CrossRef]

http://dx.doi.org/10.1016/S0304-405X(96)00889-6
http://dx.doi.org/10.1111/0022-1082.00220
http://dx.doi.org/10.1017/S0022109012000543
http://dx.doi.org/10.1086/295472
http://dx.doi.org/10.1111/j.1540-6261.1997.tb03808.x
http://dx.doi.org/10.1016/j.jfineco.2012.07.002
http://dx.doi.org/10.1093/rapstu/raab018
http://dx.doi.org/10.1017/S0022109017000217
http://dx.doi.org/10.1016/j.jacceco.2014.08.001
http://dx.doi.org/10.1093/rfs/hhaa018
http://dx.doi.org/10.1016/0927-5398(94)90002-7
http://dx.doi.org/10.1111/j.1540-6261.2011.01671.x
http://dx.doi.org/10.1111/1540-6261.00576
http://dx.doi.org/10.1561/104.00000003
http://dx.doi.org/10.1016/j.rfe.2013.04.004
http://dx.doi.org/10.1111/j.1540-6261.1968.tb02996.x
http://dx.doi.org/10.1086/260061
http://dx.doi.org/10.1111/j.1540-6261.1992.tb04398.x
http://dx.doi.org/10.1016/0304-405X(93)90023-5
http://dx.doi.org/10.1111/j.1540-6261.1995.tb05169.x
http://dx.doi.org/10.1111/j.1540-6261.1996.tb05233.x
http://dx.doi.org/10.1257/0895330042162430
http://dx.doi.org/10.1016/j.jfineco.2014.10.010
http://dx.doi.org/10.1016/j.jfineco.2018.02.012
http://dx.doi.org/10.1093/rfs/hhz089
http://dx.doi.org/10.1287/mnsc.44.4.485
http://dx.doi.org/10.1016/j.jfineco.2012.09.006
http://dx.doi.org/10.1017/S0022109014000489


J. Risk Financial Manag. 2022, 15, 137 23 of 23

Gibbons, Michael R., and Wayne E. Ferson. 1985. Testing asset pricing models with changing expectations and an unobservable market
portfolio. Journal of Financial Economics 14: 217–36. [CrossRef]

Harvey, Campbell R., and Yan Liu. 2016. Rethinking Performance Evaluation. Working Paper No. 22134. Cambridge: National Bureau of
Economic Research.

Harvey, Campbll R., Yan Liu, and Heqing Zhu. 2016. And the cross-section of expected returns. Review of Financial Studies 29: 5–68.
[CrossRef]

Hou, Kewei, Chen Xue, and Lu Zhang. 2015. Digesting anomalies: An investment approach. Review of Financial Studies 28: 650–705.
[CrossRef]

Jagannathan, Ravi, and Zhenyu Wang. 1996. The conditional CAPM and the cross-section of asset returns. Journal of Finance 51: 3–53.
[CrossRef]

Jiang, Xiaoquan. 2010. Return dispersion and expected returns. Financial Markets and Portfolio Management 24: 107–35. [CrossRef]
Jones, P. N., and G. J. McLachlan. 1990. Algorithm AS 254: Maximum likelihood estimation from grouped and truncated data with

finite normal mixture models. Applied Statistics 39: 273–82. [CrossRef]
Kolari, James W., Jianhua Z. Huang, Hilal Anwar Butt, and H. Liao. 2021. International Tests of the ZCAPM Asset Pricingmodel. Working

Paper. College Station: Texas A&M University; Karachi: Institute of Business Administration.
Kolari, James W., Wei Liu, and Jianhua Z. Huang. 2021. A New Model of Capital Asset Prices: Theory and Evidence. Cham: Palgrave

Macmillan.
Lettau, Martin, Matteo Maggiori, and Michael Weber. 2014. Conditional risk premia in currency markets and other asset classes. Journal

of Financial Economics 114: 197–225. [CrossRef]
Lettau, Martin, and Sydney Ludvigson. 2001. Resurrecting the (C)CAPM: A cross-sectional test when risk premia are time-varying.

Journal of Political Economy 109: 1238–87. [CrossRef]
Lewellen, Jonathan, Stefan Nagel, and Jay Shanken. 2010. A skeptical appraisal of asset pricing tests. Journal of Financial Economics 96:

175–94. [CrossRef]
Lintner, John. 1965. The valuation of risk assets and the selection of risky investments in stock portfolios and capital budgets. Review of

Economics and Statistics 47: 13–37. [CrossRef]
Liu, Wei. 2013. A New Asset Pricing Model Based on the Zero-Beta CAPM: Theory and Evidence. Ph.D. thesis, Texas A&M University,

College Station, TX, USA.
Liu, Wei, James W. Kolari, and Jianhua Z. Huang. 2012. A new asset pricing model based on the zero-beta CAPM. Paper presented at

Annual Meetings of the Financial Management Association, Atlanta, GA, USA, October 17–20.
Loungani, Prakash, Mark Rush, and William Tave. 1990. Stock market dispersion and unemployment. Journal of Monetary Economics 25:

367–88. [CrossRef]
Markowitz, Harry M. 1959. Portfolio Selection: Efficient Diversification of Investments. New York: John Wiley & Sons.
McLachlan, Geoffrey J., and Thriyambakam Krishnan. 2008. The EM Algorithm and Extensions, 2nd ed. New York: John Wiley & Sons.
McLachlan, Geoffrey, and David Peel. 2000. Finite Mixture Models. New York: Wiley Interscience.
Mossin, Jan. 1966. Equilibrium in a capital asset market. Econometrica 34: 768–83. [CrossRef]
Pastor, Lubos, and Pietro Veronesi. 2009. Technological revolutions and stock prices. American Economic Review 99: 1451–83. [CrossRef]
Roll, Richard. 1977. A critique of the asset pricing theory’s tests, part I: On past and potential future testability of the theory. Journal of

Financial Economics 4: 129–76. [CrossRef]
Roll, Richard. 1980. Orthogonal portfolios. Journal of Financial and Quantitative Analysis 15: 1005–12. [CrossRef]
Shanken, Jay. 1992. On the estimation of beta pricing models. Review of Financial Studies 5: 1–34. [CrossRef]
Sharpe, William F. 1963. A simplified model for portfolio analysis. Management Science 9: 277–93. [CrossRef]
Sharpe, William F. 1964. Capital asset prices: A theory of market equilibrium under conditions of risk. Journal of Finance 19: 425–42.
Simin, Timothy. 2008. The poor performance of asset pricing models. Journal of Financial and Quantitative Analysis 43: 335–80. [CrossRef]
Stambaugh, Roger F., and Yu Yuan. 2017. Mispricing factors. Review of Financial Studies 30: 1270–315. [CrossRef]
Stivers, Chris. 2003. Firm-level return dispersion and the future volatility of aggregate stock market returns. Journal of Financial Markets

6: 389–411. [CrossRef]
Tobin, James. 1958. Liquidity preference as behavior toward risk. Review of Economic Studies 4: 65–86. [CrossRef]
Treynor, Jack L. 1961. Market Value, Time, and Risk. Unpublished work.
Treynor, Jack L. 1962. Toward a Theory of Market Value of Risky Assets. Unpublished work.
Verousis, Thanos, and Nikolaos Voukelators. 2015. Cross-sectional dispersion an expected returns. Paper presented at 5th Annual

Conference of the Financial Engineering and Banking Society, Nantes, France, June 11–13.

http://dx.doi.org/10.1016/0304-405X(85)90015-7
http://dx.doi.org/10.1093/rfs/hhv059
http://dx.doi.org/10.1093/rfs/hhu068
http://dx.doi.org/10.1111/j.1540-6261.1996.tb05201.x
http://dx.doi.org/10.1007/s11408-009-0122-1
http://dx.doi.org/10.2307/2347776
http://doi.org/10.1016/j.jfineco.2014.07.001
http://dx.doi.org/10.1086/323282
http://dx.doi.org/10.1016/j.jfineco.2009.09.001
http://dx.doi.org/10.2307/1924119
http://dx.doi.org/10.1016/0304-3932(90)90059-D
http://dx.doi.org/10.2307/1910098
http://dx.doi.org/10.1257/aer.99.4.1451
http://dx.doi.org/10.1016/0304-405X(77)90009-5
http://dx.doi.org/10.2307/2330169
http://dx.doi.org/10.1093/rfs/5.1.1
http://dx.doi.org/10.1287/mnsc.9.2.277
http://dx.doi.org/10.1017/S0022109000003550
http://dx.doi.org/10.1093/rfs/hhw107
http://dx.doi.org/10.1016/S1386-4181(02)00044-7
http://dx.doi.org/10.2307/2296205

	Introduction
	Overview of the ZCAPM
	Theoretical ZCAPM
	Empirical ZCAPM

	Cross-Sectional Tests
	Data
	Cross-Sectional Regression Tests

	Cross-Sectional Regression Results
	Subperiod 1928 to 1964
	Subperiod 1965 to 2020
	Cross-Sectional Fitted and Realized Excess Returns

	Conclusions
	References

