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Abstract: This paper features an analysis of cryptocurrencies and the impact of the COVID-19
pandemic on their effectiveness as a portfolio diversification tool and explores the correlations
between the continuously compounded returns on Bitcoin, Ethereum and the S&P500 Index using a
variety of parametric and non-parametric techniques. These methods include linear standard metrics
such as the application of ordinary least squares regression (OLS) and the Pearson, Spearman and
Kendall’s tau measures of association. In addition, non-linear, non-parametric measures such as the
Generalised Measure of Correlation (GMC) and non-parametric copula estimates are applied. The
results across this range of measures are consistent. The metrics suggest that, whilst the shock of the
COVID-18 pandemic does not appear to have increased the correlations between the cryptocurrency
series, it appears to have increased the correlations between the returns on cryptocurrencies and
those on the S&P500 Index. This suggests that investments in cryptocurrencies are not likely to offer
key diversification strategies in times of crisis, on the basis of evidence provided by this crisis.
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1. Introduction

This paper explores the use of cryptocurrencies as an investment diversification tool
in times of crisis. The issue addressed is whether the correlation between cryptocurrencies
and that between cryptocurrencies and financial markets in general increases during times
of crisis, as represented by the recent COVID-19 pandemic. If the correlation between
cryptocurrencies and other financial markets, in this case the S&P500 index, increases in
times of crisis, then cryptocurrencies are a less attractive diversification tool than might be
first thought.

The paper features the application of both customary forms of analysis, which are
based on the application of OLS and correlation analysis, plus non-linear non-parametric
methods. The former is based on customary assumptions about the existence of linear
relationships and the related Gaussian assumptions about the nature of the return
distributions. However, the tests of stationarity reported in Table 1 and the descriptive
statistics presented in Table 2 and the direct tests of the nature of the return distributions
strongly reject the null hypothesis of the distributions being Gaussian. The OLS analysis
and the results of Ramsey RESET tests also suggest the existence of non-linear relationships
between the return series considered. Therefore, a variety of non-parametric measures
are applied. These include the recently developed non-linear Generalised Measure of
Correlation (GMC), Zhang et al. (2012) and copula analysis fitted by means of Kernel
regression. Thus, the copulas fitted are not based on Gaussian assumptions. Another
attraction of non-parametric models is that they discard any rigid structure for the data,
and this non-parametric methodology really lets the data ‘speak for itself’.
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Table 1. KPSS unit root tests including trend on levels of the series pre- and post-COVID-19.

Pre-COVID-19 Period 1107 Observations

Series Test Statistic Critical Value 1% Significance

Bitcoin 0.906587 0.218 p-value < 0.01

Ethereum 1.98551 0.218 p-value < 0.01

S&P500 Index 0.89212 0.218 p-value < 0.01

Post-COVID-19 Period 388 Observations

Series Test Statistic Critical Value 1% Significance

Bitcoin 0.570669 0.217 p-value < 0.01

Ethereum 1.007 0.217 p-value < 0.01

S&P500 Index 0.819212 0.217 p-value < 0.01

Table 2. Sample period descriptive statistics return series and tests of normality.

Pre-COVID-19

Variable Mean Median Minimum Maximum Standard Deviation Skewness Kurtosis

BitRet 0.0030644 0.0028579 −0.23874 0.22512 0.045864 −0.066529 4.3715

EthRet 0.0037798 −0.00076875 −1.3643 0.50969 0.088035 −2.7868 55.437

SPRet 0.00040215 0.00055609 −0.041843 0.048403 0.0086027 −0.56605 4.11

Doornik-Hansen Shapiro-Wilk Lilliefors Jarque-Bera

BitRet 384.5 *** 0.918 *** 0.115 *** 881.5 ***

EthRet 3174.1 *** 0.779 *** 0.126 *** 143,056 ***

SPRet 23,591.6 *** 0.5134 *** 0.185 *** 5,267,300 ***

Post-COVID-19 Sample Period Descriptive Statistics Return Series

Variable Mean Median Minimum Maximum Standard Deviation Skewness Kurtosis

BitRet 0.0041152 0.0034694 −0.46473 0.19153 0.051090 −2.0163 18.759

EthRet 0.0067657 0.0040564 −0.55073 0.23070 0.065380 −1.4801 13.968

SPRet 0.00080243 0.0017851 −0.12765 0.089683 0.018271 −1.0116 12.402

Doornik-Hansen Shapiro-Wilk Lilliefors Jarque-Bera

BitRet 261.5 *** 0.854 *** 0.121 *** 5952 ***

EthRet 285.5 *** 0.888 *** 0.098 *** 3295.9 ***

SPRet 379.8 *** 0.811 *** 0.144 *** 2552.7 ***

Note: *** Indicates significance at 1 percent level.

It has been suggested that the 2009 global financial crisis was mainly due to an
unwarranted usage of the parametric Gaussian copula model for asset pricing Salmon
(2009). The attraction of the non-parametric approach is that non-parametric models, which
discard any rigid structure for the data, really let the data ‘speak for itself’. Hence, their
attractiveness and their application provide major features and novelty in the current paper.

A novel feature of the world’s financial markets, after the Global Financial Crisis
(GFC), has been the emergence of cryptocurrencies. These originated in 2008 with the
announcement of Bitcoin: a peer-to-peer electronic cash system by Satoshi Nakamoto
(a pseudonym) Nakamoto (2008). This involves a peer-to-peer version of electronic
cash that facilitates payments being made between two parties without the guarantees
and verification services of a financial institution. The system relies on a cryptographic
verification system based on time-stamped entries in the blockchain. Nakamoto (2008)
suggests that a weakness of trust-based systems, as founded on financial institutions, is
that the cost of mediation increases transaction costs, limiting the minimum practical
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transaction size and cutting off the possibility for small casual transactions, and suggests
that there is a broader cost in the loss of ability to make non-reversible payments for
non-reversible services.

A system based on cryptographic proof avoids these drawbacks and can be used for
small transactions. Every Bitcoin is made up of 100,000,000 satoshis (Bitcoin’s smallest
unit), which means that a bitcoin is divisible up to eight decimal places. This allows people
to purchase fractions of a bitcoin with as little as one U.S. dollar. Privacy is maintained
in the Bitcoin system in a manner similar to that in a stock exchange. Thus, the time and
size of individual trades, the "tape", is made public, with no disclosure of the transacting
parties. A further feature of Bitcoin is that it is supply predetermined. This means that it
has the potential to serve as a store of value and a proper medium of transaction that is
insulated against inflation.

The coindesk website (https://www.coindesk.com/price/bitcoin/), as accessed on
19 September 2021, suggested that the market capitalisation of the Bitcoin market stood at
890.56 billion. This reflects a continued growth in the acceptance of Bitcoin. For example,
from August 2020, Paypal customers in the US (except Hawaii) could buy, sell, hold, and
pay at checkout with four different cryptocurrencies on PayPal: Bitcoin, Ethereum, Litecoin
and Bitcoin Cash.

Baur et al. (2018) suggested that Bitcoin is uncorrelated with standard asset classes in
normal times and in times of crisis. They further suggested that Bitcoin tends to be used
as a speculative investment and not as an alternative currency or medium of exchange.
However, the measures of correlation used in their study are parametric, an issue that is a
focus of investigation in this paper. Watorek et al. (2021) provided a large-scale review of
the development of the cryptocurrency markets, applying tools from their native discipline
physics. They used multifractal cross-correlation analysis, q-dependent detrended cross-
correlation coefficients, non-linear correlations and multiscale characteristics to analyse
the characteristics of the cryptocurrency markets via the use of high-frequency data. They
concluded that the cryptocurrency markets are gradually advancing to maturity but are still
not fully developed markets, for example, Forex. This is because there are still significant
differences with regard to their liquidity and number of transactions.

Bouri et al. (2018) analysed the quantile conditional dependence between a global
financial stress index and Bitcoin returns. The results from the copula-based dependence
show evidence of right-tail dependence between the global financial stress index and Bitcoin
returns. They suggest that, overall, their results support the literature on the valuable role
of Bitcoin returns (Bouri et al. 2017a; Bouri et al. 2017b; Briere et al. 2015; Dyhrberg 2016a;
Dyhrberg 2016b; Ji et al. 2017). Bouri et al. (2018) used parametric-based copulas to capture
dependencies, whereas a contribution of the current study was the use of non-parametric
copula estimation techniques as a means for capturing dependencies.

Akhtaruzzaman et al. (2020) analysed the performance of portfolio diversification via
the addition of Bitcoin to global industry portfolios and an investment grade bond index.
They reported lower dynamic correlations and substantial variation in relationships across
industries and the bond index and suggested the existence of lower dynamic correlations
during times of downturn on a sample that runs from 2011 to 2018. Briere et al. (2015)
also reported substantial diversification benefits from investment in Bitcoin. Ghabri et al.
(2021) applied various multivariate GARCH specifications to model bitcoin and the joint
dynamics of selected financial assets and reported low time-varying correlation of liquidity
innovations over the period 2014–2019.

Guesmi et al. (2019) used a multivariate GARCH framework to assess spillover effects
between bitcoin, gold and equities. They reported that hedging strategies involving gold,
oil, equities and Bitcoin serve to reduce portfolio risk. Quarni and Gulzar (2021) examined
spillover effects and portfolio diversification benefits from currency trading in both Bitcoin
and foreign exchange markets. They reported that Bitcoin provides significant portfolio
diversification benefits for currency foreign exchange portfolios. Shahzad et al. (2020) also

https://www.coindesk.com/price/bitcoin/
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analysed the hedging characteristics of gold and Bitcoin for the G7 markets. They reported
that the out-of-sample hedging effectiveness of gold is superior to that of Bitcoin.

Conlon et al. (2020) explored the safe haven properties of Bitcoin, Ethereum and Tether
from the perspective of international equity index investors. They reported that Bitcoin
and Ethereum are not safe havens for the majority of international equity markets and that
they add to downside portfolio risk.

However, Demir et al. (2020); Geneens and de Micheaux (2019) used wavelet analysis
to explore the hedging properties of Bitcoin (BTC), Ethereum (ETH) and Ripple (XRP), and
those of COVID-19 cases/deaths and suggested that there is evidence of hedging properties.
Kristoufek (2020) used quantile correlation to examine the correlations of Bitcoin and two
benchmarks—the S&P 500 and VIX—and made comparisons with gold. He suggested that
the Bitcoin safe-haven story is unsubstantiated and that gold is a preferable safe haven.

Manavi et al. (2020) used a matrix correlation method to assess whether cryptocurrencies
are a real commodity or/and a virtual currency. They compared seven cryptocurrencies
with a sample of the three types of monetary systems: 28 fiat money, 2 commodities,
2 commodity-based indices and 3 financial market indices. They reported that other
currencies are not correlated to cryptocurrencies.

Goudell and Goutte (2021) applied wavelet analysis to assess the impact of COVID-
19 deaths on the levels of Bitcoin prices and reported that they are positively related.
Lahmiri and Bekiros (2020) applied entropy-based metrics to assess the relative stability of
cryptocurrencies compared with a number of equity markets and reported that
cryptocurrency showed more instability and more irregularity during the COVID-19
pandemic than international stock markets, which suggests that they have relatively higher
levels of risk. Grobys (2021) analysed the dynamic correlations between Bitcoin and
US equity markets in the early stages of the pandemic, and he suggested that Bitcoin
performed poorly in hedging US market tail risks. Drozd et al. (2020) applied fractal
analysis to examine the topology of the cryptocurrency markets and other fiat currency
markets in the early stages of the pandemic and suggested that the topology during the
pandemic differs, in some details, from other previous volatile periods.

Massoumi and Wu (2021) explored any similarity and dependence based on full
distributions of the cryptocurrency assets, stock indices and industry groups. They
characterized full distributions with entropies to account for higher moments and non-
Gaussianity of returns. They measured divergence and distance between distributions
using entropy-based metrics. They reported that the NASDAQ daily return has the most
similar density and co-dependence with the Bitcoin daily return and that the COVID-19
pandemic has increased co-dependencies.

It is obvious from this brief review of the existing literature that a large variety of
different research methods have been applied to the examination of the riskiness and
hedging properties of cryptocurrencies, producing varying and contradictory results.
The current study adds to the literature by reporting the results of a variety of parametric
and non-parametric measures of association, which incorporate both linear and non-linear
measures of association. The aim is to explore whether these various methods produce
similar results or whether the choice of metric is crucial to the nature of the results.

This study has parallels with that of Massoumi and Wu, in that it includes measures
of co-dependencies that are non-linear and non-parametric. These metrics differ in that
they include the Generalised Measure of Correlation (GMC) (Zhang et al. 2012; Vinod 2014)
and non-parametric copula-based metrics.

The paper is divided into four sections: a description of research methods follows in
Section 2, the results are presented in Section 3, and a conclusion is presented in Section 4.

2. Research Methods
2.1. Basic Measures

Chatterjee (2021) noted that the three classical measures of statistical association are
Pearson’s correlation coefficient, Spearman’s ρ and Kendall’s τ. These coefficients are
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suitable for detecting linear or monotone associations, and they have well-developed
asymptotic theories for calculating p-values. However, these measures are not effective for
detecting associations that are not monotonic, even in the complete absence of noise.

Given that price series are likely to be non-stationary, I commence by estimating
bivariate regressions of one price series logarithmic returns regressed on the logarithmic
returns of another series. This provides an estimate of the Pearson correlation coefficient.

Logarithmic returns (rt) are given by the following:

rt = [ln(pt)− ln(pt−1)]. (1)

The Pearson Correlation coefficient (ρ) is the slope coefficient of the bi-variate regression
of the returns of one series on those of another. Given a pair of random variables, (X, Y),
we have the following:

ρX,Y =
Cov(X, Y)

σXσY
. (2)

Spearman’s rank correlation coefficient, or Spearman’s rS, is a non-parametric measure
of rank correlation or statistical dependence between the rankings of two variables. The
Spearman correlation coefficient is defined as the Pearson correlation coefficient between
the rank variables pertaining to the pair of variables.

For a sample of size n, the n raw scores Xi, Yi are converted to ranks R(Xi), R(Yi) and
rS is computed as follows:

rs = ρR(X),R(Y) =
cov(R(X), R(Y)

σR(X)σR(Y)
, (3)

where ρ denotes the usual Pearson correlation coefficient but is applied to the rank variables.
Kendall’s tau τ can be defined in terms of a pair (X, Y), of joint random variables,

(xi, yj), . . . , (xn, yn), such that all values of (xi) and (yj) are unique (if we ignore ties for
simplicity). Then, any pair of observations (xi,yj), where i < j, are said to be concordant
if the sort order of (xi, xj) and (yi, yj) agrees, that is, if xi > xj and yi > yj, or vice versa.
However, if xi > xj,but yi < yj, or vice-versa, they are said to be discordant.

The Kendall τ coefficient is defined as follows:

τ =
(number o f concordant pairs)− (number o f discordant pairs)(

n
2

) , (4)

where
(

n
2

)
= n(n−1)

2 is the binomial coefficient for the number of ways to choose two

items from n items.

2.2. Copula Models

Dependence modeling with copulas has attracted a lot of interest recently, and copulas
are established tools in many fields of applied statistics. Sklar (1959) stated that any
multivariate distribution function can be decomposed into the marginal distributions
and a copula, which captures the dependence between variables. Sklar (1959) provided
the basic theorem describing the role of copulas for describing dependence in statistics
providing the link between multivariate distribution functions and their univariate margins.
The argument proceeds as follows: let F be a d - dimensional distribution function with
margins F1, . . . , Fd. Then, there exists a copula C such that, for all x = (x1, . . . , xd)

′ ∈
(R∪ {∞, −∞})d,

F(x) = C(F1(x1), . . . , Fd(xd)). (5)

C is unique if F1, . . . , Fd are continuous. Conversely, if C is a copula and F1, . . . , Fd are
distribution functions, then function F defined by (1) is a joint distribution with margins
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F1, . . . , Fd . In particular, C can be interpreted as the distribution function of a d -dimensional
random variable on [0, 1]d.

Though the copula of continuous random variables can be generally defined as
X = (X1, . . . , Xd) ∼ F the problem in practical applications is the identification of the
appropriate copula.

Standard multivariate copulas such as the multivariate Gaussian or Student’s t-test
value as well as exchangeable Archimedean copulas lack the flexibility of accurately
modeling the dependence among larger numbers of variables. Generalisations of these
offer some improvement but typically become rather intricate in their structure and hence
exhibit other limitations such as parameter restrictions.

The approach taken in the current paper is to let the data speak for itself and to
estimate a copula that fits the characteristics of the data set. One of the major benefits
of copula-based modeling is that inference for marginal distributions can be separated
from the modeling of the dependence structure, i.e., the copula. In the estimation of the
copula density C, it is most common to take a two-step approach: First, obtain estimates
FX̂, FŶ of the marginal distributions. One convenient way of doing this is to use the
empirical distribution function as an estimator. The next step involves the defining of
pseudo observations (Û, V̂) = (F̂X(X), F̂Y(Y)). The copula density can then be estimated as
the joint density of (Û, V̂). A common approach is to assume a parametric model for the
copula density C and to estimate using maximum likelihood. However, the large variety in
parametric copula models frequently lacks flexibility and bears the risk of misspecification.
Non-parametric density estimators avoid some of these issues.

In the analysis that follows, I make use of the R library package ’kdecopula’ Nagler
(2018). The package provides methods for estimation, bandwidth selection, simulation
and visualisation of the copulas fitted.

2.3. Generalised Measure of Correlation (GMC)

Zhang et al. (2012) developed the concept of Generalised Measures of Correlation
(GMC). They start with a linear regression model, and the partitioning of the variance into
explained and unexplained components.

Var (X) = Var(E(X | Y) + E(Var(X | Y)), (6)

where E(Y2) < ∞ and E(X2) < ∞. Note that E(Var(X | Y)) is the expected conditional
variance of X given Y, so that E(Var(X | Y)/Var(X) can be interpreted as the explained
variance of X by Y. Thus, we can write the following:

Var(E(X | Y))
Var(X)

= 1− E(Var(X | Y))
Var(X)

= 1− E({X− E(X | Y)}2

Var(X)
.

The explained variance of Y given X can be defined similarly. Zhang et al. (2012)
defined a pair of generalised measures of correlation (GMC) as:

{GMC(Y | X), GMC(X | Y)} =
{

1− E({Y− E(Y | X)}2

Var(Y)
, 1− E({X− E(X | Y)}2

Var(X)

}
. (7)

This pair of GMC measures has some attractive properties. It should be noted that the
two measures are identical when (X, Y) is a bivariate normal random vector. However,
GMCs are nonzero while Pearson’s correlation coefficient may have a zero value when two
random variables are nonlinearly dependent. GMC has various connections to Pearson’s
correlation coefficient and the coefficient of determination in regression models, and they
are identical to the squared Pearson’s correlation coefficient when two random variables
are related in a linear equation. A special case is where two random variables follow a
bivariate normal distribution.

Vinod (2017) applied the GMC metric in an economic paper that featured an analysis
of development economics markets in a study of 198 countries and developed R library
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package ’generalCorr’, Vinod (2016). Allen and Hooper (2018) used the metric to analyse
causal relations between the VIX, S&P500 and the realised volatility (RV) of the S&P500
sampled at 5-min intervals. Allen and McAleer (2022) explored the antecedents of the
GMC metric, in particular, the work of the Scottish statistician Yule (1897).

The R library package by Vinod (2016) provided software tools for computing
generalized correlation coefficients and the preliminary determination of causal directions
among a set of variables. Newer versions provide further enhancements, and Vinod (2020)
provided a generalisation of the Granger-causality test statistic as the difference between
two R2 values of two flipped kernel regressions to allow for nonlinear and nonparametric
causal dependence between two time series.

In his approach, Vinod (2016) took the GMC metric one step further than in the original
definition, as anticipated in the antecedent work by Yule (1897) and noted by Allen and
McAleer (2022).1 Vinod (2016) writes ‘Model 1’ as a Naradaya—Watson (See: Naradaya
1964; Watson 1964) kernel regression of the following form:

Υt = G1Xt + ε1t, t = 1, . . . , T, (8)

where the functional form of G1(.) is unknown, except that it is assumed to be a smooth
function. If it is assumed that (i) G1(x) ∈ G , the class of Borel measurable functions, and (ii)
E(Υ2) < ∞, Li and Racine (2007, p. 59) proved that G1(x) is an optimal predictor of Y in
mean squared error (MSE). The ’Model 2’ regression is as follows:

Xt = G2Υt + ε2t, t = 1, . . . , T. (9)

Vinod (2016) suggested the use of kernel smoothing to estimate the joint density f (x, y),
divided by the marginal density f (x), and wrote the estimate g1(x) of the conditional mean
function G1(x) as follows:

g1(x) =
∑T

t=1 Υtk( xt−x
h )

∑T
t=1 K( xt−x

h )
, (10)

where K(.) is the Gaussian kernel function and h is the bandwidth parameter.
Vinod (2014) explains that using superior forecast (or larger R2) as the criterion for

model selection amounts to choosing between generalized correlation coefficients r∗(Y | X)
and r∗(X | Y), as explained below in his definition of kernel causality.

Vinod (2014) suggested that variable X kernel causes Y if Model 1 is superior to Model
2 with respect to certain criteria. For example, if X is the cause, Model 1 is more successful
than Model 2 in minimising local kernel regression gradients or partial derivatives satisfy
the following:

| ∂g1(Y | X)/∂x |<| ∂g(X | Y)/∂y | . (11)

In addition, the estimated Model 1 absolute residuals should be smaller than those for
Model 2:

(| ε̂1t |< (| ε̂2t |). (12)

Furthermore, the forecasts from Model 1 are ’superior’ to those of Model 2. In effect,
the R2 of Model 1 exceeds the R2 of Model 2.

Vinod (2014) extended the GMC concept of Zhang et al. (2012) by suggesting that the
causal path X → Y is plausible when δ < 0. Given that R2 is always positive and does not
suggest the direction any relation, Vinod (2014) defined the following:

r∗(Y | X) = sign(rXY)
√

GMC(X | Y), (13)

where the relationship was assigned the sign of the Pearson correlation coefficient. Thus,
in the analysis that follows, the GMC relationship can have positive or negative signs.

This metric was utilised to check causal paths between cryptocurrency return pairs and
cryptocurrencies paired with S&P500 Index returns in the two periods used in this study.
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3. Results
3.1. Characteristics of the Base Series

The daily cryptocurrency data sets for Bitcoin and Ethereum were taken from Yahoo
finance. The data set began on 7 August 2015 and ended on 23 July 2021, producing
2170 daily observations for the cryptocurrencies. An overall sample of 5 years of daily
data was chosen because this afforded a sufficient number of data points within the sub-
samples for accurate analysis whilst not averaging the results over an excessively long
period, particularly in the first sub-sample. The S&P500 index series was drawn from the
Federal Reserve Bank of St. Louis (FRED) database, FRED (2021), and covered the same
period. However, there were fewer trading days for the US Stock Exchange, which is more
impacted by public holidays than cryptocurrencies. The three series were spliced together,
missing observations were removed, and the total data set for the combined series consisted
of 1504 daily observations. The data were then split into two sub-periods, pre-COVID-19,
which ran from 7 August 2015 to 31 December 2019, consisting of 1107 daily observations.
The post-COVID-19 data set, commenced on 2 January 2020 and terminated on 23 July
2021, consisting of 388 daily observations.

Graphs of the base price series and returns for the two sample time periods are shown
in Figures 1 and 2. The three base series all show evidence of trending behaviour in both
periods. Plots of the price levels and returns on the series in the post-COVID-19 period are
shown in Figure 2. Kwiatkowski et al. (1992) unit root tests, or more commonly termed
KPSS tests, were undertaken on the levels of the series for both the pre- and post- COVID-
19 samples, with the tests including a trend. The results are shown in Table 1. These
show that all three series—Bitcoin, Ethereum and the S&P500 index in levels—reject the
null hypothesis of stationarity at the 1 percent level. As a result, all of the analyses were
performed on the continuously compounded return series.

Descriptive statistics for these series are presented in Table 2. It is apparent in
Table 2 that the two cryptocurrencies have higher mean returns, a greater range of returns
and considerably higher standard deviations in both periods than those of the S&P500
return series. All series display negative skewness and high kurtosis relative to a normal
distribution, which would have a kurtosis of 3.

The results of the four different tests of conformance to a normal distribution are
reported in the bottom panels, below the descriptive statistics, in Table 2. All four tests,
namely, the Doornik–Hansen, Shapiro–Wilk, Lilliefors and Jarque–Bera tests reject the null
hypothesis of a Gaussian distribution at greater than the one percent level for all three
return series in both periods.

(a)

Figure 1. Cont.
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(b)

Figure 1. Plots of the series pre-COVID-19. (a) Plot price series levels pre-COVID-19. (b) Plot of
returns pre-COVID-19.

(a)

(b)

Figure 2. Plots of the series post-COVID-19. (a) Price series levels post-COVID-19. (b) Plot of returns
post-COVID-19.

The Pearson correlation test is based on the assumption of linearity and conformance
to a normal distribution. For this reason, the tests of association reported in this paper
include non-parametric tests and non-linear measures of association.
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3.2. Simple Tests of Correlation

The most straightforward test of the degree of correlation between the base return
series is to estimate the Pearson correlation coefficient by running linear regressions.
The results of these regression for the pre-COVID-19 period are shown in Table 3.

The regression in Table 3 reveal a significant correlation between BITRET and ETRET
in the pre-COVID-19 period with a coefficient of 0.21, which is significant at the 1 percent
level and an adjusted R-squared of 16.7. The Ramsey RESET test suggests that a linear
relationship is not adequate. The addition of a squared ETRET term increases the adjusted
R-square to 17.8 per cent and both the ETRET term and the squared ETRET term are
significant at the 1 percent level.

The results of a regression of the returns on Bitcoin and Ethereum regressed on the
S&P500 Index return during period 1 are shown in Table 4. It is notable that neither of these
regressions have a significant slope coefficient on the S&P500 Index return. The F values of
these regressions are not significant.

These results suggest that there are potential diversification benefits from investing in
cryptocurrencies in Period 1, the pre-COVID-19 period, given that they are not significantly
related to the return on the S&P500 Index return series on the basis of this metric.

These results are confirmed in Table 5 which reports the results of tests of the association
between these three pairs of series in Period 1 using Kendall’s tau. The two cryptocurrencies
are significantly related on these metrics, but neither are related to the return on the S&P500
Index returns in this pre-COVID-19 period.

Table 3. Return Regressions Pre-COVID-19.

BITRET Regression on ETRET

OLS, using observations 2015-08-10–2019-12-31 (T = 1106)

Dependent variable: BITRET

Coefficient Std. Error t-ratio p-value

const 0.00225718 0.00125961 1.792 0.0734
ETRET 0.213561 0.0143013 14.93 0.0000

Mean dependent var 0.003064 S.D. dependent var 0.045864
Sum squared resid 1.933742 S.E. of regression 0.041852

R2 0.168043 Adjusted R2 0.167290
F(1, 1104) 222.9924 p-value(F) 4.58 × 10−46

ρ̂ 0.042830 Durbin–Watson 1.886082

RESET test for specification—
Null hypothesis: specification is adequate
Test statistic: F(2, 1102) = 54.6266
with p-value = P(F(2, 1102) > 54.6266) = 2.39666 × 10−23

Regression with Squared ETRET added

OLS, using observations 2015-08-10–2019-12-31 (T = 1106)

Dependent variable: BITRET

Coefficient Std. Error t-ratio p-value

const 0.00147166 0.00126693 1.162 0.2457
ETRET 0.235129 0.0152147 15.45 0.0000

sq_ETRET 0.0907500 0.0229085 3.961 0.0001

Mean dependent var 0.003064 S.D. dependent var 0.045864
Sum squared resid 1.906616 S.E. of regression 0.041576

R2 0.179714 Adjusted R2 0.178227
F(2, 1103) 120.8264 p-value(F) 3.56 × 10−48

ρ̂ 0.056203 Durbin–Watson 1.882833
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Table 4. Cryptocurrency returns regressed on S&P500 Index returns Period 1.

BITRET Regressed on S&P500 Index Returns

OLS, using observations 2015-08-10–2019-12-31 (T = 1106)

Dependent variable: BITRET

Coefficient Std. Error t-ratio p-value

const 0.00306575 0.00137975 2.222 0.0265
SPRET −0.0127336 0.107227 −0.1188 0.9055

Mean dependent var 0.003064 S.D. dependent var 0.045864
Sum squared resid 2.324301 S.E. of regression 0.045884

R2 0.000013 Adjusted R2 −0.000893
F(1, 1104) 0.014102 p-value(F) 0.905492

ρ̂ 0.020015 Durbin–Watson 1.958382

RESET test for specification—
Null hypothesis: specification is adequate
Test statistic: F(2, 1102) = 0.94016
with p-value = P(F(2, 1102) > 0.94016) = 0.390878

Regression of ETRET on S&P500 Index Return Period 1

OLS, using observations 2015-08-10–2019-12-31 (T = 1106)

Dependent variable: ETRET

Coefficient Std. Error t-ratio p-value

const 0.00378385 0.00264840 1.429 0.1534
SPRET −0.0380504 0.205821 −0.1849 0.8534

Mean dependent var 0.003780 S.D. dependent var 0.088035
Sum squared resid 8.563712 S.E. of regression 0.088074

R2 0.000031 Adjusted R2 −0.000875
F(1, 1104) 0.034177 p-value(F) 0.853364

ρ̂ 0.006020 Durbin–Watson 1.769479

RESET test for specification—
Null hypothesis: specification is adequate
Test statistic: F(2, 1102) = 1.04091
with p-value = P(F(2, 1102) > 1.04091) = 0.353479

Table 5. Kendall’s tau measure of association among the return series in Period 1.

Paired Series Kendall’s Tau Z-Score Two-Tailed Probability

BITRET and SPRET −0.00908414 0.689712 0.4904

ETRET and SPRET 0.01384959 0.689712 0.4904

ETRET and BITRET 0.35508334 17.6852 0.0000

3.3. Regression Analysis in Period 2

Table 6 shows the results of pairwise regressions of the returns on the three series
in the post-COVID-19 period. Ramsey Reset Tests were performed on each regression
specification and the results (not reported) suggested a non-linear relationship, so squared
values of the independent variable were added to the regressions in all three cases. There
was little change in the results across the two periods in the regression of BITRET and
ETRET. The slopes coefficients were roughly 0.2 and adjusted R-squares were around
20 percent in both periods. The results of Kendall’s Tau measures of associated are reported
in Table 7.

The notable change was in the relationship between the cryptocurrencies returns
and the S&P500 Index returns. In the pre-COVID-19 period, the slope coefficients on
SPRET were insignificant. In the second period, they became strongly positive and highly
significant, though it must be borne in mind that the regressions include a significant
coefficient on the squared term as well. This reflects a marked change in the relationship.
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Table 6. Return regressions post-COVID-19.

BITRET Regression on ETRET

OLS, using observations 2020-01-02–2021-07-23 (T = 388)

Dependent variable: BITRET

Coefficient Std. Error t-ratio p-value

const 0.00737211 0.00237119 3.109 0.0020
ETRET 0.200777 0.0365130 5.499 0.0000

sq_ETRET −1.07101 0.142508 −7.515 0.0000

Mean dependent var 0.004115 S.D. dependent var 0.051090
Sum squared resid 0.759745 S.E. of regression 0.044423

R2 0.247872 Adjusted R2 0.243965
F(2, 385) 63.44057 p-value(F) 1.54 × 10−24

ρ̂ −0.074587 Durbin–Watson 2.147612

Return Regressions Post-COVID-19 BITRET Regression on SPRET

OLS, using observations 2020-01-02–2021-07-23 (T = 388)

Dependent variable: BITRET

Coefficient Std. Error t-ratio p-value

const 0.00558160 0.00248122 2.250 0.0250
SPRET 0.915062 0.134756 6.790 0.0000

sq_SPRET −6.59678 1.95763 −3.370 0.0008

Mean dependent var 0.004115 S.D. dependent var 0.051090
Sum squared resid 0.849030 S.E. of regression 0.046960

R2 0.159483 Adjusted R2 0.155116
F(2, 385) 36.52566 p-value(F) 2.99 × 10−15

ρ̂ −0.060347 Durbin–Watson 2.118522

Regression of ETRET on SPRET Period 2 COVID-19

OLS, using observations 2020-01-02–2021-07-23 (T = 388)

Dependent variable: ETRET

Coefficient Std. Error t-ratio p-value

const 0.00924389 0.00322452 2.867 0.0044
SPRET 0.967587 0.175126 5.525 0.0000

sq_SPRET −9.75624 2.54408 −3.835 0.0001

Mean dependent var 0.006766 S.D. dependent var 0.065380
Sum squared resid 1.433917 S.E. of regression 0.061028

R2 0.133186 Adjusted R2 0.128683
F(2, 385) 29.57768 p-value(F) 1.12 × 10−12

ρ̂ 0.008506 Durbin–Watson 1.979712

Table 7. Kendall’s tau measure of association between the the return series in Period 2.

Paired Series Kendall’s Tau Z-Score Two-Tailed Probability

BITRET and SPRET 0.14576840 4.28722 0.000

ETRET and SPRET 0.05975119 1.75712 0.079

ETRET and BITRET 0.11017875 3.24039 0.001

3.4. Non-Linear Non-Parametric Measures of Association in Period 1

The R library package kdecopula Nagler (2018) was used to fit copulas to paired return
series using kernel density estimates. The package contains functions that are used to
estimate the copula density from data. The only mandatory input is an n × 2 matrix of
copula data, in effect, data with standard uniform margins.

Bouri et al. (2018) suggested three advantages for the use of copulas in assessing
dependence. First, the copula method was designed to capture the complex and non-
linear dependence structure of a multivariate distribution, enabling scrutiny of both tail
dependence and the asymmetric dependence. Second, the marginal behaviour and the
dependence structure are separated by the framework of copulas. This facilitates model
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specification and model estimation. Copulas can jointly combine different univariate
models through their copula functions. Finally, copulas are invariant to increasing and
continuous transformations; see Ning (2010).

The empirical application of copulas to financial time series of returns and the method
for fitting marginal distributions was pioneered by Patton (2002) in his PhD thesis
“Applications of Copula Theory in Financial Econometrics”, and a further description
was provided in Patton (2006, pp. 536–37). He suggested the following models for the
marginal distributions of a pair of return series:

Xt = µx + φ1xXt−1 + εt (14)

σ2
x,t = ωx + βxσ2

x,t−1 + αxε2
t−1 (15)

√
νx

σ2
x,t(νx − 2)

.εt ∼ iidtvx .

A GARCH(1,1) model with a t-distribution was used to estimate the marginal distribution
for the return series. This provided a first approximation, given that the package includes
code to transform the data to uniform margins. (In the case of BITCOIN returns in period 1,
an ARCH model was used, as GARCH failed to converge).

A further explanation of this approach, which features the use of a common but limited
information set to model the marginal distributions, was provided by Patton (2013).

Table 8 provides a description of the results from fitting copulas to the paired series
during the pre-COVID-19 period. The results are consistent with the previous estimates.
There is a significant association between the returns on Bitcoin and Ethereum but a
minimal association between the cryptocurrency returns and those on the S&P500 index.
The diagrams in Panels A and C of Figure 3 show that the copula surfaces are fairly flat
when cryptocurrencies are paired with S&P500 returns, and the contour density plots,
particularly in panel C, are almost circular, depicting low levels of association. The first
contour plot in each series in the figures shows the situation with uniform marginals.

A variety of measures of association are used in Table 8, and I shall comment briefly
on the properties of some of the less frequently used ones. The Blomquist (1950) measure
of association was developed for circumstances in which it would be valid under weak
assumptions about the distribution of the data and easy to apply in practice. Blomquist
(1950, p. 593) suggested that we consider two sample medians x̃ and ỹ. The cdf F(x, y) is
assumed to have continuous marginal cdf’s F1(x) and F2(y) in order for the probability of
obtaining two equal x- values or two equal y-values in the sample to be zero. Blomquist
(1950) then divided the x, y-plane into four regions using the lines x = x̃ and y = ỹ. He then
suggested that some information about the correlation between x and y can be obtained by
the number of sample points, say n1, belonging to the first or third quadrants, compared
with the number, say n2, belonging to the second or fourth quadrants. After suggesting
a couple of further adjustments related to the total sample size, he then suggested that a
measure of correlation can be defined as follows:

q
′
=

n1 − n2

n1 + n2
=

2n1

n1 + n2
− 1 (−1 ≤ q

′ ≤ 1). (16)

Genest and Verret (2005, p. 521) noted that “testing for independence between two
continuous random variables X and Y is an old but important problem that has been
the object of much attention in the past century. Though a great deal of literature is
available on the subject, test procedures based on Pearson’s correlation continue to be
the most commonly used in practice. This is in spite of the well-known fact that this
coefficient is merely a measure of linear association whose effectiveness, therefore, is
questionable outside the normal paradigm, including for testing purposes”. They also
suggest that all modern concepts of dependence and stochastic orderings are based on
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copulas, including Spearman’s rho, Kendall’s tau and other nonparametric alternatives to
Pearson’s correlation coefficient.

Table 8. Non-parametric copula-estimation-transformed returns Period 1.

BITRET and SPRET

Kernel Copula Density estimate tau = −0.0065

Observations = 1107 Method: Transformation local likelihood, log-quadratic (nearest-neighbor)

Band width alpha = 0.5363016

logLik: 3.27 AIC: 20.48 cAIC: 20.83 BIC: 88.12

Effective number of
parameters: 13.5

Kendall −0.0065 Spearman −0.0096 Blomquist −0.0109 Gini −0.0102

vd_waerden −0.0008 minfo 0.00165 linfoot 0.0574

ETRET and SPRET

Kernel Copula Density estimate tau=0.014

Observations = 1107 Method: Transformation local likelihood, log-quadratic (nearest-neighbor)

Bandwidth: alpha = 0.5363016

logLik: 4.49 AIC: 18.21 cAIC: 18.57 BIC: 86.33

Effective number of
parameters: 13.6

Kendall 0.0143 Spearman 0.0218 Blomquist 0.0113 Gini 0.0151

vd_waerden 0.0270 minfo 0.0016 Linfoot 0.0567

BITRET and ETRET

Kernel Copula Density estimate tau=0.35

Observations = 1608 Method: Transformation local likelihood, log-quadratic (nearest-neighbor)

Bandwidth: alpha = 0.1920285

logLik: 378.95 AIC: −699.29 cAIC: −698.16 BIC: −541.55

Effective number of
parameters: 29.3

Kendall 0.3535 Spearman 0.4873 Blomqvist 0.3535 gini 0.4007

vd_waerden 0.5027 minfo 0.2137 linfoot 0.5897

Embrechts et al. (2002) pointed out that the dependence structure in a pair of variables
(X, Y) with continuous distribution H and that margins F and G are best characterised by
C, its unique underlying copula, implicitly defined on the unit square by the following:

H(x, y) = C{F(x), G(y)}, x, y,∈ R.

Modern concepts of dependence and stochastic orderings are based on copulas, which
includes Spearman’s rho, Kendall’s tau and various nonparametric alternatives to Pearson’s
correlation coefficient.

The copula of a random pair (X, Y) is unaffected by monotone increasing transformations
of the margins. Given a random sample from H (X1, Y1), . . . , (Xn, Yn), the associated pairs
of ranks (R1, S1), . . . , (Rn, Sn) are maximally invariant and can be used for a test of the
hypothesis H0 : H = FG, or equivalently, H0 : C = Π,with Π(µ, ν) for all µ, ν ∈ (0, 1). A
test based on kendall’s tau statistic can be written as
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τn =
2

n2 − n ∑
1≤i≤j≤n

sign(Ri − Rj)sign(Si − Sj)

and can be used to reject the null hypothesis, for a large enough sample size n, where
3
√

n | τn | /2 > Φ−1(0.975) = 1.96, where Φ stands for the cumulative distribution
function of a standard normal variable.

Another option based on Spearman’s rho is as follows:

ρn = −3
n + 1
n− 1

+
12

n3 − n

n

∑
i=1

RiSi,

which leads to rejection of the null when the asymptotic P−value 2Φ(−
√

n | ρn |) of the
two-sided test is too small.

Several other independence test statistics of the form

T J
n =

1
n

n

∑
i=1

J
(

Ri
n + 1

,
Si

n + 1

)
with specific score functions j, often perform as well as or better than standard parametric
tests based on Pearson’s empirical correlation rn for various classes of alternatives.

Bhuchongkul (1964) demonstrated that the van der Waerden statistic, Wn based on
J(µ, ν) = Φ−1(µ)Φ−1(ν), dominates rn for alternatives of the following form:

Xi = X∗i + ∆Zi, Yi = Y∗i + ∆Zi,

where X∗i , Y∗i and Zi are mutually independent random variables and ∆ is a scalar.
Genest et al. (2010) discussed the close relationship between Spearman’s (1906) footrule

Spearman (1906), which is a nonparametric measure of association, and Gini (1914)
coefficient. The Spearman footrule can be written as follows:

ϕn = 1− 3
n2 − 1

n

∑
i=1
| Ri − Si |

whereas the indice de cograduazione semplice, introduced by Gini (1914), can be written
as follows:

γn =
1

[n2/2]

n

∑
i=1
{| (n + 1− Ri)− Si | − | Ri − Si |}.

The last two measures, reported in Tables 8 and 9, are based on information criteria.
Let Xand Y be a pair of random variables. If their joint distribution is P(X,Y) and the
marginal distributions are PX and PY, the mutual information is described as follows:

I(X, Y) = DKL(P(X,Y) ‖ PX ⊗ PY)

where DKL is the Kullback–Leibler divergence. Information theory was developed by
Shannon (1948); Fano (1949) developed the concept of mutual information.

Hamdan and Tsokos (1971) discussed Linfoot (1957) informational measure of
association between two random variables Xand Y. The measure r1 is based on the
information gain r0 in knowing that X and Y are mutually dependent with a given bivariate
density function compared with the original knowledge that X and Y are statistically
independent. Linfoot (1957) suggested that, if X and Y have bivariate normal distributions
with correlation coefficient ρ, then r0 = (−1/2)ln(1− ρ2), which led to Linfoot (1957)
suggestion that an informational measure ρ1 of ρ be defined as follows:

r1 = [1− exp(−2ρ0)]
1/2
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In the case of discrete random variables X and Y with bivariate probabilities pij (i =
1, 2, . . . , s; j = 1, 2, t) and marginal probabilities pi = ∑j pij and pj = ∑i pij, r0 take the
following form:

r0 = ∑
i

∑
j

pijln

[
pij

pi. p.j

]
.

It is also the case that r0 is equivalent to Kullback (1959) distance-like measure
between the correlated bivariate distribution and the distribution under independence.

The various measures of association for the three combinations of the paired series
returns, as reported in the lower panels of each section of Table 6, all tell a consistent story.
The level of association between returns on Bitcoin and Ethereum is above 0.5, on the basis
of the Spearman, Van de-Waerden and Linfoot metrics. For the definition of these measures
used, see Nelsen (2006); Genest and Verret (2005); Joe (1989).

(a)

Figure 3. Cont.
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Figure 3. Cont.



J. Risk Financial Manag. 2022, 15, 103 18 of 25

(c)

Figure 3. Kernel Density Estimates of Copula fitted to Ajusted Return Series Period 1 Pre-COVID-19.
(a) Panel A: BITRET and SPRET. (b) Panel B: ETRET and SPRET. (c) Panel C: BITRET and ETRET.

Genest and Verret (2005), in their assessment based on simulations, suggested that,
whilst some dependence structures are easier to detect than others, the performance of
rank tests can vary substantially from one set of alternatives to another. Pearson’s test
seemed to be an acceptable procedure to use when the marginal distributions are normal
but not necessarily when they are not. Van der Waerden’s test is likely to perform well
whenever Pearson’s test performs well. It also has the additional advantage of being
marginal-free. In terms of the limits of their simulation study, van der Waerden’s test
seemed to hold a slight edge over Spearman’s and Kendall’s tests, which can be viewed as
being essentially equivalent.

The results in Table 6 suggest that the degree of association between the two
cryptocurrencies and the returns on the S&P500 index are virtually zero, as all of the
measures bracket zero, either positively or negatively. This suggests that, in this period,
investing in cryptocurrencies provides a potential diversification strategy. The concern
is whether this remains the case when the market is subjected to the global shock of the
pandemic? This is explored in the next sub-section.

3.5. Non-Linear Non-Parametric Measures of Association in Period 2

Table 9 reports the results of non-parametric copula density estimation in Period 2.
The correlations between the returns on the two cryptocurrencies and those on the S&P500
Index appear to have increased markedly since the beginning of the COVID-19 pandemic.
The estimates in Table 9 show that measures of association for BITRET and SPRET have
increased in the case of the Kendall measure up to 0.15, whereas in the pre-COVID-19
period, it was −0.01, and similarly, the Spearman and Blomquist measures increased from
−0.01 in both cases up to 0.23 and 0.15, respectively. In short, all of the metrics display a
marked increase. The copula diagrams in Figure 4 confirm these changes.

Similarly, the estimates for ETRET and SPRET also show a marked increase. The
Kendall and the Spearman measures stand at 0.08 and 0.11, whilst previously, they were
0.01 and 0.02, respectively. However, the correlations between the two cryptocurrencies
appear to have diminished. In the pre-COVID-19 period, the Kendall and Spearman
measures were 0.35 and 0.49, respectively; however, the the second period their values
have fallen to 0.13 and 0.19, respectively. All of the measures for this pair in Table 7 record a
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decrease. However, Panel C in Figure 4 shows the copula between the two cryptocurrencies
and suggests that they are still significantly associated.

In summary, these measures appear to show that the correlations between the returns
on cryptocurrencies and those on the S&P500 Index show increases in times of crisis.
This supports previous findings by Massoumi and Wu (2021, p. 1), who report that
“NASDAQ daily return has the most similar density and co-dependence with Bitcoin daily
return, generally, but after the COVID-19 outbreak in early 2020, even S&P500 daily return
distribution is statistically closely dependent on, and indifferent from Bitcoin daily return”.

Table 9. Non-parametric Copula estimation-transformed returns Period 2.

BITRET and SPRET

Kernel Copula Density estimate tau = 0.15

Observations = 388 Method: Transformation local likelihood, log-quadratic (nearest-neighbor)

Bandwidth: alpha = 0.5803161

logLik: 18.98 AIC: −15.07 cAIC: −14.31 BIC: 30.26

Effective number of
parameters: 11.24

Kendall 0.1546 Spearman 0.2316 Blomquist 0.1450 Gini 0.1758

Van der Waerden 0.2536 Minfo 0.0390 Linfoot 0.2738

ETRET and SPRET

Kernel Copula Density estimate tau = 0.075

Observations = 388 Method: Transformation local likelihood, log-quadratic (nearest-neighbor)

Band width alpha = 0.5886832

LogLik: 15.49 AIC: −7.52 cAIC: −6.72 BIC: 38.93

Effective number of
parameters: 11.73

Kendall 0.0753 Spearman 0.1125 Blomquist 0.0491 Gini 0.0768

Van der Waerden 0.1457 Minfo 0.0203 Linfoot 0.1995

BITRET and ETRET

Kernel Copula Density estimate tau = 0.013

Observations = 388 Method: Transformation local likelihood, log-quadratic (nearest-neighbor)

Bandwidth: alpha = 0.4297086

logLik: 39.05 AIC: −47.77 cAIC: −46.45 BIC: 12.29

Effective number of
parameters: 15.16

Kendall 0.1301 Spearman 0.1886 Blomquist 0.1217 Gini 0.1493

Van der Waerden 0.2167 Minfo 0.0559 Linfoot 0.3253
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(a)

Figure 4. Cont.
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(b)

(c)

Figure 4. Kernel density estimates of copula fitted to adjusted return series Period 2 COVID-19.
(a) BITRET and SPRET. (b) ETRET and SPRET. (c) BITRET and ETRET.
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3.6. Generalised Measure of Correlation (GMC) Analysis

Table 10 presents the results of the GMC analysis in the two periods, pre- and post-
COVID-19, and the results matrix reports the cause at the top of the columns and the
response along the rows. If we begin with column 2 in Period 1, SPRET, the continuously
compounded return on the S&P500 Index has a negative effect on the Bitcoin return, or a
GMC of −0.55 and a negative effect on the Ethereum return of −0.73. The third column
indicates that the Bitcoin return BITRET has a negative effect on SPRET of −0.57 and a
positive effect on ETRET of 0.83. Finally, the fourth column under ETRET shows that the
Ethereum return has a negative effect on SPRET of −0.47 and a positive effect on BITRET
of 0.80.

Which way does causality run in Table 10? We can look at the coefficients above and
below the diagonal in Table 10 and see that SPRET has an effect on BITRET of−0.56, but the
effect of BITRET on SPRET is −0.47. Therefore, the stronger influence is from the S&P500
to Bitcoin rather than vice-versa, but the causality runs in both directions. Similarly, the
effect of SPRET on ETRET is −0.73, whilst the effect of ETRET on SPRET is −0.47. Clearly,
SPRET has the larger causal impact. Finally, we can see that BITRET has an 0.83 effect
on ETRET, whilst ETRET has a 0.80 effect on BITRET. Therefore, Bitcoin has the slightly
stronger causal influence when it is paired with Ethereum.

In the post-COVID-19 period 2 in Table 10, matters change dramatically. For a start, all
of the GMC values have now become positive. This means that the relationship between the
returns on the S&P500 Index returns, SPRET and the two cryptocurrencies, as represented
by BITRET and ETRET, have increased to 0.69 and 0.68, respectively. Similarly, the influence
of the cryptocurrencies on the S&P500 has become positive and greatly increased, as the
last two entries in the row adjacent to SPRET are 0.68 and 0.81, respectively, which suggests
that ETRET now has the largest impact on SPRET. The two cryptocurrencies have a large
but slightly lower influence on one another. BITRET has a 0.77 GMC in relation to ETRET,
whereas the influence of ETRET ON BITRET is now 0.72. These values are now slightly
lower than the corresponding ones in the first period.

The most remarkable change is the switch in the signs of the relationships between
the cryptocurrencies and the S&P500 from negative to positive, which suggests that they
do not provide a strong diversification strategy in times of crisis.

Table 10. GMC analysis.

Period 1: Pre-COVID-19

SPRET BITRET ETRET

SPRET 1.000 −0.4542502 −0.4695773

BITRET −0.5563881 1.000 0.8003115

ETRET −0.7299776 0.8324365 1.000

Period 2: Post-COVID-19

SPRET BITRET ETRET

SPRET 1.000 0.6758405 0.8140017

BITRET 0.6898318 1.000 0.7194903

ETRET 0.6840218 0.7671989 1.000

4. Conclusions

The results of the tests of the measures of association between the returns on the
S&P500 Index and the returns on these two cryptocurrencies, Bitcoin and Ethereum,
in the the pre- and post-COVID-19 periods all tell a similar story, regardless of linear
and parametric measures, or non-linear and non-parametric measures being adopted.

In the pre-COVID-19 period, the regression analysis suggests that there is a significant
positive association between the two cryptocurrency returns series but no significant
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relationship with the S&P500 Index returns. Kendall’s tau tests of correlation provide
a similar set of results. The results change in the post-COVID-19 period, and whilst
the relationship between the two cryptocurrency returns series remains positive and
significant, there is now a positive and significant relationship between the returns on
both cryptocurrency returns series and the returns on the S&P500 Index. Kendall’s tau
metric also suggests significant and positive relationships between all three series.

The non-parametric copula analysis of the relationship between the three pairs of
series in the first period tells a similar story, suggesting that there is a significant association
between the returns on Bitcoin and Ethereum but a minimal association between the
cryptocurrency returns and those on the S&P500 index. In the second period, the results
change notably, and the correlations between the returns on the two cryptocurrencies and
those on the S&P500 Index appear to increase markedly.

The GMC analysis suggests a change in the sign of the relationship between the
cryptocurrency returns and those on the S&P500 Index from negative to positive and a
marked increase in their value. The direction of causality also appears to have switched
and the strongest causal influence now appears to run from the returns on Ethereum to
those on the S&P500 Index.

These changes are quite dramatic and suggest that cryptocurrencies in the form of
Bitcoin and Etheureum do not provide a strong potential portfolio diversification tool,
at least in the context of this particular crisis. This result is consistent with the findings
of Massoumi and Wu (2021); Kristoufek (2020); Conlon et al. (2020); Lahmiri and Bekiros
(2020); Grobys (2021).
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