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Abstract: Machine learning (ML) is a novel method that has applications in asset pricing and that
fits well within the problem of measurement in economics. Unlike econometrics, ML models are
not designed for parameter estimation and inference, but similar to econometrics, they address, and
may be better suited for, problems of prediction. While some ML methods have been applied in
econometrics for decades, their success in prediction has been limited, and examples of this abound
in the asset pricing literature. In recent years, the ML literature has advanced new, more efficient,
computation methods for regularization, modeling nonlinearity, and improved out-of-sample pre-
diction. This article conducted a comprehensive, objective, and quantitative bibliometric analysis of
this growing literature using Web of Science (WoS) data. We identified trends in the literature over
the past decade, the geographical distribution of articles, authorship, and institutional contributions
worldwide. The paper also identifies the dominant literature using citations in WoS and discusses
computational algorithms that are expanding the econometric frontiers in asset pricing. The top cited
papers were reviewed, highlighting their contribution. The limitations of ML learning methods and
recent advances in ML were used to provide a conic view to future ML econometric practice.

Keywords: machine learning; artificial intelligence; autoencoder; asset pricing; anomalies; asset
returns; options; big data; neural networks; textual analysis; Gaussian process; Bayesian inference;
global optimization
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1. Introduction

Economic uncertainty and stock market volatility are at levels rarely seen in the
history of modern economies. High and increasing levels of inflation, increasing interest
rates, a strong U.S. dollar, high cost of inputs, supply chain issues, and capital market
anomalies are contributing factors. The daily flux of macro and micro financial news on
these changes and their impact on asset prices and returns render the task of building
reliable financial econometric models of prediction very complex and high-dimensional. For
instance, the simple capital asset pricing model (CAPM) of Sharpe (1964) has a penurious
record in predicting asset returns (e.g., Fama and French 2004), and efforts to improve
CAPM’s predictive accuracy have generated a voluminous literature on econometrics
models of financial markets (e.g., Campbell et al. 1997). Sharpe’s ingenious idea was to
formulate a simple and intuitive model of the relationship between expected returns and
risk. By construction, this model implied several assumptions that, when relaxed, led to the
emergence of the above models. Today, with the availability of large data sets, often called
big data, researchers have focused on identifying patterns in such data that can be used in
combination with CAPM models to improve predictability. Even for seasoned researchers,
it is tasking to keep track of and condense such vast information and what it means for
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investment decisions. Machine learning (ML) methods are designed to handle large datasets
and have shown to have high predictive accuracy, particularly in fields such as biology
and computer sciences. Ongoing research in finance investigates whether ML models in
those fields can be adapted to improve the predictive performance of traditional asset
pricing models in finance. Israel et al. (2020) proposed that return prediction is the main
task underlying portfolio construction in the investment industry; they also addressed the
unique challenges in applying ML to return a prediction and called for establishing realistic
expectations for how and where ML is and how it will be impactful in asset management.
Israel et al. used a working definition of ML, based on the work of (Gu et al. 2018), which
is “ . . . inchoate and often content specific . . . to describe (i) a diverse collection of high-
dimensional models for statistical prediction, combined with (ii) so called ‘regularization’
methods for model selection and mitigation of overfit, and (iii) efficient algorithms for
searching among a vast number of potential model specifications.”1 Israel et al. further
discussed that the application of ML algorithms to finance is different and pointed out the
salient characteristics: (a) return prediction is a small data problem, it is not a question that
big-data exists (the number of regressors in an econometric model), but the main issue is the
number of observations on the dependent variable that can be used to learn from; (b) the
signal-to-noise ratio in returns is weak; (c) market agents and technological innovation
produce evolving markets; (d) new data sources in the finance industry are unstructured,
most have a short history and do not follow the standard row-column format of classical
econometric models; and (e) the finance industry requires interpretable models, whereas
some successful ML models are mostly black boxes and are considered opaque.

Given the increasing availability of financial data, empirical research with asset pricing
models has recently focused on using ML methods and new computational algorithms
in search of an improved predictability of returns, volatility, bankruptcy, etc. The new
literature on this subject is rapidly evolving, and as illustrated later, the number of published
articles on “machine learning in asset pricing” has accelerated; in fact, the number of
articles published during the first eight months of 2022 exceeded the total number of
articles published in 2021. This article used a recent bibliometric methodology to identify
contributions to the theory and practice of ML econometrics in asset pricing over the past
decade. The main emphasis of this paper was to review and introduce very recent frontier
developments in computational methods. A few of the articles reviewed also identify
current and future challenges with the application of ML to asset pricing (referred to ML-
CAPM hereafter), and some of these challenges are highlighted throughout this review.
This review highlights findings that improve our understanding of ML applicability to
asset pricing. The cited literature has very minimal overlap with books and review articles
recently published; for example, Nagel’s book and this review have only three references
in common: (Gu et al. 2020, 2021; and Hamilton 1994). As discussed in the ‘future research’
section of this review, the most recent applications of machine learning to asset pricing
converge to a common knowledge view that improved ML computational algorithms
with flexible nonlinear specifications can improve return prediction (e.g., Gu et al. 2020;
Israel et al. 2020). This finding is consistent with Klavans and Boyack’s (2017) results
showing that direct citations of seminal works can lead to research fronts in the field
of interest. Furthermore, this review article complements previous work on the subject,
highlights the above view and similar findings in related areas of finance, and should serve
to guide future research in asset pricing.

The paper is structured as follows. The second section provides a compact background
to the history of asset pricing models. Section 3 introduces the bibliometric approach and
survey data. Section 4 presents the bibliometric results, and the top 10 cited papers and
computational methods are highlighted in Section 5, emphasizing properties of various
algorithms. The last section complements the existing literature on the future of asset
pricing models. It is important to highlight that this review focused on recent contributions
on the subject and has very minimal overlap with books and review articles recently
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published; for example, Nagel’s book and this review article have the following references
in common: (Gu et al. 2020, 2021; and Hamilton 1994).

2. Background

The capital asset pricing model (CAPM) of Sharpe (1964) and Lintner (1965) establishes
a predictive relationship between expected returns and risk. However, the empirical record
of CAPM in predicting asset returns is poor, and, in the search for improved prediction
models, given the vast amount of digital data available today, ML methods have found
wide applicability. Recent work points out that ML methods are not directly translatable to
prediction problems in finance and that judgment must be exercised in adapting machine
learning to asset pricing (Mullainathan and Spiess 2017; Nagel 2021; Israel et al. 2020). In
retrospect, however, many of the regression-based ML techniques such as ridge-regression,
Bayesian models, and models for nonstationary financial time series can be found in most
standard econometric textbooks (e.g., Box and Jenkins 1970; Zellner 1971; Judge et al. 1985;
Hamilton 1994). Books and review articles on CAPM have been the subject of extensive
work, and a few examples include Campbell et al. (1997), Dimson and Mussavian (1999),
Fama and French (2004), Perold (2004), and Koumou (2020).

Machine learning CAPM models focus on the prediction of expected returns and
offer an alternative for specifying more flexible models. A challenge in ML research is
the development of economic theory-data consistent models that improve out-of-sample
predictions but also help to identify the factors that contribute to it (e.g., Israel et al. 2020;
Nagel 2021)2. While the history of asset pricing research is rich, the perspectives for
continued research look promising (Brunnermeier et al. 2021), and recent modeling and
advances in computational methods contribute to an enhanced understanding of their
applicability and interpretation in asset pricing. New neural networks and deep learning
algorithms are efficient, flexible, and more accurate in modeling nonlinearities, parsimony,
and out-of-sample forecasting. Given the complexity of the methods and the velocity of
contributions, we believe students and researchers of asset pricing using ML will benefit
from having one up-to-date source on frontier developments that may improve the theory
and practice of ML econometrics for capital asset pricing.

While review papers on this theme have frequently appeared in the literature, new
models have been introduced over the past two years. Figure 1 shows the various
paradigms of ML, some of which have been advanced in the literature recently; these
paradigms were developed in response to different problems in ML and were applied in
the review papers we highlight later. Supervised learning techniques (Bishop 2006) acquire
knowledge representations from labeled training data, i.e., they require the availability of
the ground truth at training time. Most deep neural network techniques that are trained
using back propagation algorithms, support vector machines, etc. (Bishop 2006), fall in
this category. In many areas, such as finance, acquiring large volumes of training data
with ground truths is prohibitively expensive or even impossible, since the ground truth
labels can only be provided by trained experts who may not always be available at training
time. To address this issue, the machine learning community has, in recent times, focused
on low-shot (Wang et al. 2018) or unsupervised learning techniques. Low-shot techniques
attempt to learn knowledge representations from a small amount of labeled training data.
Unsupervised learning techniques (e.g., clustering algorithms) (Bishop 2006) attempt to
exploit copious amounts of available unlabeled data to acquire the ability to uncover pat-
terns in data sets. The challenge for unsupervised techniques is to achieve the same level of
performance as provided by supervised ones. Recently, there has been excitement in the ma-
chine learning community regarding self-supervised learning (Misra and Maaten 2020), in
which the labels for the data are derived from the data itself. Thus, self-supervised learning
techniques promise to achieve the performance of supervised ones while retaining the ad-
vantages of unsupervised ones. Reinforcement learning techniques (Sutton and Barto 2018)
learn behaviors based on rewards or punishments that they receive from the environ-
ment. Discriminative learning techniques (Bishop 2006) attempt to learn the decision
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boundaries that separate different classes in a dataset, whereas generative techniques
(Goodfellow et al. 2020) learn the probability distribution underlying a data set. In many
applications, learning is conducted offline, and in domains where the environment changes
dynamically, online learning algorithms (Bishop 2006) are used.
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This paper departs from previous reviews by using a transparent, objective, and
quantitative bibliometric analysis of the literature over the past decade using Web of
Science data. This review should serve as a complement to recent works in a few aspects.
First, it adds the most recent, methodologically rich articles on machine learning methods
applied to asset pricing, with minimal overlap with the existing literature. Second, it
focuses on computational and forecast evaluation methods that should prove useful for
future research. Third, it identifies the dominant papers over the study period using
bibliometrics. Fourth, it provides a global perspective on the origin, by country and
institution, of the authors of the published articles and citations, which may strengthen
collaboration networks. Additionally, the bibliometric analysis emphasizes two points of
view on the applicability of ML to asset pricing; namely, ML applies to linear and nonlinear
models in which large data sets exist for the numerous indicator variables predicting the
dependent variable (expected returns), and second, ML in asset pricing is a “small-data
science” problem in an environment of low signal-to-noise ratio.

3. Materials and Methods

This paper used a general science mapping workflow methodology from
Aria and Cuccurullo (2017), which “consists of five stages: (a) study design, (b) data col-
lection, (c) data analysis, (d) data visualization, and (e) interpretation.” The research topic
of interest was, from a bibliometric analysis perspective, “machine learning applications
in capital asset pricing.” The search was conducted by first searching for “machine learn-
ing” and then filtering by “asset pricing.” In the search, we identified computational ML
algorithms that improve computational efficiency and out-of-sample prediction. Web of
Science (WoS), one of the most prestigious databases for bibliometric research, was used to
obtain the articles and citation data; the Science Citation Index Expanded (SCI-Expanded)
and Social Science Citation Index (SSCI) dominate the publications on ML CAPM, but
adding Arts and Humanities Citation Index (AHCI) and Emerging Sources Citation Index
(ESCI) produced additional documents. The option “All document types” was used in
the WoS search, including all sources, namely articles, proceedings papers, early access
papers, review articles, and book chapters. The “All” WoS category was also selected (i.e.,
economics, business finance, management, etc.); thus, the search was as comprehensive
as WoS permits. The search was conducted over the period January 2011–August 2022;
documents published prior to 2011 are extensively covered in previous review articles
(e.g., Nagel 2021; Brunnermeier et al. 2021; Fama and French 2004; Koumou 2020). The
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documents generated by WoS were exported in BibTeX format using the “Full Record and
Cited References” option. The recommended science mapping workflow developed in
Aria et al. was used to conduct the bibliometric quantitative analysis, and the bibliometric
results were interpreted in multiple dimensions, such as the growth of citations over time,
the main contributing authors, institutions, countries, and most cited papers.

The WoS survey generated 74 documents, of which 18 were found in the Emerging
Sources Citation Index (ESCI). Most articles were classified into business finance (43%),
economics (31%), mathematics interdisciplinary applications (15%), and Computer Science
Artificial Intelligence (11%); the remaining documents were published in the other top 10
fields, including engineering (electrical/electronic), computer science and information sys-
tems, operations research management science, management, social science mathematical
methods, and telecommunications. A manual inspection of the articles confirmed that
almost all these articles are related to machine learning in capital asset pricing. A few other
articles, not generated from the WoS search because they are not related to asset pricing
(e.g., Chalup and Mitschele 2008; Graves 2012; Herbrich 2001; Berglind et al. 2022), were
included in the analysis to provide additional guidance on computational methods that
may prove useful in future research.

4. Bibliometric Results

The annual trend in publications of machine learning in capital asset pricing is pre-
sented in Figure 2 and highlights the growth of articles published on ML in asset pricing
over the past decade. Over half of the documents were published in the past two years.
Note that the number of publications in the first eight months of 2022 already equaled the
total published articles in 2021. All documents, except for one in review, were published
articles. Over the survey period, the dominant authors were Kelly (3), Xiu (3), and others
with two or one articles. Most authors of articles found in this survey were affiliated with
the National Bureau of Economic Research, University of Chicago, Yale University, Cornell
University, Indian Institute of Management IIM System, Tianjin University, University
of London, and the Chinese Academy of Science. Table 1 shows the distribution of the
top 10 countries/regions and journals for articles published. By geographic distribution,
the United States dominates the ML-CAPM literature with 27 articles, followed by the
People’s Republic of China (19), England (12), Germany (5), India (4), Italy (4), France (3),
Switzerland (3), and other countries with two or one articles. Note that the country ranking
by articles changes when ranking is performed by total citations (except for the U.S.). For
example, China is ranked second by total articles, but France is second by total citations.
Note that the Netherlands (23 TC and 23 AAC) and Romania (6 TC and 6 AAC) replace
Germany and Japan by total citations.

Table 1. Top 10 countries with the highest number of articles, Web of Science databases, January
2011–August 2022.

Country Articles Total Citations (TC) Average Article Citations (AAC)

USA 27 472 22.48
People’s Republic of China 19 45 2.65

England 12 62 8.66
Germany 5 —- —–

India 4 16 4.00
Italy 4 75 25.00

France 3 104 52.00
Switzerland 3 8 4.00

Canada 2 11 11.00
Japan 2 —- —–
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The journals with the highest number of articles (Table 2) are Expert Systems with
Applications (10), IEEE access (3), International Journal of Financial Engineering (3), Quan-
titative Finance (3), Review of Financial Studies (3), and many others with two and one
articles published.

Table 2. Top 10 Journals with the Highest Number of Articles, Web of Science, January
2011–August 2022.

Country No. Articles

Expert Systems with Applications 3
IEEE Access 3

International Journal of Financial Engineering 3
Quantitative Finance 3

Review of Financial Studies 3
Applied Economics 2

Computational Economics 2
Finance Research Letters 2

Journal of Asset Management 2
Journal of Banking Finance 2

Table 3 provides the frequency of keywords in the bibliometric survey. Machine
learning, asset pricing anomalies, AI, and big data were the most frequent words used by
authors, and the words risk, cross-section, returns, equilibrium prediction, and stock were
dominant in WoS, all of which confirm that the articles found in the search were related to
machine learning and asset pricing.

Figure 3 illustrates the collaboration linkages for the 23 countries identified in the WoS
search. The United States, China, and the U.K dominate the concentration of collaboration,
but the density of such a collaboration is just starting with a density of 0.079 and a transi-
tivity3 of 0.31. Authors’ collaboration networks were developed (not shown) but resulted
in similar statistics, with a smaller density (0.012) but a transitivity of 0.89, making it very
probable that scholars in other countries, not directly shown in the network, are connected
to scholars in the U.S. The same implication applies to China and other countries.
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Table 3. Top 10 most frequent keywords, Web of Science, January 2011–August 2022.

Author Keywords Articles Keywords-Plus Articles

Machine learning 39 Risk 23
Asset pricing 14 Cross-section 16

Pricing 6 Returns 11
Anomalies 4 Equilibrium 9

Artificial intelligence 4 Information 8
Asset 4 Prediction 8

Big data 4 Stock 8
Forecasting 3 Model 7

Asset pricing models 3 Performance 7
Computational

finance 3 Arbitrage 6
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5. Discussion: Top 10 Most Cited Articles

The top 10 most cited articles are listed by journal, total citations (TC), and TC per year
(TCPY) and are shown in Table 4. The Review of Financial Studies (JFS) ranked first with
193 total citations and 64.33 TC per year, followed by Applied Stochastic Models, Journal
of Banking and Finance, Journal of Economics Dynamics and Control, and Quantitative
Finance. Of course, this ranking may change in a few years if the literature continues to
expand at the current growth rate of 29.38% per year. In fact, when this article was first
started, a few of the recent articles cited in this review had not yet appeared in the literature.

Table 4. Top 10 most cited articles, Web of Science, January 2011–August 2022.

Author Journal Total
Citations (TC)

TC per Year
(TCPY)

Gu et al. (2020) Review of Financial Studies 193 64.33
Heaton et al. (2016) Applied Stochastic Models 189 31.50

Renault (2017) J. Bank Financing 103 17.17
Lamperti et al. (2018) J. Econ. Dynamics & Control 74 14.80

Law and Shawe-Taylor (2017) Quantitative Finance 33 5.50
Gu et al. (2021) J. Econometrics 31 15.50
Gan et al. (2020) Tech. Forec. Social Change 23 7.67
Liu et al. (2019) J. Mathematical Ind. 23 5.75

Chen et al. (2011) Quantitative Finance 21 1.75
Srivastava (2021) J. Organ. End User Comput. 15 7.50

Note: The full list of articles is found in the References section.

A comparative analysis of machine learning techniques for measuring asset risk premi-
ums, for the aggregate market and individual stocks, and testing predictive accuracy is the
subject of the top cited article by Gu et al. (2020). The feasibility of ML in the measurement
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of risk premiums is based on three aspects; namely, risk premiums are a conditional expec-
tation, the conditioning variables are high-dimensional, and the functional form is mostly
an empirical issue and typically nonlinear. Various methods are used to address these
issues, including linear regression, generalized linear models (GLM) with penalization,
principal components regression (PCR), partial least squares (PLS), regression trees (RT),
and neural networks (NN). Gu et al. implemented these methods using data on nearly
30,000 individual stocks, 94 characteristics for each stock, and 74 industry sector dummy
variables from 1957 to 2016. ML computational methods used by Gu et al. addressed two
twin problems: overfitting and the out-of-sample evaluation of predictive performance;
the methods include: (a) the Hubert robust objective function, a hybrid of squared loss
for handling very small deviations and absolute loss for considerably large ones to ac-
commodate the effect of heavy-tail observations in the simple linear prediction model;
(b) the accelerated proximal gradient algorithm to accommodate both least squares and the
objective function in (a) above to adaptively optimize the tuning parameters in penalized
regression; (c) a SMPL algorithm to find K linear combinations of the predictor set (Z) that
are strongly correlated with the anticipated goal in both PCR and PLS; (d) group lasso
penalization function in GLM to select spline terms in a least squares objective function,
both without and with (a) above, using the same accelerated proximal gradient descent for
both; (e) a gradient boosted regression tree (GBRT), that makes the flexible nonparametric
GLM approach feasible, to regularize overfitting in regression trees under nonlinearities;
(f) similar to boosting, random forest bootstrap aggregation (bagging) is used to average
forecasts to reduce variation and stabilize predictive performance; (g) stochastic gradient
descent algorithm, a powerful technique to search for a local minimum, to reduce the
computational intensity of NN and train the network using a small random subset of
the data; and (h) simultaneous use of algorithms such as learning rate shrinkage, early
stopping, batch normalization, and ensembles to address the high degree of nonlinearity,
nonconvexity, and heavy-parameterization in NN.

Unlike the argument that ML may not be successful in predicting individual stock
returns, Gu et al. (2020) demonstrated large economic gains to investors using ML forecasts,
in some cases doubling the out-of-sample forecasting performance of leading regression-
based approaches. The findings identified trees and NN as the best performing methods
and attributed the improved performance to the flexibility of the methods in allowing
nonlinear predictor interaction. Additionally, they found that the peak performance of NN
occurred with three hidden layers, in an evaluation of up to five hidden layers. They also
found that tree and random forest algorithms have a tendency to to select trees with fewer
leaves and that this may be due to an artifact of the relatively small amount of data and
the very low signal-to-noise ratio. A Monte Carlo simulation lent support to the above
empirical findings.

The theory that a deep learner in finance can uncover the relationship for a return, no
matter how complex or nonlinear, is the research question studied in the second top-cited
paper in this survey (Heaton et al. 2016). They modeled a high-dimensional mapping
by concatenating univariate semi-affine functions to produce a response Y4. By splitting
the data into three subsets, namely, training (input–output pairs to select weights for
the network), validation (model selection), and testing (to confirm the actual predictive
power of the learner), the authors first applied a form of stochastic gradient descent (called
back-propagation in deep learning) to find an optimum solution to a loss function with
a regularization penalty (controlled either through cross-validation or Stein’s unbiased
estimator of risk). Note that, in addition to the activation functions, the size and depth
of the learning routine must also be chosen. Dropout regularization was used to avoid
over-fitting (model selection) and to choose the number of hidden units in a layer. The
level of regularization that optimizes out-of-sample predictive loss was measured via
mean-squared error. This model generates what the authors call “deep portfolios”, which
are of investment interest.
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Text analysis and the application of supervised machine learning classification (MLC)
to construct a lexicon of words used by investors when sharing ideas about their stock
market sentiment (bullish or bearish) is the subject in Renault (2017). The article describes
text data collected from StockTwits.com used in text classification. The data split for MLC
is very similar to that performed in numerical data and is divided into learning, measuring,
and predicting. Naive Bayes, support vector machine, and maximum entropy methods
are used to classify the text at the learning stage; algorithmic fine-tuning occurs at the
measurement stage, and subsequently, the algorithm predicts the outcome. The lexicon
in this paper was developed from messages published in StockTwits between 1 January
2012 and 31 December 2016. The article found that, in quantifying text from the Internet, to
measure sentiment in this case, researchers should implement both “field specific dictionary-
based” approaches and MLC to enhance the replicability and comparability of findings.
Renault does not necessarily endorse the use of text classification in this application and
warns that ML methods should be considered only when substantive value is added relative
to other methods such as “bag of words”.

The empirical approximation of agent-based models (ABM) for asset pricing is a
challenge suited for machine learning methods. Lamperti et al. (2018) combined supervised
ML and intelligent sampling to calibrate and explore the large-scale parameter space typical
of ABM, which is faster, more accurate, and more efficient than alternatives such as kriging.
The surrogate modeling procedure relies on the XGBoost algorithm, which sequentially
learns an ensemble of classification and regression trees and is nicely illustrated in Lamperti
et al. Given the analytical complexity in ABMs, aspects of parameter dimensionality,
calibration, model evaluation, and out-of-sample predictions in relatively small sample
settings, the merits of the approach seem promising in empirical settings.

The prediction of financial time series using a support vector regression (SVR) to allow
high dimensionality and regularization to reduce over-fitting and to capture nonlinear
relationships was found in the fourth top cited paper by Law and Shawe-Taylor (2017). They
implemented a Bayesian approach to SVR and enhanced it by adding a new kernel scaling
parameter that allows the evidence function to be more flexible in handling data from
different ranges and to adjust the level of variance in error-band estimation to match the
range of the SVR prediction. They also developed an alternative optimization algorithm,
a sequential multi-arm bandit Bayesian optimization, to fully automate the parameter
selection process. The framework was applied to daily data on financial time series of
various asset classes to test the method and used cross-validation, grid search, and Bayesian
optimization to select model parameters; the mean absolute percentage error was used to
assess prediction performance. A calibration process demonstrated the role of uncertainty
estimates in improving predictions as well as changes in market conditions.

While Gu et al. (2020) focused on supervised ML prediction models, Gu et al. (2021)
used unsupervised and semi-supervised learning methods to model risk-return trade-offs
and link the literature on autoencoders with the literature on factor pricing models. The
linkage between linear latent factor models and characteristic-based anomaly modeling is
extended with general nonlinear specifications of the return structure, and the traditional
autoencoder embeds the neural network in the specification of conditional betas5. Similar
to PCA, it reduces the dimension of the input. The standard autoencoder, when it has
one hidden layer and a linear activation function, produces the static simple linear factor
model of returns rt = beta*ft + ut as a special case. Standard autoencoders, such as PCA,
do not make use of conditional variables to identify the factor structure, but use returns
instead. Conditional autoencoders allow for a more flexible nonlinear compression of
the asset-specific covariates, making the autoencoding more flexible. An intuitive illus-
tration of the standard autoencoder and the conditional autoencoder models is found in
(Gu et al. 2021, pp. 431–32). Note the similarity between the specification of the recursive
formulation for the nonlinear beta function of the conditional autoencoder and the standard
econometric specification of time-varying parameter models in state-space form. Based on
Gu et al. (2020), this research used a second machine learning regularization tool called
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“early stopping”, which controls overfitting and lowers computational cost; it also applies
stochastic gradient descent (SGD) to train the NN with an adaptation for (a) the learning
rate (adaptive moment estimation algorithm) and (b) to control the variability of predictors
across different regions of the network and across different datasets (this process is known
as “batch normalization”). Gu et al. (2021) also used a similar data set as Gu et al. (2020), ex-
cept that the data started in March 1957 and ended in 2016. It also added various stock-level
predictive characteristics based on a cross-section of stocks drawn from the existing litera-
ture. A Monte Carlo simulation was used to demonstrate the finite sample performance of
the autoencoder learning method. The empirical results show, in modeling monthly U.S.
stock returns, that the preferred autoencoder produced annualized value-weighted Sharpe
ratios superior to those of competing asset pricing models in out-of-sample.

Gan et al. (2020) proposed a new method of pricing options. Options are a financial
contract whose returns are derived from the returns of an underlying financial instrument
and are widely used for managing financial risk. One type of options is the arithmetic
Asian options for which there are no effective closed-form solutions, and typical procedures
use numerical solutions to partial differential equations (PDE) or Monte Carlo simulation.
The uniqueness of the method proposed by Gan et al. lies in its model-free and data-driven
structure; it also uses deep learning to price both arithmetic and geometric options. The
Adam optimization algorithm was used to update model parameters in their NN and to
improve updating accuracy. They used Monte Carlo simulation to support the robustness
of the method and its computational efficiency. In consistency with other applications
previously discussed, Gan et al. nicely illustrated the NN deep learning algorithm of
back propagation from the input data, data processing, training, parameter updating, and
error minimization. A salient finding in both simulated and empirical data was that the
proposed method can predict the Asian option prices with high accuracy using R2 and
MSE measures.

Financial asset model calibration refers to the process of recovering the model param-
eters of a stochastic differential equation from observed financial data using algorithms
that have high accuracy, speed, and robustness. However, parameter calibration can also
give rise to multiple local minima, which makes the use of global optimizers ideal in
NN. Liu et al. (2019) proposed a data-driven approach called Calibration NN (CaNN) to
establish a connection between ML and model calibration using an artificial NN (ANN).
A forward pass algorithm for training and prediction was used to learn the solution from
multiple numerical methods to map the output of interest, and a stochastic gradient descent
method was used in the NN. The linkage between training the ANN and calibrating the fi-
nancial model is conducted in three stages: training, prediction, and calibration, in a process
known as a backward pass. At the training stage, input–output pairs and a user-defined
loss function are used to calibrate the hidden layers and generate the appropriate weights
and biases, with the consequence that a trained ANN approximates the optimal solutions of
the financial model. By fixing the previously optimized hidden layers of the trained ANN
(prediction phase), new input parameters enter the ANN to produce an output layer of
interest; model testing occurs at this stage. In the last phase, with calibration (or backward
pass), using differential evolution (DE) optimization to secure a minimum from multiple
local minima, the original input layer of the ANN is converted into a learnable layer, while
all hidden layers are frozen. This process generates the input values that match the output.
Note that, during this stage, all market samples can be computed simultaneously. A paral-
lel version of DE is developed to accelerate the calibration (CaNN), and it was reported
that this version was at least 10 times faster than the conventional CaNN and that such
performance may be enhanced with a larger population size. An illustration of this method
is provided in Gu et al. (2018, Figure 2). Two asset pricing models, Heston CaNN and
Bates CaNN, were used in the analysis. The calibration problem consists of determining
correct values of the partial differential equation (PDE) coefficients to ensure that the model
reproduces the observed option/implied volatility data. Liu et al. provided an assessment
of the effects of varying individual parameters, while keeping other parameters fixed,
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on the implied volatility. The effect of varying two or more parameters on the objective
function, and how this can give rise to multiple local minima, is also illustrated, thus adding
credence to the usefulness of the DE optimization. The application also claims the need for
higher computing power when the number of neurons in the network or using a deeper
structure can improve the approximation. Kusuma and Budiartha (2022) investigated the
use of sequence models such as recurrent neural networks (RNN) (Sutskever 2013) and
long-short-term memory (LSTM) (Graves 2012) to optimize the CAPM model for improved
estimates of stock returns. In this work, the authors used an LSTM to predict stock prices
and subsequently compared the performance of the AI-enhanced CAPM model with that
of the traditional one. The authors concluded that the AI-enhanced version of CAPM
provided better estimates of the return than the traditional one.

Chen et al. (2011) proposed that nonlinear techniques are suited to predict bankruptcy
from financial data and the use of support vector machines (SVM) to predict the default
risk of German firms. The standard techniques used to tackle this problem were based
on discriminant analysis and logit models using firm-specific and/or market information.
Chen et al. provided a detailed review of various nonlinear numerical methods used to
solve the linear non-separable problem in default risk modeling. SVM has nice properties
such as flexibility in modeling interactions among predictors of bankruptcy and their
accuracy in finding a local minimum when several minima are present, a problem that often
occurs in calibration as in (Liu et al. 2019). The SVM algorithm is a min-max optimization
problem that minimizes the empirical risk while maximizing the separation between
the positive and negative examples to obtain a trade-off between the two targets, which
results in improved classification. The algorithm also uses a Gaussian kernel coefficient
to represent the complexity of the classification function. The article provides a detailed
discussion of the SVM, the prediction framework, and empirical and simulation results
on the performance of SVM. The results support the use of SVM in credit risk analyses,
given that it significantly outperformed alternative classification models in German data of
20,000 solvent and 1000 insolvent firms.

The last paper in the series of top-cited papers by WoS during the study period is
Srivastava (2021), who builds predictive machine learning models (SVM, random forest,
gradient boosting, and deep neural networks-DNN) to predict the next-day trend from
technical indicators and other historical data in the Indian stock market. The stock price
daily data were collected from the NSE NIFTY 50 for the period extending from 1 January
2013 to 30 June 2020. Technical indicators were computed and normalized, and a discrete
trading signal was calculated and fed into the ML algorithms to predict the next day’s
stock price movement, followed by a predictive performance evaluation; multiple linear
regression was used to validate feature importance. It was found that the DNN technique
outperformed random forecast and gradient boosting, and implications for management,
traders, and investors were derived.

Analyzing time series data is important for many financial applications, including
stock trading, portfolio analysis, etc. In Adhikari and Agrawal 2014, the authors decom-
posed a time series into its linear and nonlinear constituents. The linear component was
handled using random walks while the nonlinear one was modeled using an ensemble
artificial neural network model. While combining linear and nonlinear models for under-
standing time series data has been a dominant theme in the literature, many of these works
include assumptions about the relationship between the linear and nonlinear components
of a time series. Such assumptions do not hold in many applications, limiting their applica-
bility. In (Khashei and Bijari 2014), the authors proposed a model without such assumptions
by combining ARIMA, artificial neural networks, and fuzzy set-theoretic models. The au-
thors reported improved performance, even in situations where the data were incomplete.
In (Guresen et al. 2011)6, the authors analyzed the performance of different neural network
architectures in modeling time series data arising from stock forecasting applications ac-
quired from NASDAQ. Their results were surprising, showing that the simple multilayered
perceptron (MLP) architecture (Bishop 2006) outperformed more complex ones.
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6. Future Research

Recent developments in machine learning offer a wide cross-section of methods to
address issues that typically plague model specification, estimation, and forecasting in
econometrics; additionally, problems of dimensionality, nonlinearities, distributional as-
sumptions (iid. vs non-iid time series), efficient use of data, out-of-sample predictive
performance evaluation, computational efficiency, and approximations to theoretical mod-
els will continue to guide future research. Advances and applications discussed in this
review article provide a guide to future research, and, given the suggestions in the top
papers reviewed, ingenious model specification approaches that are supported by economic
theory and improved computational methods offer promising opportunities for future
research on both the theory and practice of machine learning econometrics. Gu et al.,
for example, suggested that future work may focus on the use of economic theories of
equilibrium to better understand the causes of improved prediction with ML econometric
models, an emphasis which is discussed with Bayesian perspectives in Nagel (2021) and
illustrated via future research perspectives in Brunnermeier et al. (2021).

Economic and financial datasets are typically high-dimensional; furthermore, nonlin-
earities in both macro and micro data abound. While linear regression has had a strong
presence in the econometrics literature, numerous contemporaneous ML methods have
been previously applied (Chalup and Mitschele 2008). Nonlinear statistical models (e.g.,
Gallant 1987) have been used for decades, but in an environment of high dimensional
nonlinear data, the use of the “kernel method” (Herbrich 2001; Schölkopf and Smola 2002)
may improve the practice of nonlinear modeling. Additionally, the practice of finding
“best fit” nonlinear models in asset pricing may benefit from the application of deep
learning to unconstrained and constrained regression models using model selection cri-
teria (AIC, BIC, MSE, CP, KIC) on the whole sample of data to balance the bias-variance
trade-off and improve parsimony in ML methods (e.g., Kim and Cavanaugh (2005);
Wilson and Sahinidis (2017)). Monte Carlo simulation methods are well suited to investi-
gate the small sample properties in identifying nonlinearities in ML methods (see empirical
and simulation analysis in Gu et al. (2018)).

Decision-making under uncertainty formed the foundation of portfolio theory and its
application to asset pricing (Markowitz 1952). The return-generating distributions, which
can fall into a wide class of distributions in the Pearson family (Markowitz 2010), have been
the subject of much empirical research. The rule that investors follow over time (i.e., short
versus long investment horizons) is driven by the distribution of returns corresponding
to various horizons (Levy and Duchin 2004). A recent development in ML called out-of-
distribution (OOD) data points advances that, in situations where the inputs fed to an NN
are different from those used to train it,7 the NN can misclassify (Berglind et al. 2022). The
fundamental assumption in ML is that the data used during the training phase and during
the inference phase arise from the same probability distribution. When presented with OOD
data at inference time (i.e., data that do not follow the training distribution), ML algorithms
silently fail, providing incorrect predictions without giving any warning to the user. ML
algorithms that receive OOD data at inference time due, for example, to changing market
conditions, can render them sub-optimal unless they are enhanced by OOD detection
methods. OOD detection is currently an active area of research in ML and is closely related
to text classification (Renault 2017) and anomaly identification, since anomalies are rare
events that may be absent in training data. The CAPM model, for example, is sensitive to
low-risk/volatility anomalies (Falkenstein 1994). Bachelard et al. (2022) proposed Markov
Chain Monte-Carlo (MCMC) algorithms for uncovering low-risk/volatility anomalies. The
basic idea is to sample long-run portfolios from the set of feasible portfolios with a given
risk level and then compare their empirical performance with those drawn from sets with
different risk levels. The extensive literature on anomalies in asset pricing may benefit from
using OOD methods.

One problem in using ML models for finance and econometrics is the fact that most
ML models are opaque, in the sense that they do not provide any insight into explaining the
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output. The idea that “correlation does not imply causation” was key in the development
of Granger Causality in economics (Granger 1969), which led to seminal contributions in
time series econometrics8. Financial models such as those used in asset pricing assume
the rationality of decision-makers and are developed under theories of equilibrium. New
research on explainable AI techniques (Hoffman et al. 2018) promises to develop methods
for explaining the rationale behind an ML engine’s decision and contribute to developing
causal inference ML models in financial econometrics. This is a subject of interest in various
fields of social sciences (e.g., Hair and Sarstedt 2021).

Human risk perceptions are shaped by reinforcements from the market. Cong et al. (2020)
developed a reinforcement learning (RL)-based framework called AlphaPortfolio. This
framework was shown to be robust and accurate in modeling US public equities. The
architecture of AlphaPortfolio uses sequence models to capture state features of assets
based on historical data. These state features are fed to a cross-asset attention (CAA)
model that explores correlations between different assets. Finally, the portfolio generator
uses the scalar winner score produced by the CAA to synthesize optimal portfolios. The
AlphaPortfolio framework is trained using RL by maximizing a reward such as the OOS
Sharpe ratio. Future investigations may focus on studying the use of Proximal Policy
Optimization (PPO) algorithms (Schulman et al. 2017) in asset pricing.

One of the bottlenecks in using ML models in economics and finance is the lack
of large volumes of labeled data required for techniques such as deep learning. Unlike
in image classification, where datasets can be labeled through crowdsourcing, labeling
economic and financial data requires deep expertise. The trend in the ML community is
to develop self-supervised (Misra and Maaten 2020) and unsupervised approaches. In
self-supervised learning, rather than being provided with a priori labeled data, the la-
bels are derived from unlabeled data itself. For ML to succeed in the econometrics and
financial world, it is essential that high-performance self-supervised and unsupervised
learning methods be developed in these domains. In addition, generative adversarial net-
works (Goodfellow et al. 2020) can be used for data augmentation as well as for simulating
econometric models.

Today’s machine learning approaches produce what are called weak AI models. These
models can only perform one task well and fail even if they are asked to perform a related,
but different, task. Many researchers consider today’s machine learning approaches to be
“glorified curve-fitting” (Pearl and Mackenzie 2018). To be effective in financial econometric
analyses, new approaches with causality-based methods (Pearl 2009) need to be developed
that can enhance the understanding of market dynamics. Similarly, techniques such as
transfer learning (Pan and Yang 2009) and domain adaptation (Daumé 2009) should be
used so that ML models trained in one market are able to operate in a related but different
one without significant retraining. For example, Zhang et al. (2018) used transfer learning
to develop a personalized recommendation engine catered to the equity funds market. The
basic idea is to develop a theoretical profile of equity funds and investors using portfolio
theory. The profile of stock market investors is later added to the objective profile through
transfer learning. Heaton et al. applied a deep learning algorithm via the auto-encoder
to find a selection of investments for which good out-of-sample tracking properties are
found to achieve a given investment goal, a portfolio selection that the authors call “deep
portfolios.” It is argued that, in the context of data-driven portfolio optimization and
inefficiency detection, future work also may benefit from using this approach.

Option contracts have become an important investment instrument in derivative
markets and can be used effectively in financial risk management. The finding of Gan et al.
is novel in the sense that option prices can be predicted using model-free methods. This is
empirically appealing for investment practice and the application of deep NN, as performed
in (Gan et al. 2020). As of the writing of this article, the business news media provide daily
coverage of the high levels of uncertainty and market volatility. News-based measures
of implied volatility and disaster concerned studies (e.g., Manela and Moreira 2017) may
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benefit from the examination of text classification methods included in this review (e.g.,
Heaton et al. 2016 and the application of NN deep learning algorithms in Gan et al. 2020).

The bankruptcy classification analysis by Chen et al. shows how NN algorithms
can improve classification and bankruptcy prediction. Given the improved differential
evolution algorithm in Liu et al. to find a true local minimum, future research on improving
bankruptcy analyses may focus on improving the SVM model through the DE algorithm;
this approach may enhance classification and prediction accuracy in this and other contexts.

Given advances in computational power, such as quantum computing, a general-
ization of the methods discussed here may ensue, particularly when calibration leads to
multiple minima or when the number of neurons/hidden layers is increased, to improve
computational efficiency. The use of jump models in (Liu et al. 2019) may fit a deeper
investigation on structural change with NN, considering that in just over the past decade,
financial markets have experienced large shocks (e.g., the financial crises of 2008–2009,
COVID-19, and rising interest rates in response to high inflation). Another area of potential
contribution is in MSE evaluations; while the application of MSE testing is beginning to
appear in some articles, testing the statistical significance in the out-of-sample performance
of alternative methods will lead to improved model selection in prediction problems and
economic value analyses.

Just as in any other field, the use of machine learning in financial econometrics is
closely associated with ethics, fairness, and safety. Using these models without care can
cause negative spillover effects, causing irreparable harm to society. Similarly, adversarial
attacks on machine learning systems operating in the financial and econometric fields
can wreak havoc on the economy. It is therefore crucial that machine learning systems
in financial economics be built and deployed with the utmost care to ensure safety and
fairness. Much research needs to be devoted to the ethical use of ML.

In closing, the recent literature on the application of ML methods to asset pricing
has accelerated over the past two years, surpassing the number of articles published in
the previous nine years. This paper provides a comprehensive, transparent, and objective
bibliometric assessment of the recent literature and identifies trends in computational
algorithms using Web of Science survey data for the period 2011–2022. The paper also
links this review to the previous literature with minimal overlap, thus complementing
other published review articles. Given the fast evolution and diffusion of ML methods in
other disciplines, and the documented success in prediction problems, one salient challenge
that remains for future research in financial econometrics is an improved integration of
economic theory and big data that leads to a better understanding of the results generated
by machines. The top and other papers cited in this review provide a conic view of the
methods and practices that will contribute to moving researchers in that direction.
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Notes
1 Over 70 years ago, IBM investigated the use of machines and their capacity to perform tasks for which they are not given precise

methods (Friedberg 1958); such work has led to remarkable advances in ML and artificial intelligence (AI). It is not surprising
that these advances are changing how we drive, communicate, bank, produce, and market food. Economic digitalization is a
work in progress and is changing business and finance worldwide. Investor’s Business Daily (7 February 2022) states that “
. . . a global digital business migration that many are calling the Fourth Industrial Revolution” is taking place and giving rise
to profound changes. It is not surprising that AI is changing how banking is conducted and financial services delivered (e.g.,
Kissinger et al. 2021).
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2 For a brief description of most machine learning techniques discussed in this paper and the extensive literature published prior
to 2011, refer to Almaskati (2022).

3 Transitivity measures the extent to which linkages relating two countries in the network are transferred to other countries; in
other words, if scholars in country A are connected to scholars in country B, and scholars in country B are connect to scholars in
country C, how likely is it that scholars in country C are connected to scholars in country A.

4 It uses univariate activation functions, that is, nonlinear transformations of weighted data, which are the key to selecting a good
predictor, to decompose a high-dimensional input space X.

5 Autoencoders represent a packing-mapping NN process, whereby the input variables are compressed as a small number of them
passes through hidden layers (encoding) and then unpacked and mapped into the output layer of the algorithm (decoding).

6 We thank an anonymous reviewer for suggesting the addition of the articles by (Adhikari and Agrawal 2014; Guresen et al. 2011;
Khashei and Bijari 2014).

7 Also known as covariance shift (e.g., Sugiyama et al. 2007).
8 When time series models such as ARIMA were first introduced (Box and Jenkins 1970), these models found wide applicability in

economics and business forecasting and, similar to ML models today, were often called black-box models. It took about a decade
for these methods to become very popular because their predictability surpassed that of other econometric forecasting models.
The seminal paper that changed the future of applied time series econometrics, which resembles the current quest with ML
methods applied to economics, was the development of cointegration theory (Engle and Granger 1987) which allowed economic
theories of equilibrium to explain the co-movement in economic time series. In 2003, Granger and Engle received the Nobel Prize
in economics for this work.
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