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Abstract: Portfolio optimisation aims to efficiently find optimal proportions of portfolio assets, given
certain constraints, and has been well-studied. While portfolio optimisation ascertains asset combi-
nations most suited to investor requirements, numerous real-world problems impact its simplicity,
e.g., investor preferences. Trading restrictions are also commonly faced and must be met. However,
in adding constraints to Markowitz’s basic mean-variance model, problem complexity increases,
causing difficulties for exact optimisation approaches to find large problem solutions inside reason-
able timeframes. This paper addresses portfolio optimisation complexities by applying the Worst
Case GARCH-Copula Conditional Value at Risk (CVaR) approach. In particular, the GARCH-copula
methodology is used to model the portfolio dependence structure, and the Worst Case CVaR (WCVaR)
is considered as an alternative risk measure that is able to provide a more accurate evaluation of
financial risk compared to traditional approaches. Copulas model the marginal of each asset sepa-
rately (which may be any distribution) and also the interdependencies between assets This allows an
accurate risk to investment assessment to be applied in order to compare it with traditional methods.
In this paper, we present two case studies to evaluate the performance of the WCVaR and compare it
against the VaR measure. The first case study focuses on the time series of the closing prices of six
major market indexes, while the second case study considers a large dataset of share prices of the
Gulf Cooperation Council’s (GCC) oil-based companies. Results show that the values of WCVaR are
always higher than those of VaR, demonstrating that the WCVaR approach provides a more accurate
assessment of financial risk.

Keywords: copula; VaR; WCVaR; GARCH; portfolio optimisation

1. Introduction

A major component in portfolio optimisation problems is risk, and the most common
risk measure used by practitioners and researchers is the variance (Graham and Craven
2021; Markowitz 1952). A model known as mean-variance (M-V) depends on the strict
assumption that asset returns are multivariate and normally distributed. However, this
assumption is not supported in practice (Jin et al. 2016), and various studies have therefore
made proposals for alternative risk measures that seek to move beyond the M-V model’s
limitations (Hoe et al. 2010; Konno and Yamazaki 1991; Young 1998).

Calculating the risk can be performed in various other ways, such as using the Value at
Risk (VaR) and the Conditional Value at Risk (CVaR), as well as the Worst Case Conditional
Value at Risk (WCVaR). The latter considers asset dependence structures using copulas.
VaR is a standard recommended by the Basel committee, but it has been recently criticised
(Kakouris and Rustem 2014). The first reason is VaR’s lack of satisfactory sub-additivity,
making it an incoherent risk measure. It can also have multiple local minima, and it is
not convex (Salahi et al. 2013). The second is that the percentile of distribution tail loss is
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inadequate, according to Kakouris and Rustem (2014). This criticism is also used by Szego
(2005) to argue that “VaR does not measure risk” and the author advises alternatives such as
CVaR, since this is the distribution expectation above VaR and is impacted by distribution
tail fatness, providing an improved picture of distribution tail loss. Marimoutou et al. (2009)
used conditional and unconditional Extreme Value Theory models to estimate VaR in both
short and long oil market trading positions. They compared their model with Historical
Simulation and Filtered Historical Simulation methods and GARCH, demonstrating that
significant improvements are achieved with conditional Extreme Value Theory and Filtered
Historical Simulation in contrast to conventional approaches. They also note that the GARCH
(1,1)-t model has the potential to yield similarly improved results, particularly for the left
tail. Their results corroborate that a filtering process is an important factor in success when
using standard methods such as Historical Simulation and Extreme Value Theory.

To achieve a linear or convex problem for risk management and portfolio optimi-
sation, Rockafellar and Uryasev (2000; 2002) suggest a minimisation formulation. Some
assumptions are required for the CVaR calculation in their formula, concerning the as-
sets” underlying distribution. Zhu and Fukushima (2009) describe this as a hypercube,
ellipsoidal set or other uncertainty domain, or a multivariate distribution.

Other approaches include the use of the wavelet technique for assessing the co-
movement in both time-frequency spaces via a decomposition of time series into their
time scale component (Aloui and Hkiri 2014; Ben Mabrouk 2020). Mensi et al. (2018) stud-
ied the multifractality and the dynamic weak-form efficiency of stock markets using a
Multifractal Detrended Fluctuation Analysis (MF-DFA) approach. Ghahtarani (2021) em-
ployed a fuzzy neural network to predict the market value of assets in different economic
conditions as input data of the developed model.

The most common multivariate distribution is the Gaussian, since calibration is simple
and efficient simulation algorithms are available. Elliptical distributions also have these ad-
vantages to a point, and Credit Risk often uses the Student’s t distribution (Chan and Kroese
2010). However, the Gaussian distribution also has disadvantages, such as its symmetry,
indicating that losses and gains have equal probability (Patton 2004). Furthermore, stronger
comovements of assets are seen in crisis than in prosperity with respect to financial markets
(Hu 2006). Another drawback is that dependence measurements use linear correlation,
which may not adequately measure dependence in non-linear asymmetric comovements
(Kakouris and Rustem 2014). Mixture distributions can mitigate elliptical distributions’
underlying symmetry and their limitations (Kakouris and Rustem 2014) and have been used
by Hu (2006) and Smillie (2008) in the bivariate case.

Copulas are defined as multivariate distribution functions with one-dimensional mar-
gins distributed equally on the [0,1] closed interval (Cherubini et al. 2004; Nelsen 2007).
Univariate cumulative distributions of random variables can replace uniform margins
(Cherubini et al. 2004; Nelsen 2007). Thus, consideration is not on dependent between
random variables but on their marginal distributions, making them more flexible in com-
parison to standard distributions due to the separation of the multivariate dependency and
univariate distribution selection (Kakouris and Rustem 2014). Di Clemente and Romano
(2021) advocate the use of copulas for financial applications to determine the dependence
structure of the financial asset returns in the portfolio. The suitability of copulas for mod-
elling financial data has also been demonstrated by Alexander (2001) and Bouyé¢ et al. (2000).
For an overview about copula functions, see, for example, Dalla Valle (2017b); for a review
of copula applications in finance, see Dalla Valle (2017a). Following the risk management
research stream, Dalla Valle et al. (2016) illustrate the use of copulas for credit risk, while
Dalla Valle and Giudici (2008); Dalla Valle (2009); Fantazzini et al. (2008) focus on operational
risk measurement. Kakouris and Rustem (2014) are motivated by Hu (2006) and Zhu and
Fukushima (2009) to bring in mixture copulas to extend CVaR to WCVaR in a worst-case
scenario. Their Archimedean copulas each characterise a different type of dependency.
Mixing them allows a greater spectrum of dependencies, from which they can derive CVaR
and WCVaR for copulas. Mixing copulas can result in a solution to convex optimisation
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problems in the WCVaR framework. Copulas also give distribution selection more flexibility
in the CVaR case.

For robust results in portfolio optimisation and risk measurement, dependency should
be considered (Kakouris and Rustem 2014). The authors propose copulas and mixture
copulas as one way to achieve this, and compare them against Gaussian CVaR and Worst
Case Markowitz. Empirical analysis reveals that WCVaR outperforms them in crisis periods.

Robust portfolio optimisation has also been combined with copula models by
Sabino da Silva and Ziegelman (2017) in a WCVaR framework. They made comparisons
with a Gaussian Copula-CVaR portfolio (GCCVaR), alongside the S&P 500 index and an
equally weighted portfolio (1/N). Improved hedges were found with the copula basis
than the 1/N portfolio against losses. Improved downside risk statistics were found in
portfolios with the WCVaR approach than the GCCVaR in rebalancing periods, as well
as more profitability when daily or weekly rebalancing. Chukwudum (2018) examined
the shaping of the extremal dependence structure with a combination of copulas and
Generalised Pareto distribution, demonstrating the effect that tail dependence has on risk
measures, reinsurance net premium, and risk allocation. Applied to the insurance sector in
Nigeria, it was shown that correlating losses increases risk measure values and impacts
risk allocation. It was also shown that the use of the Clayton copula generally lowered
reinsurance premiums, whereas with the Gumbel copula, these were generally increased,
compared with premiums hypothesised independently.

The objective of this paper is to test the accuracy of the WCVaR approach, based on
copulas with GARCH marginals, compared to traditional approaches. The performance
of the WCVaR approach is assessed in two different case studies. The first case study
focuses on the time series of the closing prices of six major market indexes; the second case
study considers a large dataset of the share prices of the Gulf Cooperation Council’s (GCC)
oil-based companies.

This paper is organised as follows. First, the methodology is illustrated, introducing
copulas, particularly the Student’s t-test, the Kendall’s T dependence measure, and relevant
inference strategy. Then, the GARCH time series model is discussed, and the copula-
GARCH approach and WCVaR using the copula-GARCH model are explained in detail.
Further, the WCVaR and VaR for the two financial datasets are computed, and then the
results obtained are compared. Concluding remarks are provided in the Discussion section.

2. Research Methods

In this section we illustrate in detail the Worst Case GARCH-Copula VaR approach for
portfolio optimisation. We start by introducing the definition of copula and the Kendall’s T
dependence measure. We focus on the Student’s t copula, since, due to its ability to capture
tail dependence, it is the most appropriate copula family for financial data. Hence, we
discuss the Maximum Likelihood Estimation (MLE) and the Inference Function for Margins
(IFM) methods. The GARCH time series approach to model the copula marginals is then
described. Finally, the WCVaR using the copula-GARCH model is explained in detail.

2.1. Copulas

Copulas are tools that permit distributions of individual assets to be separated from
their dependence structure. They are also used to model nonlinear dependence. The
benefits of this are that any distribution can be assumed when considering marginal dis-
tributions of assets, with copulas being used to obtain the joint multivariate distribution,
taking marginals dependence structure into account. Moreover, in general, if we consider
the loss distribution of financial data, the left and the right tail represent profit and loss,
respectively, and they are often not the same (i.e., one tail may be heavier than the other).
Therefore, a symmetric distribution, such as the normal distribution, may not be appropri-
ate. Using a copula in this situation is a more flexible choice because, depending on the
type of copula and on the parameter values, we can have different shapes of distributions.
Thus, a more accurate representation of the joint distribution of returns and losses is ob-
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tained. If we consider several assets, a multivariate distribution describes simultaneously
what happens with all assets, and in a copula setting, the marginal of each asset may be
different (Joe 1997; Nelsen 2007).

Definition 1 (Copula). (Mai and Scherer 2017) A function C : [0,1]* — [0,1] is called
a (d-dimensional) copula if there is a probability space (Q), F,IP) supporting a random vector
(U, ..., Uy) such that Uy ~ U[0,1] forallk =1,...,d and

C(ul,...,ud) = IP’(Ul S Ml,...,ud S ud),
where uy, ..., uy € [0,1].

Theorem 1 (Sklar’s Theorem). (Danielsson 2011, p. 27) Let F be the distribution of X, let G
be the distribution of Y, and let H be the joint distribution of (X,Y). Assume that F and G are
continuous. Then, there exists a unique copula C such that the following is the case.

H(X,Y) = C(F(X),G(Y)). 1)

Sklar’s Theorem describes how to use copulas to derive the joint multivariate distribu-
tion and embeds the dependence structure between the marginals.

2.1.1. Kendall’s T Coefficient

Kendall’s 7 is a measure of rank correlation. Assume that (X, Y7) and (Xp, Y») are
two independent pairs of random variables drawn from random vector (X, Y). Kendall’s T
is defined by the following.

(X, Y) = Pr{(X; — X2)((Y1 — Y2) > 0] — Pr[(X1 — X2)((Y1 — Y2) < 0]. ()

The term Pr[(X; — X2)(Y1 — Y2) > 0] refers to Pr[concordance], while the term
Pr[(X; — X2)(Y1 — Y2) < 0] refers to Pr[discordance]; thus, 7(X,Y) is a measure of the rel-
ative difference between the probability of concordance and the probability of discordance.

2.1.2. Student’s t-Copula

Definition 2 (Student’s t-Copula). (Demarta and McNeil 2005) The Student’s t-copula is given
by the following:

t7 (w) oty (0) 1" v12 'p—1 -4t
H(U,V) / / 5 2) <1+XP X) dxX, 3)
I(3)V/(7v)?[P| v

where X = (X1, X3)" is the two-dimensional random vector that has a (non-singular) multivariate
t distribution with degrees of freedom v, P is the correlation matrix, t, is the density function, and
t, 1 is the quantile function of a standard univariate t,, distribution.

The Student’s t-copula includes all Fréchet lower and upper bounds. The Student’s
t-copula is flexible in that it can describe both negative and positive dependence and is
radially symmetric and has dependence levels equal in the upper and lower tails.

2.1.3. Copula Inference with the Maximum Likelihood Method

Suppose {(Xj1, ..., Xip)T,i =1,...,n} are n independent realisations from a multi-
variate distribution. Let F; be the cumulative distribution functions (cdfs) and f; be the
probability density functions (pdfs) of the p margins with j = 1,..., p and let ¢ be a copula
density. Let & = (BT,a”) be the parameter vector to be estimated,  be the vector of
marginal parameters and « be the vector of copula parameters. The loglikelihood function
can be defined as follows:
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n n p
1(0) = ;logC{Fl(Xil},B)f co By (Xips B)sad + ) ) log{ fi(Xij; B)} )

i=1j=1
The ML estimator of 6 is
01 = argmaxy,1(0), 5)
where A is the parameter space (Yan 2007).

2.1.4. Inference Functions for Margins (IFM)

The number of parameters increases when the dimension p becomes large. Thus, the
optimisation problem becomes more difficult. Joe and Xu (1996) presented the inference
functions for the margins (IFM) method. This is a two-step method that estimates marginal
parameter 3 as follows:

n p
BIFM = argmaxg 2 Z logfi(Xl-]-;[%). (6)

i=1j=1
After that the association parameters « is estimated as follows.

n
&rpm = argmax, Y logc((Fi(Xin; Brem), - - Fp(Xips Prem); o). )
i=1
As a result there is small number of parameters for each maximisation task. This leads
to diminished computational difficulty (Yan 2007).

2.2. The GARCH (p, q) Model

The GARCH model is a time series model that is probably the most widely used in
finance. It is used to evaluate the volatility of returns in financial markets. It is known
that stock returns exhibit heavy-tailed probability distributions. This might be because the
conditional variance is variable. Using a GARCH model can capture fat tails and volatility
clustering within financial time series. Bollerslev (1986) developed the Generalized Au-
toRegressive Conditional Heteroscedasticity (GARCH) model as a generalization of the
ARCH model proposed by Engle (1982).

A GARCH(p,q) model takes the following form:

e = Wiy

P 4
he = ao+ Y wEef i+ Y Biht—i, (8)
iz =1

where ¢; is the return at time {, W; is the residual, and h; = VaR[e; | F;_1] where F;_1 is
the information up to time t — 1; a9 > 0, a; and 8 j are model parameters.

The GARCH (1,1) Case

The GARCH (1,1) model is the most popular model used in empirical finance. It can
be easily derived from Equation (8) and can be written as follows.

e = Wiy

he = ag+arer q+Bihiq )

2.3. The Copula-GARCH Model

The copula-GARCH model is used to measure financial risks such as portfolio risk
and volatility over time. This model aims to describe asymmetric dependence and complex
non-linear relations between assets. Copulas have been used to estimate risk measures in
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financial markets such as (VaR) which is the risk measure extensively used by financial
analysts (Messaoud and Aloui 2015). There are several studies that have used copulas
for determining VaR. For example, Huang et al. (2009) used the copula-GARCH model to
estimate VaR of portfolios. The authors found that the copula-GARCH model is flexible in
separating marginal distributions from the dependence structure, which is more effective
in describing high volatility. This is contrary to traditional methods that computed VaR
using the variance—covariance and the Monte Carlo approaches. Embrechts et al. (2005)
introduced a methodology that is based on the theory of copulas to calculate VaR in the
worst case scenarios. Cherubini and Luciano (2001) used copula functions to estimate VaR
and allocate capital. They applied their approach to the data of five years of daily returns
on two stock market indices: FTSE100 and S&P100. They found that copulas separate
marginal distributions from the dependence between returns results in joint probabilities
of extreme losses. Jondeau and Rockinger (2006) proposed a new measure of conditional
dependence using copula functions with GARCH processes. Fortin and Kuzmics (2002)
used convex linear combinations of copula with the GARCH-model to estimate VaR on
a set of European stock indices: FTSE and DAX. Messaoud and Aloui (2015) used the
GJR-GARCH based on a Student’s t-copula to estimate the VaR and CVaR of a portfolio and
described asymmetric dependence. The authors consider daily returns of market indices
from four countries: Egypt, Malaysia, South Africa, and Turkey.

2.4. The Worst Case Conditional Value at Risk

There are many measures to calculate risk. A common used risk measure is VaR, but it
has been criticised because it is not a coherent measure of risk as well as being a percentile
of loss distribution which does not describe possible losses on the tails of distribution. That
leads Szego (2005) to propose the CVaR as an alternative measure. CVaR is a coherent
measure, and it provides some improved properties with respect to losses on the tail of
distribution than VaR (Bertsimas et al. 2004; Quaranta and Zaffaroni 2008; Rockafellar and
Uryasev 2002). Kakouris and Rustem (2014) presented the copula formulation of the CVaR
of a portfolio. The authors extended the CVaR to WCVaR using mixture copulas.

The definitions of VaR, CVaR, and WCVaR will be presented in the following.

Definition 3 (VaR). Let w € W C R™ be a decision vector, let u € 1" be a random vector, let
§(w, u) be the cost function, and let F(x) = (Fy(x1), ..., F1(xn))T bea set of marginal distributions
where u = F(x). Moreover, assume that u follows a continuous distribution with copula function
C(-). Then, for a confidence level B, VaRp is defined as follows.

VaRg(w) = min{a € R: C(u|g(w,u) < a) > B}. (10)

Definition 4 (CVaR). Given w, u, F(x), and §(w, u) as in Definition 3, CVaRg for a confidence
level B is defined as follows.

CVaRg(w) = 1i5 [ gtwwcwan (1)
§(wu)>VaRg(w)

Definition 5 (WCVaR). The WCVaR for fixed w € W and confidence level B with respect to C is
defined as follows.
WCVaRg(w) = sup.(.yec CVaRg(w). (12)

2.5. Worst Case GARCH-Copula CVaR Portfolio Optimisation

In order to apply the Worst Case Copula-CVaR Portfolio Optimisation (Sabino da
Silva and Ziegelman 2017), we need firstly to model marginals with the GARCH model
assuming skew t-distributed innovations. Then, we extract the residuals and transform
them into pseudo-observations. Next, we estimate a t-copula to model dependencies
between marginals. Then, we generate a high number of scenarios (e.g., simulations) using
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the dependence structure that we obtained from estimating the copula. After that, we
transform these scenarios into quantiles of the t-distribution. Then, we derive the simulated
daily asset log-returns using standard deviations that have been estimated by the GARCH
model. Finally, to optimise the portfolio’s weights, we apply the WCVaR technique to find
the optimal portfolio.

3. Application of the Worst Case GARCH-Copula CVaR to Financial Datasets

In this section, the Worst Case GARCH-Copula CVaR technique is applied to two
financial time series datasets. The first dataset is a relatively small set that includes six
major market indexes considered between 2009 and 2013. The second dataset is a large
collection of stock prices of the Gulf Cooperation Council’s (GCC) oil-based companies
collected between 2008 and 2019. The GCC data were previously analysed, for example, by
Mensi et al. (2018); Aloui and Hkiri (2014) and Ben Mabrouk (2020).

3.1. The Financial Market Indexes Dataset

This Section demonstrates the computation of the WCVaR for a portfolio using multi-
variate copula simulation with GARCH marginals. We downloaded data from Yahoo Finance,
and imported the closing prices of six market indexes that we modelled with GARCH pro-
cesses. The indexes are SPY: Large Cap US (S&P 500); EEM: Emerging Markets Equity; TLT:
20+ Year Treas Bond (iShares Barclays); COY: US High-Yield Bond; GSP: Commodities broad
(iPath S&P GSCI Total Return Index); and RWR: Real estate (REIT Index). We use daily data
over the period from 1 October 2009 to 24 June 2013. We then applied the methodology that
we described above in Section 2.5 on these data. Figure 1 shows the relative price movements
of each index. The initial level of each index has been normalised to unity to facilitate the
comparison of relative performance over the historical record (Pfaff 2016).

o™
~ | — SPY
—— EEM
o | — TLT
~ 7| — coY
GSP
© | — RWR

Indexes prices

i AP e o *
o o Ly

i
" i ._‘I‘J‘u" A

T T T T
2010-01-01 2011-01-01 2012-01-01 2013-01-01

Time

Figure 1. Performance of price movements of each index over the historical record.

We characterise individually the distribution of returns of each index. Since copulas
allow us to capture dependencies between marginals, we investigated the existence of
correlations between returns using scatterplots and correlation coefficients.

Figure 2 illustrates scatterplots between each pair of index returns in the lower trian-
gular panels, and histograms of each marginal in the diagonal and Pearson’s correlation
coefficients in the upper triangular panels. For instance, it is evident that there is a positive
strong correlation between SPY and EEM as well as between SPY and RWR and between
EEM and RWR, whereas we notice a negative correlation between SPY and TLT. However,
we can see that there is a weak correlation, for example, between COY and GSP.



J. Risk Financial Manag. 2022, 15, 482

8 of 14
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Figure 2. Scatterplots between each pair of index returns in the lower triangular panels, histograms
of each marginal in the diagonal, and Pearson’s correlation coefficients in the upper triangular panels.

Then, we specify and estimate GARCH(1,1) models for each marginal with t-distributed
innovation processes and we extracted the standardised residuals. Figure 3 shows the
Student’s t-quantile functions of the residuals, allowing us to check that the assumptions of
the GARCH models are met.

“ [}
o
o~
= 7] & 5o
T 21 = =
) W [
2 N = =
L= r\I‘ | (=1 [=1] -—
| o
Y L]
i 212 b -
o -
(=1 Fd
_ - —_ = -
V_ w - - L".l_ CD_ |
g o1~ T % g °
2 o= = 2 2 ]
[= T o =] =
< -
T - + 75
o |azg 477 T A
. T T T T 1 T 1
-15 10 -5 0 5 10 15
t quantiles t quantiles t quantiles

Figure 3. The Student’s t-quantile functions of the residuals of GARCH(1,1) for each marginal.

In Figure 4, the plots demonstrate the autocorrelation functions (ACF) of the residual
values. The ACF calculates a single time series’ similarity against a delayed version (with a
delayed copy) of itself (Welsh 1999). It is clear from the plots that there is no residual serial
correlation in the residuals and thus the GARCH model is appropriate.
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Figure 4. Plots of autocorrelation functions (ACF).

Figure 5 was produced after transforming the standardised residuals into pseudo-
observations, which are constrained in order to belong to set [0,1]. Figure 5 illustrates
scatterplots between pseudo-observations of each pair of indexes in the lower triangular
panels, histograms of each marginal in the diagonal and Pearson’s correlation coefficients
in the upper triangular panels. Comparing Figure 5 with Figure 2, it can be seen that there
is a similar behaviour in terms of dependence between marginals.

0.0 0.4 0.2 0.0 0.4 0s 0.0 0.4 VE:3
| | | | 11 1 1 | |

1 L1 1 1 L1 1
ﬁ?ﬁm 085 || -057 || 0.0 0.55 0.77

0.65

00 06

00 06

-0.37

00 06

0.06

00 06

0.41

00 06

var

00 06

Figure 5. Scatterplots between pseudo-observations of each pair of indexes in the lower triangular
panels, histograms of each marginal in the diagonal, and Pearson’s correlation coefficients in the
upper triangular panels.

The dependence structure between marginals is estimated using a t-copula. Then, the
dependence determined by the estimated t-copula was used for generating N = 10,000
random variates for the pseudo-uniformly distributed variables. After that, we use these
quantiles in conjunction with standard deviations to calculate N = 10,000 portfolio re-
turn scenarios.
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Next, we transformed the uniform variates to daily centered returns via the inverse
CDF of each index using Student’s t distributions for each marginal. The multivariate
simulations from the copula model can be used to compute the VaR and CVaR of a sample
portfolio. We could also find optimal portfolio weights that give us a minimum risk for
a certain level of return. We can perform this using the WCVaR technique, which allows
us to find optimal portfolio weights that give us a minimum risk for a certain level of
return. Using the WCVaR method, we obtained the following weights: 0.37916193 for SPY,
0 for EEM, 0.52727024 for TLT, 0.03467091 for COY, 0.05889691 for GSP, and 0 for RWR. We
found that VaR and CVaR were 1.340576 and 1.675549, respectively. We also calculated VaR
and CVaR for a multivariate normal as a benchmark traditional method, and we obtained
optimal weights of 1.087546 and 1.267103, respectively.

In order to compare the WCVaR technique with the multivariate normal, we also
calculated the VaR and CVaR by adopting randomly chosen weights (0.1 for SPY, 0.2 for
EEM, 0.3 for TLT, 0.2 for CQOY, 0.1 for GSP, and 0.1 for RWR). The VaR is 1.641517 and CVaR
is 2.122687. Finally, we compared the results obtained above with data generated from
a multivariate normal distribution, obtaining a VaR and CVaR of 1.619638 and 1.836164,
respectively.

Table 1 shows the comparison between the traditional multivariate normal method and
the WCVaR technique. These results reveal that the traditional multivariate normal method
produces lower VaR and CVaR and underestimates risks. While the WCVaR method takes
into proper account the strong dependence in the tails using a Student’s t-copula, the
traditional multivariate normal fails to do that, yielding lower risk measures.

Table 1. Comparison between the traditional multivariate normal method and WCVaR technique.

With Optimal Weights With Random Weights
WCVaR Multivariate Normal WCVaR Multivariate Normal
VaR 1.340576 1.087546 1.641517 1.619638
CVaR 1.675549 1.267103 2.122687 1.836164

Figure 6 shows the comparison between the WCVaR and minimum-variance portfolio
values. It is clear that the WCVaR and the minimum-variance are very similar in the period
1 October 2009 to 1 September 2011, while the minimum variance measure exceeds the
WCVaR from 2 September 2011 to 1 October 2012. From 2 October 2012 to 1 June 2013, there
is a sharp increase in the value of WCVaR, which outperforms the minimum-variance.
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Figure 6. Trajectory of WCVaR and minimum-variance portfolio values.

3.2. The Gulf Cooperation Council (GCC) Dataset

In this section, we apply the WCVaR method to the GCC dataset, which includes stock
markets from Saudi Arabia, Qatar, the United Arab Emirates, Oman, Bahrain, and Kuwait.
In addition, oil prices and the prices of three precious metals (gold, silver, and copper) are
included. The daily returns of the GCC stock indexes are considered and taken from the
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Thomson Datastream service and the logarithmic return was used to calculate the rate of
return on assets. The sample period of the index data runs from 1 January 2008 to 31 January
2019 and comprises a total of 2894 observations. The arithmetic mean of returns is used,
and it is identical to what is used in the standard Markowitz model. It should be mentioned
that stocks with missing values at the beginning of the period of the study were dropped
from the dataset. As above, the data cover the period from January 2008 to January 2019, an
eventful period beginning in the year of the global financial crisis, and covering the oil crisis
when prices saw a significant drop. However, the price of gold was rising at that time, and
this provided a balance to the negative impact of the crisis, particularly in GCC countries
where economic growth was actually significant (Maghyereh et al. 2017). The study period
continues through gold’s price peak in 2010 and the fall that followed, and onwards to
2014, which is the beginning of the oil crisis. These two periods impacted GCC oil exporters
negatively, along with central bank reserves, adding to the already turbulent political climate
of the Middle East and creating added insecurity for investments (Maghyereh et al. 2017).
As a result, the subject at hand is an interesting case to investigate.

We use this data because the GCC markets are developing and have a significant
growth economy. This may help investors to locate profitable investment opportunities.
In addition, GCC countries are oil producers which affects on their economies. Moreover,
there is a lack of literature in constructing optimal portfolios in GCC markets.

In this study, we divided the sample into 13 classes: 11 classes comprising stocks of
firms, 1 class comprising solely oil, and 1 final class with three precious metals. The number
and type of assets in each class is provided in Table 2. The grouping was determined by the
Global Industry Classification Standard (GICS), which is a standardised classification sys-
tem for equities that used by investors and established indices (or investment community).
The GICS was developed by Standard & Poor’s and Morgan Stanley Capital International in
1999 to provide a global standard for classifying firms into sectors and industries. The GICS
structure contains 11 sectors, 24 industry groups, 68 industries, and 157 sub-industries. All
companies are categorised regarding their principal business activity (similar operating
characteristics). The sectors are: Energy, Materials, Industrials, Consumer Discretionary,
Consumer Staples, Health Care, Financials, Information Technology, Communication Ser-
vices, Utilities, and Real Estate. We use the Global Industry Classification Standard because
some sectors are pro-cyclical (e.g., the financial sector), while others are counter-cyclical or
do not depend on the business cycle (e.g., pharmaceuticals) (Basu 1996). Pro-cyclical stocks
refer to a positive correlation between any stock’s price and the overall state of the economy
(in other words, any economic quantity that tends to move in the same direction as the
economy, increasing in expansion and declining in a recession). In contrast, any stock’s
price that is negatively correlated with the overall state of the economy is said to constitute
counter-cyclical stocks.

Table 2. Generating VaR and WCVaR using WCVaR technique for the GCC dataset.

Class Type of Asset Number of Assets VaR WCVaR
1 Energy 20 0.4749 0.6532
2 Materials 68 0.1702 0.2218
3 Industrials 52 0.3766 0.5712
6 Healthcare 9 1.1005 1.4873
8 Information Technology 5 1.0342 1.8063
9 Communication Services 13 1.3899 2.2619
10 Utilities 7 1.6091 2.1049
11 Real Estate 47 0.0128 0.0173

Since the dataset used in this section is very large, the High Performance Computer
(HPC) cluster at the University of Plymouth was used to process the experiment. Table 2
shows the results of the VaR and WCVaR measures for the GCC dataset. Since the number
of considered assets is large (496 assets), it was partitioned by class constraints, and the
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methodology was applied to each class individually; the number of assets assigned to each
class is shown in Table 2. We focused on the following eight classes: Energy (20 assets),
Materials (68 assets), Industrials (52 assets), Healthcare (9 assets), Information Technology
(5 assets), Communication Services (13 assets), Utilities (7 assets), and Real Estate (47 assets).

In Table 2, classes 4, 5, 7, 12, and 13 are not included. In particular, classes 4, 5, and
7 are affected by multicollinearity, which arises when two or more variables are linearly
related, and there is a lack of orthogonality between them (for more information the reader
is referred to Alin 2010). We noticed that the stock market prices of classes 4, 5, and 7 of
this dataset remained stable for parts of the considered time horizon. In addition, class 4
has several missing data, which prevents the application of the methodology. Moreover,
class 7 has over 200 assets, making the application of the methodology computationally
unfeasible. Moreover, classes 12 and 13 consist of only 3 and 1 assets, respectively, which
are datasets that are too small for the application of the methodology. The WCVaR and
VaR are calculated at the 10% confidence level. It can be seen that the values of WCVaR are
higher than those of VaR for all classes.

When we compared between various classes, we can see that Communication Services
has the highest WCVaR, which means that it is the most risky class, while Real Estate has
the lowest WCVaR, meaning that it can be interpreted as less risky than the other classes.
Moreover, it was observed that classes 2, 3, and 11, which have the largest number of assets,
had the smallest values of WCVaR. Therefore, the value of WCVaR decreases when the
number of assets increases.

Applying WCVaR on a large dataset is very computationally demanding and requires
an HPC. However, the WCVaR provides us with a more accurate estimation method than
the traditional VaR to measure risks.

4. Conclusions and Future Work

In this paper, an advanced risk measure (WCVaR) was used to calculate the risk of
portfolio in an accurate manner. The WCVaR technique involves two main components,
namely: copulas that allow us to calculate the dependence structure of assets, and time series
analysis such as GARCH models to analyse the marginals. The approach was applied firstly
on a small dataset, including prices of six indices collected over the period between 2009
and 2013 and then on the large GCC dataset, including the prices of 500 assets collected over
the period between 2008 and 2019. Then, we evaluated the performance of the WCVaR and
compared it against the VaR measure. The results showed that the WCVaR outperformed
VaR and measured risks more accurately. Moreover, it was found that including more assets
in the portfolio leads to a decrease in the WCVaR value. On the other hand, the use of
the WCVaR approach is, in general, computationally demanding, making it challenging
to work with large datasets and requiring powerful computers. The main advantage of
the WCVaR method is that it measures risk more accurately compared to other traditional
methods. Hence, this approach can be very beneficial to decision-makers, investors, financial
institutions, and banks in their decision-making regarding minimising the overall risk of
their portfolio investments.

In this paper, we considered only the t-copula, and it would be interesting to extend
this study using other copula families or a mixture of copulas (Hu 2006; Kakouris and
Rustem 2014). A mixture of copulas is a combination of a set of different types of copulas.
They are a flexible method in the case in which data contains many asymmetries and they
consider various patterns of dependence in order to determine an appropriate measure
of dependence to achieve robust results (Kakouris and Rustem 2014). Then, it would be
interesting to compare the results of this method to that which were presented in this paper.
These new methods can also be applied to other datasets, such as cryptocurrency datasets
(Bitcoin, for example) or data in other fields (for example, environmental risk data such as
floods or natural hazards). Additional suggestions include using different types of models
for the marginals such as Generalized Additive Models (GAM) instead of GARCH models
(Coussement et al. 2010; Hastie and Tibshirani 1990).
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