
Citation: Toyabe, Tomoki, and

Teruo Nakatsuma. 2022. Stochastic

Conditional Duration Model with

Intraday Seasonality and Limit Order

Book Information. Journal of Risk and

Financial Management 15: 470.

https://doi.org/10.3390/

jrfm15100470

Academic Editor: Theo Berger

Received: 26 July 2022

Accepted: 11 October 2022

Published: 17 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Risk and Financial
Management

Article

Stochastic Conditional Duration Model with Intraday
Seasonality and Limit Order Book Information
Tomoki Toyabe 1,* and Teruo Nakatsuma 2

1 Graduate School of Economics, Keio University, Tokyo 108-8345, Japan
2 Faculty of Economics, Keio University, Tokyo 108-8345, Japan; nakatuma@econ.keio.ac.jp
* Correspondence: toyabet.fac.econ@keio.jp

Abstract: It is a widely known fact that the intraday seasonality of trading intervals for financial
transactions such as stocks is short at the beginning of business hours and long in the middle of the
day. In this paper, we extend the stochastic conditional duration (SCD) model to capture the pattern
of intraday trading intervals and propose a new Markov chain Monte Carlo method to estimate
this intraday seasonality simultaneously. To efficiently generate the Monte Carlo sample, we used
a hybrid of the Gibbs/Metropolis–Hastings (MH) sampling scheme and also applied generalized
Gibbs sampling. In addition to capturing this intraday seasonality, this paper also considers limit
order book information. Three-day tick data for three stocks obtained from Nikkei NEEDS are used
for estimation, and model selection is performed on smooth parameters, Weibull distribution and
Gamma distribution. The typical intraday regularity of frequent trading immediately after the start
of trading is confirmed, and the spread of the limit order book information is also found to affect the
trading time interval.

Keywords: Bayesian inference; Markov chain Monte Carlo; Metropolis–Hastings algorithm; state
space model; block sampler

1. Introduction

Recently, intraday transaction data have come to attract more and more researcher
attention with the increased availability of high frequency data, development in computer
technology and the increasing market share of high-frequency trading (HFT). According to
Hosaka (2014), in the Tokyo Stock Exchange (TSE), HFT accounted for about 55% of total
orders in May 2013, compared with about 23% in September 2012. In such a situation, the
importance of the analysis of intraday data has been increasing.

The first characteristics of these intraday transaction data are that they are irregularly
spaced. Thus, the conventional models for regularly spaced time series, such as the autore-
gressive conditional heteroskedasticity (ARCH) model by Engle (1982), the generalized
autoregressive conditional heteroskedasticity (GARCH) model by Bollerslev (1986) and the
stochastic volatility (SV) model by Taylor (1982), cannot be applied to the transaction data.
As an alternative to these models for fixed interval data, Engle and Russell (1998) propose
the autoregressive conditional duration (ACD) model. The word “duration” means the
interval between two transaction times. In the ACD model, this duration is treated as the
product of the conditional duration, which depends on past durations and noise.

Bauwens and Veredas (2004) proposed the stochastic conditional duration (SCD)
model and assumed this duration to be driven by a latent variable. The state equation
of the basic SCD model is a stationary first order autoregressive process (AR(1)) on the
logarithm of the latent variable, and the observation equation is a product of the latent
variable and noise, which follows either a Gamma or a Weibull distribution. The similarity
of the forms between the SCD model and the SV model motivates some researchers to use
an MCMC method for estimation. Strickland et al. (2006) developed a Bayesian MCMC
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method which employs a hybrid Gibbs/Metropolis–Hastings (MH) sampling scheme for
estimating the SCD model. In this method, as proposed in Shephard and Pitt (1997), the
state variables are divided into several blocks and are drawn in each block. Watanabe and
Omori (2004) suggested that the blocking scheme proposed by Shephard and Pitt (1997)
yields an estimation bias and Omori and Watanabe (2008) proposed a new efficient method
for asymmetric stochastic volatility models.

The second characteristic of intraday transaction data is that they have an intraday
seasonality. Trading frequency is known to be higher just after the start and just before the
end of the market (i.e., shorter trading time intervals), which is called intraday seasonality.
Engle and Russell (1998) estimated the ACD model using “diurnal adjusted data” in
which diurnal seasonality was removed in advance by cubic spline. The log-ACD model
proposed by Bauwens and Giot (2000) also estimates in two steps using cubic spline. Veredas
et al. (2002) estimated the representation of intraday seasonality with a quartic kernel
simultaneously in the log-ACD model. Brownlees and Vannucci (2013) proposed the mixed
ACD model that incorporates the ACD model, intraday seasonality and daily random
effect. The parameters of the mixed ACD model are estimated jointly by MCMC, and
intraday seasonality is represented by a cubic B-Spline . In the SCD model, Bauwens and
Veredas (2004) used a quartic kernel, and Feng et al. (2004) used a piecewise cubic spline to
remove intraday seasonality in advance. Men et al. (2019) proposed the threshold stochastic
conditional duration (TSCD) model. The model assumes that the AR(1) process switches
between the two regimes, allowing us to consider the behavior of two types of traders with
different behavioral criteria. Gingras and McCausland (2020) proposed the all-duration
flexible SCD (FSCD) model. This is an extension of the SCD model that attempts to model
transactions occurring at the same second with a mixture distribution and uses the B-Spline
to capture intraday seasonality.

The main contributions of this study are twofold. First, we extend the simultaneous
intraday seasonality estimation algorithm using MCMC within the SCD model. In the
previous study by Strickland et al. (2006), the intraday seasonality was simultaneously
estimated within the SCD model by MCMC, however, there are no parameters to be
estimated by the MCMC loop because cubic smoothing spline is used. and the roughness
parameter is estimated by generalized cross-sectional verification. In this study, intraday
seasonality is simultaneously estimated via parameters by including the coefficients of the
basis spline (B-Spline ) in the MCMC loop. B-Spline is a piecewise polynomial function
driven by control points. This property allows for the expression of smooth curves without
the use of higher-order functions. In addition, since the curve is expressed as a linear
combination, it can be estimated in the same framework as the estimation of the effect
of external information, such as the limit order information. The second contribution is
the treatment of the limit order information in the SCD model. Although the limit order
information plays a very important role in capturing recent trends in financial markets,
there have been only a few analyses using limit order information in the SCD model,
such as Sugiura et al. (2015). In this paper, we estimate the effect of the limit order book
information on the trading time interval using the variables of limit order price difference
(spread), order volume, and the balance between buy and sell orders.

The structure of this paper is as follows. In Section 2, we introduce the SCD model.
Section 3 describes a MCMC sampling method for this model. Section 4 provides estimates
for three stocks listed on the TSE. Section 5 presents the conclusions.

2. Stochastic Conditional Duration Model
2.1. A Proposed Model

Defining τi as the time of the ith transaction, the ith duration yi can be written as
yi = τi+1 − τi. The SCD model is a non-Gaussian state space model and considers this
duration yi as a product of a latent valuable αi and a positive random variable εi. The state
equation is a stationary AR(1) process on the logarithm of the latent variable with noise
ηi. Both εi and ηi are mutually and serially independent in this model. In this paper, we
consider the SCD model as
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yi = exp
(
x′i β + αi

)
εi, εi > 0, i ∈ {1, . . . , N}, (1)

αi = φαi−1 + ηi, ηi ∼ N (0, σ2), i ∈ {2, . . . , N},
α1 ∼ N (0, σ2/(1− φ2)), |φ| < 1,

(2)

where a (1× k) vector x′i is the ith row of the basis spline (B-Spline) function (N × k) matrix
X and a (k× 1) vector β is the control points of B-Spline. The random variable εi is supposed
to follow a positive-valued continuous distribution. In the literature,

Weibull(γ, 1) : p(εi|γ) = γε
γ−1
i exp(−ε

γ
i ),

Gamma(γ, γ) : p(εi|γ) =
γγ

Γ(γ)
ε

γ−1
i exp(−γεi),

are often used1 as the distribution of εi. In our study, we will follow the precedent. Thus,
the probability density function (pdf) of yi is

p(yi|αi, β, γ) =



γyγ−1
i exp

(
−γ(x′i β + αi)− yγ

i exp(−γ(x′i β + αi))
)
,

(Weibull distribution),
γγ

Γ(γ)
yγ−1

i exp
(
−γ
(
x′i β + αi + yi exp(−x′i β− αi)

))
,

(gamma distribution).

(3)

2.2. Basis Spline (B-Spline)

To imply the intraday seasonality by the model, we follow Eilers and Marx (1996),
Lang and Brezger (2004), Brownlees and Vannucci (2013) and Gingras and McCausland
(2020) and use the B-Spline in the observation equation. B-Spline is a piecewise polynomial
function driven by control points. Owing to the properties, we can express a smooth curve
without using the higher order function. In our model, the B-Spline is implemented as

xB′
i = (B1,n(τi), . . . , Bk,n(τi)), k = m− n− 1 (4)

where m is the number of the knots t1 ≤ t2 ≤ · · · ≤ tm, and n is the order of B-Spline.
Bj,n(τi) is the basis function defined by means of the Cox–de Boor recursion formula by
De Boor (1978) as

Bj,0(τi) =

{
1 if tj ≤ τi < tj+1

0 otherwise,
(5)

Bj,n(τi) =
τi − tj

tj+n − tj
Bj,n−1(τi) +

tj+n+1 − τi

tj+n+1 − tj+1
Bj+1,n−1(τi) (6)

2.3. Limit Order Book Information

By the same method, we added the order book information as

x′i = (xB′
i , di1, di2, di3) (7)

where d1 is the price spread, d2 is the sum of the volume at the best bid and ask price, and
d3 is the bid-ask volume ratio, which means the value of the best bid volume divided by
the best ask volume minus one for centering. This design allows us to simultaneously
estimate the regression coefficients β on the diurnal seasonality and the effect of external
information in the SCD model.

3. Estimation Method
3.1. Joint Posterior Distribution

The SCD model (1)–(2) is a non-linear non-Gaussian state–space model where (1) is
the measurement equation, (2) is the transition equation, and αi, i ∈ {1, . . . , n} are the
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state variables. Since (2) is a stationary AR(1) model, the joint probability distribution of
α = [α1; · · · ; αn] is N (0, σ2V−1) where

V =



1 −φ 0 · · · · · · · · · 0

−φ 1 + φ2 −φ
. . .

...

0 −φ 1 + φ2 −φ
. . .

...
...

. . . . . . . . . . . . . . .
...

...
. . . −φ 1 + φ2 −φ 0

...
. . . −φ 1 + φ2 −φ

0 · · · · · · · · · 0 −φ 1


, (8)

is a tridiagonal matrix, and it is positive definite as long as |φ| < 1. The prior of β, γ, φ and
σ2 in our study are

β ∼ N (µ̄β, Ā−1
β ), γ ∼ Gamma(aγ, bγ),

φ + 1
2
∼ Beta(aφ, bφ), σ2 ∼ Inv. Gamma(aσ, bσ),

(9)

where

N (µ, σ) : p(x|µ, σ) =
1√

2πσ2
exp

{
− (x− µ)2

2σ2

}
,

Gamma(α, β) : p(x|α, β) =
βα

Γ(α)
xα−1

i exp(−βx), x > 0, α, β > 0,

Beta(α, β) : p(x|α, β) =
Γ(α + β)

Γ(α)Γ(β)
xα−1(1− x)β−1, 0 < x < 1, α, β > 0

Inv.Gamma(α, β) : p(x|α, β) =
βα

Γ(α)
x−α−1

i exp(− β

x
), x > 0, α, β > 0.

Therefore, the joint posterior density of (α, β, γ, σ2) for the SCD model (1)–(2) is

p(α, β, γ, σ2|y) ∝
n

∏
i=1

p(yi|αi, β, γ) · p(α|φ, σ2) · p(β)p(γ)p(φ)p(σ2), (10)

where p(yi|αi, β, γ) is the pdf of the Weibull or Gamma distribution in (3), p(α|φ, σ2) is the
pdf of N (0, σ2V−1), and p(β), . . . , p(σ2) are the pdf’s of the priors in (9). Since analytical
evaluation of the joint posterior distribution (10) is impractical, we apply an MCMC method.

In the MCMC method, we generate a random sample of (α, β, γ, φ, σ2), say {(α(r), β(r),
γ(r), φ(r), σ2(r))}m

r=1, from the joint posterior distribution (10), and numerically evaluate
the posterior statistics necessary for Bayesian inference with Monte Carlo integration. The
outline of the sampling scheme is given as follows:

Step 1: Initialize (α(0), β(0), γ(0), φ(0), σ2(0)) and set the counter r = 1.

Step 2: Generate α(r) from p(α|β(r−1), γ(r−1), φ(r−1), σ2(r−1), y).

Step 3: Generate β(r) from p(β|α(r), γ(r−1), φ(r−1), σ2(r−1), y).

Step 4: Generate γ(r) from p(γ|α(r), β(r), φ(r−1), σ2(r−1), y).

Step 5: Generate φ(r) from p(φ|α(r), β(r), γ(r), σ2(r−1), y).

Step 6: Generate σ2(r) from p(σ2|α(r), β(r), φ(r), y).

Step 7: Let r = r + 1, and go to Step 2 until the burn-in iterations are completed.

Step 8: Reset the counter r = 1, and repeat Step 2–6 m times to obtain {(α(r), β(r), γ(r), φ(r),
σ2(r))}m

r=1.
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3.2. State Variables

The conditional posterior density of the state variables α is

p(α|β, γ, φ, σ2, y) ∝
n

∏
i=1

p(yi|αi, β, γ) · p(α|φ, σ2). (11)

First we consider the second-order Taylor expansion of the log likelihood

`(α) ≡
n

∑
i=1

log p(yi|αi, β, γ), (12)

log p(yi|αi, β, γ) =
log γ− log yi + γ(log yi − x′i β− αi)− exp(γ(log yi − x′i β− αi)),

(Weibull distribution),
γ log γ− log Γ(γ)− log yi + γ

(
log yi − x′i β− αi − exp(log yi − x′i β− αi)

)
,

(Gamma distribution),

in the neighborhood of α∗ = [α∗1 ; · · · ; α∗n] ∈ Rn:

`(α) ≈ `(α∗) + g(α∗)′(α− α∗)− 1
2
(α− α∗)′Q(α∗)(α− α∗), (13)

where

g(α∗) ≡ ∇α`(α
∗) = [g1(α

∗); · · · ; gn(α
∗)],

Q(α∗) ≡ −∇α∇′α`(α∗) = diag{q1(α
∗), . . . , qn(α

∗)},

and

gi(α
∗) =

{
−γ + γ exp(γ(log yi − x′i β− α∗i )), (Weibull distribution),
−γ + γ exp(log yi − x′i β− α∗i ), (Gamma distribution),

qi(α
∗) =

{
γ2 exp(γ(log yi − x′i β− α∗i )), (Weibull distribution),
γ exp(log yi − x′i β− α∗i ), (Gamma distribution),

i ∈ {1, . . . , n}.

Note that Q(α∗) is always positive definite.
Since the log prior density of α is

log p(α) ≡ −n
2

log(2πσ2) +
1
2

log(1− φ2)− 1
2σ2 α′Vα, (14)

the conditional posterior density of α can be approximated by

p(α|β, γ, φ, τ2, y)

= C exp[`(α) + log p(α)]

≈ C exp
[
`(α∗) + g(α∗)′(α− α∗)− 1

2
(α− α∗)′Q(α∗)(α− α∗) + log p(α)

]
= C exp

[
`(α∗)− n

2
log(2πτ2) +

1
2

log(1− φ2)

]
× exp

[
g(α∗)′(α− α∗)− 1

2
(α− α∗)′Q(α∗)(α− α∗)− 1

2τ2 α′Vα

]
, (15)
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where C is the normalizing constant. By completing the square in (15), we have

g(α∗)′(α− α∗)− 1
2
(α− α∗)′Q(α∗)(α− α∗)− 1

2σ2 α′Vα

= −1
2
(α− µα(α

∗))′Σα(α
∗)−1(α− µα(α

∗))

+
1
2

g(α∗)′Q(α∗)−1g(α∗)

− 1
2
(g(α∗) + Q(α∗)α∗)′

(
Σα(α

∗) + Q(α∗)−1
)
(g(α∗) + Q(α∗)α∗), (16)

where

Σα(α
∗) =

(
1
τ2 V + Q(α∗)

)−1
, µα(α

∗) = Σα(α
∗)(g(α∗) + Q(α∗)α∗).

Therefore, the right-hand side of (15) is proportional to the pdf of the following normal
distribution:

α ∼ N (µα(α
∗), Σα(α

∗)). (17)

Hoping that the approximation (15) is sufficiently accurate, we apply the Metropolis–
Hastings (MH) algorithm to generate α from the conditional posterior distribution (11) by
using (17) as the proposal distribution.

In practice, however, we need to address two issues:

1. The choice of α∗ is crucial to make the approximation (15) workable.
2. The acceptance rate of the MH algorithm tends to be low when α is a high-dimensional

vector.

We address the former issue by using the mode of the conditional posterior density as
α∗. The search of the mode is performed by the following recursion:

Step 1: Initialize α∗(0), and set the counter r = 1.

Step 2: Update α∗(r) by α∗(r) = µα(α∗(r−1)).

Step 3: Let r = r + 1 and go to Step 2 unless maxi=1,...,n |α
∗(r)
i − α

∗(r−1)
i | is less than the

preset tolerance level.

It turns out that the above algorithm is equivalent to the Newton–Raphson method,
and in our experience, it mostly attains convergence in a few iterations.

We address the latter issue by applying a so-called block sampler. In the block sampler,
we randomly partition α into several sub-vectors (blocks), generate each block αb from its
conditional distribution given the rest of the blocks αr and apply the MH algorithm to each
generated block.

α =

(
αb
αr

)
, α∗ =

(
α∗b
α∗r

)
, Σα(α

∗)−1 =

(
Ωbb Ωbr
Ωrb Ωrr

)
(18)

Using (17), the kernel of the conditional distribution p(αb | αr) is introduced by

(α− α∗)′Σα(α
∗)−1(α− α∗)

=

(
αb − α∗b
αr − α∗r

)′(Ωbb Ωbr
Ωrb Ωrr

)(
αb − α∗b
αr − α∗r

)
=(αb − α∗b)

′Ωbb(αb − α∗b) + 2(αr − α∗r )
′Ωrb(αb − α∗b)

+ (αr − α∗r )
′Ωrr(αr − α∗r ) (19)
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By completing the square in (19), we have

(αb − α∗b)
′Ωbb(αb − α∗b) + 2(αr − α∗r )

′Ωrb(αb − α∗b) + (αr − α∗r )
′Ωrr(αr − α∗r )

=(αb − µαb(α
∗))′Σαb(α

∗)−1(αb − µαb(α
∗))

− 2(αr − α∗r )
′Ωrbα∗b + (αr − α∗r )

′(Ωrr −ΩrbΩ−1
bb Ωbr)(αr − α∗r ) (20)

where
µαb(α

∗) = α∗b −Ω−1
bb Ωbr(αr − α∗r ), Σαb(α

∗) = Ω−1
bb

Therefore, the right-hand side of (19) is the kernel of the pdf of the following normal
distribution:

αb ∼ N
(
µαb(α

∗), Σαb(α
∗)
)
. (21)

3.3. Regression Coefficients

The simulation strategy for the regression coefficients β is almost identical to the one
for the state variables α. The second-order Taylor expansion of the log likelihood (12) with
respect to β in the neighborhood of β∗ ∈ Rm is

`(β) ≈ `(β∗) + g(β∗)′(β− β∗)− 1
2
(β− β∗)′Q(β∗)(β− β∗), (22)

where

g(β∗) ≡ ∇β`(β∗) =
n

∑
i=1

gi(β∗)xi,

Q(β∗) ≡ −∇β∇′β`(β∗) =
n

∑
i=1

qi(β∗)xix′i ,

and

gi(β∗) =

{
−γ + γ exp(γ(log yi − x′i β

∗ − αi), (Weibull distribution),
−γ + γ exp(log yi − x′i β

∗ − αi), (Gamma distribution),

qi(β∗) =

{
γ2 exp(γ(log yi − x′i β

∗ − αi)), (Weibull distribution),
γ exp(log yi − x′i β

∗ − αi), (Gamma distribution),

i ∈ {1, . . . , n}.

Note that Q(β∗) is always positive definite.
With the prior β ∼ N (µ̄β, Ā−1

β ), the conditional posterior density of β can be approxi-
mated by

p(β|α, γ, φ, τ2, y)

= C exp[`(β) + log p(β)]

≈ C exp
[
`(β∗)− 1

2
log(2π) +

1
2

log |Āβ|
]

× exp
[

g(β∗)′(β− β∗)− 1
2
(β− β∗)′Q(β∗)(β− β∗)− 1

2
(β− µ̄β)

′ Āβ(β− µ̄β)

]
. (23)

By completing the square as in (16), the proposal distribution for the MH algorithm is
derived as

β ∼ N
(
µβ(β∗), Σβ(β∗)

)
, (24)

where

Σβ(β∗) =
(

Āβ + Q(β∗)
)−1, µβ(β∗) = Σβ(β∗)

(
Āβµ̄β + g(β∗) + Q(β∗)β∗

)
.
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The search algorithm for β∗ is the same as α∗. Since the dimension of β is considerably
smaller than α, it is not necessary to apply the block sampler in our experience.

3.4. Shape Parameter

The sampling strategy for the shape parameter γ is also the same as α and β. Since the
prior of γ is not Gaussian, instead of the log likelihood (12), we consider the second-order
Taylor expansion of the log conditional posterior density of γ:

f (γ) ≡
n

∑
i=1

log p(yi|αi, β, γ) + log p(γ) + constant,

with respect to γ in the neighborhood of γ∗ > 0, i.e.,

f (γ) ≈ f (γ∗) + g(γ∗)(γ− γ∗)− 1
2

q(γ∗)(γ− γ∗)2, (25)

where

g(γ∗) ≡ ∇γ f (γ∗)

=



n
γ∗

+
n

∑
i=1

(
ui − uieγ∗ui

)
+

aγ − 1
γ∗

− bγ,

(Weibull distribution),

n + n log γ∗ − nψ(0)(γ∗) +
n

∑
i=1

(ui − eui ) +
aγ − 1

γ∗
− bγ,

(Gamma distribution),

q(γ∗) ≡ −∇2
γ f (γ∗)

=


n

γ∗2
+

n

∑
i=1

u2
i eγ∗ui +

aγ − 1
γ∗2

, (Weibull distribution),

− n
γ∗

+ nψ(1)(γ∗) +
aγ − 1

γ∗2
, (Gamma distribution),

ui ≡ log yi − x′i β− αi, i ∈ {1, . . . , n},

and ψ(s) is the polygamma function of order s. q(γ∗) for the Weibull distribution is positive
for any γ∗ > 0 if n + aγ > 1 which is satisfied in any applications. To prove q(γ∗) > 0 for
the Gamma distribution, we use the following formula (Equation (6.1.38) in Abramowitz
et al. (1988)):

log Γ(γ) =
1
2

log(2π) +

(
γ +

1
2

)
log γ− γ +

θ

12γ
, γ > 0, 0 < θ < 1. (26)

Taking the differential of both side of (26) twice, we have

ψ(1)(γ) = ∇2
γ log Γ(γ) =

1
γ
+

1
2γ2 +

θ

6γ3 . (27)

Replacing ψ(1) in q(γ∗) with (27), we have

q(γ∗) =
n + 2aγ − 2

2γ∗2
+

nθ

6γ∗3
, (28)

which is positive if n + 2aγ > 2. This condition is always satisfied in practice.
We directly apply the completing-the-square technique to (25) and obtain the proposal

distribution for the MH algorithm which is derived as

γ ∼ N
(

µγ(β∗), σ2
γ(γ

∗)
)

, (29)
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where

σ2
γ(γ

∗) =
1

q(γ∗)
, µγ(γ

∗) = γ∗ +
g(γ∗)
q(γ∗)

.

If we use the mode of f (γ) as γ∗, g(γ∗) = 0 always holds due to the global concavity of
f (γ). Thus µγ(γ∗) is effectively identical to γ∗. The search algorithm for γ∗ is identical to
those for α∗ and β∗ except for the fact that γ∗ is a scalar. The implementation of the MH
algorithm with the proposal distribution (29) is straightforward.

3.5. AR(1) Coefficient and Variance

Once the state variables α are generated, the conditional posterior density of φ is
given by

p(φ|y, α, σ2) ∝
√

1− φ2 exp

[
−
(1− φ2)α2

1 + ∑n
i=2(αi − φαi−1)

2

2σ2

]
× (1 + φ)aφ−1(1− φ)bφ−1. (30)

By completing the square, we have

(1− φ2)α2
1 +

n

∑
i=2

(αi − φαi−1)
2

= (1− φ2)α2
1 +

n

∑
i=2

α2
i − 2φ

n

∑
i=2

αiαi−1 + φ2
n

∑
i=2

α2
i−1

= α2
1 +

n

∑
i=2

α2
i − 2φ

n

∑
i=2

αiαi−1 + φ2
n−1

∑
i=2

α2
i

=
n−1

∑
i=2

α2
i

(
φ− ∑n

i=2 αiαi−1

∑n−1
i=2 α2

i

)2

+ α2
1 −

(∑n
i=2 αiαi−1)

2

∑n−1
i=2 α2

i

.

With the above expression in mind, we use the following normal distribution:

φ ∼ N
(

∑n
i=2 αiαi−1

∑n−1
i=2 α2

i

,
σ2

∑n−1
i=2 α2

i

)
, (31)

as the proposal distribution in the MH algorithm for φ.
For the variance σ2, the exact expression of the conditional posterior distribution is

available. With the inverse Gamma prior, it is derived as

σ2|y, α, φ ∼ Inv. Gamma
(

aσ +
n
2

, bσ +
1
2

α′Vα

)
. (32)

3.6. Generalized Gibbs Sampler

To facilitate convergence of the Markov chain sampling path, we utilize a generalized
Gibbs sampler by Liu and Sabatti (2000). To do so, we first apply the following reparameteri-
zation:

ξ =
1
γ

, τ =
√

σ2.

to the posterior distribution of (α, β, γ, φ, σ2). Then, the pdf of the reparameterized posterior
distribution is given by

f (α, β, ξ, φ, σ|y) = p(α, β, ξ−1, φ, σ2|y)|J|, (33)

where p(α, β, γ, φ, σ2|y) is the pdf of the original posterior distribution, and |J| = ξ−2 × 2τ
is the Jacobian. Next we introduce the scale transformation: (cα, cβ, cξ, cσ), c > 0. In the
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generalized Gibbs sampler, we generate a random scale c from its conditional posterior
distribution and apply the scale transformation to the parameters so that they would be
updated more frequently and bounce more freely around in the parameter space. The
conditional posterior density of c is proportional to

|c|n+k+1 p(cα, cβ, cξ, φ, cσ|y), (34)

where n + k + 1 is the number of transformed parameters minus 1. The outline of the
generalized Gibbs sampler is summarized as follows.

Step 1: Obtain (α(r), β(r), γ(r), σ2(r)) at the r-th run of the sampling scheme.

Step 2: Generate c from (34) with the MH algorithm.

Step 3: Transform the parameters as (cα(r), cβ(r), γ(r)/c, c2σ2(r)).

At the end of every cycle in the sampling scheme, we execute Step 1–3. Since the pdf of
c is non-standard, we use the MH algorithm to generate c in Step 2 in the same manner
as (α, β, γ), and we execute Step 3 only if the newly generated c is accepted in the MH
algorithm.

4. Empirical Applications
4.1. Data description

The proposed SCD model is estimated with tick data of Toyota Motor Corporation
(TMC) (Aichi, Japan), Asahi Group Holdings, Ltd. (AGH) (Tokyo, Japan) and Japan Airlines
Co., Ltd. (JAL) (Tokyo, Japan) for 4 January 2016, 23 June 2016 and 27 July 2016 obtained
from Nikkei NEEDS. The dates are chosen because 4 January was the first trading day of
the year, 23 June was the day before the Brexit vote and 27 July was the day before the Bank
of Japan’s policy meeting.

The daily trading session on the TSE, where these three companies are listed, is divided
into two parts: the morning session is from 9:00 to 11:30, and the afternoon session is from
12:30 to 15:00. In this study, only the morning session is treated, and 9:00 is normalized to
t = 0 and 11:30 to t = 1. As in the study by Bauwens and Veredas (2004), we exclude data
that occurred at the same time. This is based on the assumption that the simultaneously
recorded trades are only executed by small orders on the board due to one large order, i.e.,
they are caused by a single event. Since the TSE tick-data is recorded in microseconds, the
percentage of null duration is very small, as shown in Table 1. For example, Veredas et al.
(2002) find that 26.5% of the data is null duration.

Table 1. Basic information comparison for Toyota Motor Corporation (TMC) (Aichi, Japan), Asahi
Group Holdings, Ltd. (AGH) (Tokyo, Japan) and Japan Airlines Co., Ltd. (JAL) (Tokyo, Japan).

Date No. Durations > 0 No. Durations = 0

TMC
4 January 2016 8086 579
23 June 2016 8263 291
27 July 2016 8359 457

AGH
4 January 2016 1385 50
23 June 2016 1092 33
27 July 2016 3581 151

JAL
4 January 2016 2755 107
23 June 2016 1308 38
27 July 2016 1814 21

4.2. Empirical Results

The results in this section are produced by 20,000 iterations and 10,000 burn-ins. The
setting of hyperparameters is below
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(aφ, bφ) = (245, 5), (aτ , bτ) = (5, 0.04), (γa, γb) = (1, 1).

Since our proposed models include the parameters of B-Spline, the smoothing parameter
λ and the number of knots k, we need to choose a model from candidate parameters λ =
{5, 10, 100} and k = {150, 30, 15, 10}. The number of k means that we set knots every 1, 5,
10 and 30 minutes, respectively. As shown in Table 1, the trading volume of TMC is several
times larger than that of the two companies AGH and JAL; thus we set k = (150, 30, 15) for
TMC and k = (30, 15, 10) for AGH and JAL as candidates. We use the Deviance information
criterion (DIC) proposed by Spiegelhalter et al. (2002) as a criterion for model selection.

Tables 2–7 show the DIC for each setting of TMC on 4 January 2016, 23 June 2016 and
27 July 2016, respectively. The best of each distribution is underlined, and the best overall
is in bold. Using the variable selections in bold, the MCMC result of the limit order book
information and plots of intraday seasonality are shown. The estimated parameters about
the limit order book information are reported in Tables 8–10. It is intuitive that the spread
parameter is positive. This indicates that the larger the spread, the more open the trading
interval. The effect of trading volume is negative only on 27 July. The effect of bid–ask ratio
is positive only on 23 June. The 95% of CIs for the other items include 0, thus no impact can
be claimed. Figures 1–3 display the curve of intraday seasonality on 4 January, 23 June and
27 July 2016. Figure 1 takes the typical form of the inversed U-shape; however, Figure 3
shows that the duration becomes sparse toward noon. This is likely due to a change in
trading behavior ahead of the Bank of Japan’s policy meeting.

Table 2. DIC for Weibull distribution (4 January 2016, TMC, Aichi, Japan).

Smoothing Parameter

Num of Knots 5 10 100

150 −146,550 −146,558 −146,578
30 −146,562 −146,571 −146,560
15 −146,562 −146,546 −146,535

The best of each distribution is underlined, and the best overall is in bold.

Table 3. DIC for Gamma distribution (4 January 2016, TMC, Aichi, Japan).

Smoothing Parameters

Num of Knots 5 10 100

150 −146,387 −146,455 −146,437
30 −146,417 −146,434 −146,423
15 −146,454 −146,422 −146,389

The best of each distribution is underlined, and the best overall is in bold.

Table 4. DIC for Weibull distribution (23 June 2016, TMC, Aichi, Japan).

Smoothing Parameter

Num of Knots 5 10 100

150 −152,178 −152,175 −152,148
30 −152,114 −152,102 −152,103
15 −152,093 −152,099 −152,041

The best of each distribution is underlined, and the best overall is in bold.
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Table 5. DIC for Gamma distribution (23 June 2016, TMC, Aichi, Japan).

Smoothing Parameters

Num of Knots 5 10 100

150 −151,919 −150,961 −151,948
30 −151,938 −151,950 −151,896
15 −151,953 −151,961 −151,898

The best of each distribution is underlined, and the best overall is in bold.

Table 6. DIC for Weibull distribution (27 July 2016, TMC, Aichi, Japan).

Smoothing Parameter

Num of Knots 5 10 100

150 −153,018 −153,018 −153,021
30 −153,024 −153,028 −153,027
15 −153,001 −153,012 −153,001

The best of each distribution is underlined, and the best overall is in bold.

Table 7. DIC for Gamma distribution (27 July 2016, TMC, Aichi, Japan).

Smoothing Parameters

Num of Knots 5 10 100

150 −152,932 −152,927 −152,921
30 −152,924 −152,925 −152,950
15 −152,901 −152,946 −152,935

The best of each distribution is underlined, and the best overall is in bold.

Table 8. Estimated parameters about limit order book (4 January 2016, TMC, Aichi, Japan).

Parameters Posterior Mean Posterior SD 95%CI

Spread 0.8862 0.0390 [0.8098 0.9623]
Volume −3.2627× 10−6 2.4334× 10−6 [−8.0522× 10−6 1.5150× 10−6]

Bid-ask ratio −0.1706 0.1067 [−0.3799 0.0404]

Table 9. Estimated parameters about limit order book (23 June 2016, TMC, Aichi, Japan).

Parameters Posterior Mean Posterior SD 95%CI

Spread 1.4483 0.0560 [1.3389 1.5553]
Volume −5.8621× 10−6 4.5002× 10−2 [−1.4395× 10−5 2.6732× 10−6]

Bid-ask ratio 0.8105 0.1151 [0.5866 1.0511]

Table 10. Estimated parameters about limit order book (27 July 2016, TMC, Aichi, Japan).

Parameters Posterior Mean Posterior SD 95%CI

Spread 1.2863 0.0480 [1.1951 1.3798]
Volume −1.8708× 10−5 3.6379× 10−6 [−2.5667× 10−5 − 1.1645× 10−5]

Bid-ask ratio 0.0093 0.1152 [−0.2199 0.2328]
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Figure 1. Intraday seasonality of time interval of TMC, Aichi, Japan (4 January 2016).

Figure 2. Intraday seasonality of time interval of TMC, Aichi, Japan (23 June 2016).
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Figure 3. Intraday seasonality of time interval of TMC, Aichi, Japan (27 July 2016).

Tables 11–16 show the DIC for each setting of AGH on 4 January 2016, 23 June 2016 and
27 July 2016, respectively. In Tables 17–19, as in the case of TMC, the effect of the spread is
positive on all dates. In other words, the larger the spread, the longer the interval between
the next transaction. The trading volume parameters are negative on 4 January and 27
July, while the bid–ask ratio does not appear to affect the interval on all dates. Negative
impact of trading volume indicates that traders may tend to falter or wait and see when
large volume limit orders are placed. Figures 4–6 display the curve of intraday seasonality
on 4 January, 23 June and 27 July 2016. The credible interval on 4 January and 23 June is
wider, but this is most likely due to the small sample size, as Table 1 shows.

Table 11. DIC for Weibull distribution (4 January 2016, AGH, Tokyo, Japan).

Smoothing Parameters

Num of Knots 5 10 100

30 −22,290 −22,200 −22,289
15 −22,112 −22,135 −22,273
10 −22,059 −22,120 −22,038

The best of each distribution is underlined, and the best overall is in bold.

Table 12. DIC for Gamma distribution (4 January 2016, AGH, Tokyo, Japan).

Smoothing Parameters

Num of Knots 5 10 100

30 −22,084 −22,146 −22,111
15 −22,129 −22,140 −22,059
10 −22,125 −22,111 −22,092

The best of each distribution is underlined, and the best overall is in bold.
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Table 13. DIC for Weibull distribution (23 June 2016, AGH, Tokyo, Japan).

Smoothing Parameter

Num of Knots 5 10 100

30 −16,633 −16,637 −16,632
15 −16,632 −16,636 −16,635
10 −16,638 −16,639 −16,628

The best of each distribution is underlined, and the best overall is in bold.

Table 14. DIC for Gamma distribution (23 June 2016, AGH, Tokyo, Japan).

Smoothing Parameter

Num of Knots 5 10 100

30 −16,604 −16,606 −16,604
15 −16,607 −16,613 −16,608
10 −16,609 −16,606 −16,601

The best of each distribution is underlined, and the best overall is in bold.

Table 15. DIC for Weibull distribution (27 July 2016, AGH, Tokyo, Japan).

Smoothing Parameters

Num of Knots 5 10 100

30 −62,228 −62,231 −62,234
15 −62,244 −62,218 −62,235
10 −62,235 −62,238 −62,216

The best of each distribution is underlined, and the best overall is in bold.

Table 16. DIC for Gamma distribution (27 July 2016, AGH, Tokyo, Japan).

Smoothing Parameters

Num of Knots 5 10 100

30 −62,267 −62,274 −62,254
15 −62,265 −62,275 −62,260
10 −62,273 −62,252 −62,261

The best of each distribution is underlined, and the best overall is in bold.

Table 17. Estimated parameters about limit order book (4 January 2016, AGH, Tokyo, Japan).

Parameters Posterior Mean Posterior SD 95%CI

Spread 0.9452 0.1127 [0.7121 1.1289]
Volume −2.6640× 10−4 1.0761× 10−4 [−4.6876× 10−4 − 5.6517× 10−5]

Bid-ask ratio −0.4060 0.4020 [−1.2842 0.3290]

Table 18. Estimated parameters about limit order book (23 June 2016, AGH, Tokyo, Japan).

Parameters Posterior Mean Posterior SD 95%CI

Spread 0.8802 0.1100 [0.6645 1.0960]
Volume −3.3787× 10−4 1.4132× 10−4 [−6.0885× 10−4 − 6.1209× 10−5]

Bid-ask ratio 0.2303 0.3793 [−0.5134 0.9776]
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Table 19. Estimated parameters about limit order book (27 July 2016, AGH, Tokyo, Japan).

Parameters Posterior Mean Posterior SD 95%CI

Spread 1.0511 0.0791 [0.9201 1.1741]
Volume −9.9515× 10−5 3.4337× 10−5 [−1.6464× 10−4 2.8444× 10−5]

Bid-ask ratio −0.2928 0.1532 [−0.5582 0.0043]

Figure 4. Intraday seasonality of time interval of AGH, Tokyo, Japan (4 January 2016).

Figure 5. Intraday seasonality of time interval of AGH, Tokyo, Japan (23 June 2016).
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Figure 6. Intraday seasonality of time interval of AGH, Tokyo, Japan (27 July 2016).

Tables 20–25 show the DIC for each setting of JAL on 4 January 2016, 23 June 2016
and 27 July 2016, respectively. The estimation results of the limit order book information
parameters in Tables 26–28 show almost the same results as those for TMC and AGH.
Specifically, the spread parameters are positive on all dates, the volume parameters are
negative on 23 June and 27 July, and the bid-ask ratio parameter is positive only on 27 July.
Figures 7–9 display the curve of intraday seasonality on 4 January, 23 June and 27 July 2016.
The credible interval on 23 June is wider, but this is most likely due to the small sample
size, as Table 1 shows.

Table 20. DIC for Weibull distribution (4 January 2016, JAL, Tokyo, Japan).

Smoothing Parameter

Num of Knots 5 10 100

30 −47,826 −47,808 −47,803
15 −47,840 −47,823 −47,813
10 −47,817 −47,804 −47,765

The best of each distribution is underlined, and the best overall is in bold.

Table 21. DIC for Gamma distribution (4 January 2016, JAL, Tokyo, Japan).

Smoothing Parameters

Num of Knots 5 10 100

30 −47,845 −47,861 −47,843
15 −47,850 −47,806 −47,827
10 −47,831 −47,820 −47,791

The best of each distribution is underlined, and the best overall is in bold.
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Table 22. DIC for Weibull distribution (23 June 2016, JAL, Tokyo, Japan).

Smoothing Parameter

Num of Knots 5 10 100

30 −16,633 −16,637 −16,632
15 −16,632 −16,636 −16,635
10 −16,638 −16,639 −16,628

The best of each distribution is underlined, and the best overall is in bold.

Table 23. DIC for Gamma distribution (23 June 2016, JAL, Tokyo, Japan).

Smoothing Parameters

Num of Knots 5 10 100

30 −16,604 −16,606 −16,604
15 −16,607 −16,613 −16,608
10 −16,609 −16,606 −16,601

The best of each distribution is underlined, and the best overall is in bold.

Table 24. DIC for Weibull distribution (27 July 2016, JAL, Tokyo, Japan).

Smoothing Parameter

Num of Knots 5 10 100

30 −29,421 −29,422 −29,422
15 −29,418 −29,420 −29,416
10 −29,419 −29,418 −29,406

The best of each distribution is underlined, and the best overall is in bold.

Table 25. DIC for Gamma distribution (27 July 2016, JAL, Tokyo, Japan).

Smoothing Parameters

Num of Knots 5 10 100

30 −29,481 −29,499 −29,482
15 −29,524 −29,483 −29,461
10 −29,491 −29,477 −29,468

The best of each distribution is underlined, and the best overall is in bold.

Table 26. Estimated parameters about limit order book (4 January 2016, JAL, Tokyo, Japan).

Parameters Posterior Mean Posterior SD 95%CI

Spread 1.1827 0.0529 [1.0809 1.2932]
Volume −6.5667× 10−5 3.4338× 10−5 [−1.3631× 10−4 1.9506× 10−7]

Bid-ask ratio 0.0616 0.2112 [−0.3058 0.5194]

Table 27. Estimated parameters about limit order book (23 June 2016, JAL, Tokyo, Japan).

Parameters Posterior Mean Posterior SD 95%CI

Spread 1.4040 0.1372 [1.1384 1.6733]
Volume −3.0252× 10−5 1.2035× 10−5 [−5.3968× 10−5 − 7.0058× 10−6]

Bid-ask ratio 0.0729 0.3496 [−0.6238 0.7474]
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Table 28. Estimated parameters about limit order book (27 July 2016, JAL, Tokyo, Japan).

Parameters Posterior Mean Posterior SD 95%CI

Spread 1.0004 0.0469 [0.9136 1.0864]
Volume −5.9807× 10−5 2.8536× 10−5 [−1.1086× 10−4 − 3.9883× 10−6]

Bid-ask ratio −0.4280 0.1643 [−0.7945 −0.1419]

Figure 7. Intraday seasonality of time interval of JAL, Tokyo, Japan (4 January 2016).

Figure 8. Intraday seasonality of time interval of JAL, Tokyo, Japan (23 June 2016).
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Figure 9. Intraday seasonality of time interval of JAL, Tokyo, Japan (27 July 2016).

To summarize the results of the estimation of the parameters of the limit order book
information for the three stocks, the spread has a positive impact in all nine patterns of
the three dates for the three stocks. We argue that the fact that trades are more likely to
occur when price differentials are narrow is a near-obvious result from the perspective of
understanding the order generation mechanism, but it is a useful result from the perspective
of analyzing and modeling the time interval of trades based on the limit order book
information. As for volume, five of the nine patterns show a negative impact, indicating
that large volume at the best quote may not lead to active trading. Unlike the spread, there
are some patterns in which the effect of volume is not pronounced. Therefore, identifying
under what conditions the effect of volume changes is a future issue. The bid–ask ratio is
positive in one of the nine patterns and negative in one pattern. The ratio of buy to sell
order volume does not seem to affect the time interval.

4.3. Model Comparison

For the models selected in Section 4.2, we compare their performance with existing
methods. The comparison is made with the SCD model based on Bauwens and Veredas
(2004) (the original SCD). Following this paper, intraday seasonality is removed in advance
using the Nadaraya–Watson estimator. The kernel is the quartic, and the bandwidth h is
set to 2.78sN−1/5 where s is the standard deviation of the data.

The DIC and the widely applicable information criterion (WAIC) proposed by Watan-
abe (2013) are used as the model selection criteria.

Out of a total of eight patterns shown in Tables 29–31, the proposed model outper-
formed in the WAIC in six patterns and the model with a priori removal of intraday
seasonality in the DIC in five patterns. This may be due to the better generalization perfor-
mance of the proposed model with simultaneous estimation, since the DIC tends to select
overfitted models, as indicated by Chan and Grant (2016). The original model for JAL on
23 June could not be estimated because the matrix was not positive definite.
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Table 29. Comparison of information criteria (TMC, Aichi, Japan).

DIC WAIC

proposed-SCD (4 January 2016) −146,578 −143,175
original-SCD (4 January 2016) −137,586 −137,275

proposed-SCD (23 June 2016) −152,178 −156,533
original-SCD (23 June 2016) −151,017 −152,319

proposed-SCD (27 July 2016) −153,028 −144,322
original-SCD (27 July 2016) −143,312 −143,084

Table 30. Comparison of information criteria (AGH, Tokyo, Japan).

DIC WAIC

proposed-SCD (4 January 2016) −22,290 −22,132
original-SCD (4 January 2016) −25,160 −25,239

proposed-SCD (23 June 2016) −16,639 −16,647
original-SCD (23 June 2016) −20,711 −20,675

proposed-SCD (27 July 2016) −62,275 −62,025
original-SCD (27 July 2016) −62,786 −62,015

Table 31. Comparison of information criteria (JAL, Tokyo, Japan).

DIC WAIC

proposed-SCD (4 January 2016) −47,861 −49,786
original-SCD (4 January 2016) −49,472 −49,284

proposed-SCD (23 June 2016) −16,639 −21,825
original-SCD (23 June 2016) - -

proposed-SCD (27 July 2016) −29,524 −32,512
original-SCD (27 July 2016) −32613 −32,402

Tables 32–40 compare the results of the parameter estimation for each of the three
companies in the proposed model and the original model. In all eight patterns, AR(1)
Coefficient φ of the original model exceeds that of the proposed model, and it can be observed
that the prior intraday seasonality removal does not successfully remove the persistence of
the state variable. The shape parameter γ changes significantly in Tables 37, 38 and 40 where
the Gamma distribution is selected, while it changes little in the remaining five patterns
where the Weibull distribution is selected. The variance σ of the proposed model increased
in six out of eight patterns compared to that of the original model. This may be due to the
fact that the extreme rigidity of the state variable α in the original model has been eliminated
because φ no longer takes values close to one. The two patterns in Tables 35 and 36 with
decreased σ in the proposed model are consistent with the two highest when φ is compared
among the proposed models (0.9650, 0.9116), supporting the above interpretation.
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Table 32. Comparison of estimated parameters (4 January 2016, TMC, Aichi, Japan.).

Parameters Posterior Mean Posterior SD 95%CI

φproposed 0.8215 0.0211 [0.7772 0.8600]
γproposed 0.5391 0.0105 [0.5202 0.5614]
σproposed 0.8994 0.0706 [0.7708 1.0492]

φoriginal 0.9995 0.0001 [0.9993 0.9998]
γoriginal 0.5216 0.0048 [0.5122 0.5309]
σoriginal 0.1883 0.0088 [0.1717 0.2055]

Table 33. Comparison of estimated parameters (23 June 2016, TMC, Aichi, Japan.).

Parameters Posterior Mean Posterior SD 95%CI

φproposed 0.5812 0.0188 [0.5475 0.6195]
γproposed 0.7672 0.0231 [0.7238 0.8093]
σproposed 1.8313 0.0516 [1.7316 1.9234]
φoriginal 0.9970 0.0007 [0.9955 0.9982]
γoriginal 0.5088 0.0065 [0.4963 0.5219]
σoriginal 0.8340 0.0318 [0.7706 0.8988]

Table 34. Comparison of estimated parameters (27 July 2016, TMC, Aichi, Japan).

Parameters Posterior Mean Posterior SD 95%CI

φproposed 0.7213 0.0233 [0.6754 0.7620]
γproposed 0.6168 0.0172 [0.5863 0.6506]
σproposed 1.3649 0.0755 [1.2317 1.5081]

φoriginal 0.9993 0.0002 [0.9988 0.9996]
γoriginal 0.5083 0.0047 [0.4991 0.5176]
σoriginal 0.2815 0.0125 [0.2587 0.3080]

Table 35. Comparison of estimated parameters (4 January 2016, AGH, Tokyo, Japan).

Parameters Posterior Mean Posterior SD 95%CI

φproposed 0.9116 0.0264 [0.8566 0.9579]
γproposed 0.3706 0.0110 [0.3497 0.3930]
σproposed 0.5502 0.1285 [0.3093 0.8022]

φoriginal 0.9875 0.0033 [0.9877 0.9934]
γoriginal 0.3776 0.0115 [0.3557 0.4006]
σoriginal 1.3037 0.1065 [1.1071 1.5176]

Table 36. Comparison of estimated parameters (23 June 2016, AGH, Tokyo, Japan).

Parameters Posterior Mean Posterior SD 95%CI

φproposed 0.9650 0.0150 [0.9291 0.9874]
γproposed 0.3513 0.0087 [0.3345 0.3685]
σproposed 0.1179 0.0366 [0.0647 0.2062]

φoriginal 0.9916 0.0025 [0.9862 0.9960]
γoriginal 0.3362 0.0099 [0.3173 0.3559]
σoriginal 1.0119 0.0888 [0.8462 1.1915]



J. Risk Financial Manag. 2022, 15, 470 23 of 25

Table 37. Comparison of estimated parameters (27 July 2016, AGH, Tokyo, Japan).

Parameters Posterior Mean Posterior SD 95%CI

φproposed 0.2824 0.0153 [0.2494 0.3066]
γproposed 1.3463 0.0952 [1.1919 1.5324]
σproposed 2.6611 0.0395 [2.5852 2.7386]

φoriginal 0.9958 0.0021 [0.9904 0.9983]
γoriginal 0.3944 0.0115 [0.3692 0.4114]
σoriginal 0.6704 0.1291 [0.5394 0.9674]

Table 38. Comparison of estimated parameters (4 January 2016, JAL, Tokyo, Japan).

Parameters Posterior Mean Posterior SD 95%CI

φproposed 0.3760 0.0180 [0.3402 0.4128]
γproposed 1.9805 0.1875 [1.6585 2.3511]
σproposed 2.9829 0.0447 [2.8972 3.0719]

φoriginal 0.9900 0.0024 [0.9850 0.9944]
γoriginal 0.3727 0.0092 [0.3553 0.3909]
σoriginal 1.1598 0.0732 [1.0233 1.3094]

Table 39. Comparison of estimated parameters (23 June 2016, JAL, Tokyo, Japan).

Parameters Posterior Mean Posterior SD 95%CI

φproposed 0.9140 0.0311 [0.8452 0.9664]
γproposed 0.3455 0.0121 [0.3239 0.3714]
σproposed 0.6072 0.1817 [0.2827 0.9946]

φoriginal - - [- -]
γoriginal - - [- -]
σoriginal - - [- -]

Table 40. Comparison of estimated parameters (27 July 2016, JAL, Tokyo, Japan).

Parameters Posterior Mean Posterior SD 95%CI

φproposed 0.3277 0.0155 [0.2911 0.3577]
γproposed 1.1510 0.1310 [0.8505 1.3794]
σproposed 3.1048 0.0667 [2.9681 3.2322]

φoriginal 0.9977 0.0007 [0.9963 0.9990]
γoriginal 0.2459 0.0066 [0.2332 0.2590]
σoriginal 0.3712 0.0248 [0.3228 0.4210]

5. Conclusions

This paper proposed an extension of the SCD model for estimating the intraday
seasonality and duration clustering simultaneously, while previous studies remove this
intraday seasonality externally. The intraday seasonality is represented by a B-Spline, and
its coefficients are simulated along with the model parameters in the MCMC loop. This has
the advantage not only of allowing simultaneous estimation of the intraday seasonality,
but also of facilitating the extension to the estimation of the effect of external information
such as the limit order information. One limitation of the method in this paper is that the
number of knots and smoothing parameters must be selected based on an information
criterion, which is computationally expensive. Future research should address these issues
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and reduce the computational cost. We also use the block-sampling for state variable and
change a setting for the parameter in the Gamma distribution for a stable sampling.

In the empirical analysis, the proposed SCD model is applied to three days of mi-
crosecond tick-data for three stocks listed on the TSE stock market. The proposed method
outperforms the existing method in the WAIC sense in many of the estimation results for
the three stocks with different trading frequencies, consistent with previous studies. Since
very few studies have incorporated the limit order book information into the SCD models,
the use of the limit order book information and discussion of the corresponding parameter
estimation results are also contributions of this paper. We find that the spread has a positive
impact on the trading time interval for all patterns, while order size has a negative impact
for about half of the patterns. Future studies will confirm the superiority of simultaneous
estimation in forecasting with a wide range of data.
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Note
1 Instead of Gamma(γ, γ), many previous studies have used Gamma(γ, 1). In our experience, however, the former is more stable

in the posterior simulation than the latter.
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