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Abstract: This paper proposes a new combined semiparametric estimator of the conditional variance
that takes the product of a parametric estimator and a nonparametric estimator based on machine
learning. A popular kernel-based machine learning algorithm, known as the kernel-regularized least
squares estimator, is used to estimate the nonparametric component. We discuss how to estimate
the semiparametric estimator using real data and how to use this estimator to make forecasts for the
conditional variance. Simulations are conducted to show the dominance of the proposed estimator in
terms of mean squared error. An empirical application using S&P 500 daily returns is analyzed, and
the semiparametric estimator effectively forecasts future volatility.
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1. Introduction

It is well known that financial time series data, especially stock returns, are not
predictable. On the other hand, volatility (risk) or the conditional variance of the returns is
easier to predict since autocorrelations are shown to be significant in various time series
data. There are a plethora of models that try and capture the dynamics of the volatility
of a series, including both parametric and nonparametric models. In this paper, both
a parametric and nonparametric model of the conditional variance are combined in a
multiplicative way, resulting in a semiparametric estimator of the conditional variance. The
semiparametric estimator is shown to dominate both fully parametric and nonparametric
counterparts in forecasting ability and can successfully capture the asymmetric volatility
effect of return.

To model the conditional variance of a series, one can specify a parametric model, but
this can lead to misspecification issues of the volatility function. One can also specify a non-
parametric model, where the explicit specification of the form of the conditional variance
function is not needed. However, this may be harder to estimate when, for example, some
of the conditioning set of variables are unobserved lagged conditional variances. The pro-
posed semiparametric estimator of the conditional variance uses a parametric component
as a basis. This basis is then multiplied by an adjustment factor based on the nonparametric
modeling of parametric squared residuals using estimated lagged conditional variances,
if present, in the conditioning set. Thus, such a semiparametric estimator combines a
parametric conditional variance estimator with a nonparametric estimator of the condi-
tional variance. The parametric component of the conditional variance is used mainly
to capture the overall dynamics whereas the nonparametric part analyzes the residual
variance and catches the nonlinearities in the data that the parametric component fails to
capture. The generalized autoregressive conditional heteroskedasticity (GARCH) family of
models are considered for the parametric estimation. For the nonparametric estimation,
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a popular machine learning (ML) algorithm is used, known as Kernel Regularized Least
Squares (KRLS), which does not rely on linearity or additivity assumptions (Hainmueller
and Hazlett 2014).

The GARCH family of models is a common method to modeling volatility as the
conditional variance, σ2

t , for a stocastic process yt. The first among these started with
Engle (1982) for the autoregressive conditional heteroskedasticity (ARCH) model and
Bollerslev (1986) for the GARCH model of the conditional variance. Later, many papers
following their work paved the way for other GARCH-type models that capture many
stylized facts including being able to capture volatility dynamics and incorporating leverage
effects (Glosten et al. (1993); Nelson (1991) and Ding et al. (1993)). All of these models are
considered to be parametric and are subject to misspecification. If a GARCH model, or
any other parametric model, is correctly specified, then it can be shown that the model
can consistently estimate the conditional variance. However, when a parametric model is
misspecified, then the volatility estimator is often inconsistent for σ2

t . In this paper, we will
use ARCH(1) and GARCH(1, 1) models to estimate the parametric conditional variance
and use a ML based nonparametric method to enhance the conditional variance estimates.

Nonparametric and semiparametric estimation of the conditional variance have also
proven to capture dynamics in the volatility well. To estimate the conditional variance,
Ziegelmann (2002) models the squared residuals, from the conditional mean equation,
nonparametrically via the local exponential estimator. However, this procedure may
not be applicable for the GARCH-type conditional variation. In this paper, however,
the conditional variance function is considered to be semiparametric as the product of a
parametric part and nonparametric part similar to Mishra et al. (2010). This framework
stems from the seminal work by Glad (1998) where a multiplicative semiparametric model
of the conditional mean function is formulated. In this paper, the framework is based
on Glad (1998) and Mishra et al. (2010) for the conditional variance by multiplying the
parametric component by the nonparametric component. However, instead of using local
exponential (or polynomial) smoothing for estimating the nonparametric component as
they do, we will use another nonparametric technique known as KRLS based ML.

KRLS is a common ML technique in the nonparametric ML literature. The method
uses kernels to find the best fit surface in a flexible hypothesis space by minimizing a penal-
ized least squares problem, see Hainmueller and Hazlett (2014). De Brebanter et al. (2011)
refer to the same method as Least Squares Support Vector Machines (LSSVM) and propose
bias corrected confidence intervals for the estimator. However, these papers study the
conditional mean function, and not the conditonal variance function. This paper differs
by estimating the conditional variance function with the help of ML. That is, standardized
squared residuals, obtained from the conditional mean equation, are used in a ML regres-
sion to estimate the nonparametric component of the conditional variance. With the help
of ML, the nonparametric component can hopefully capture the nonlinearites in the true
volatility function, where the parametric component failed to do so.

Overall, this paper proposes a semiparametric estimator based on the ML technique
KRLS. The proposed estimator is capable of handling in and out of sample data, where
forecasting the future conditional variance based on a conditioning set is achieved. We
show in simulation that the semiparametric estimator beats the parametric counterpart
in terms of mean squared error. An empirical example with real data from S&P 500 daily
returns is also given to illustrate the advantage of using the semiparametric ML estimator
of the conditional variance, where news impact curves and out of sample forecasts are
evaluated. In the empirical example, the semiparametric estimator is shown to be superior
to the parametric estimators when evaluating out of sample forecasts.

The structure of this paper is as follows: Section 2 discusses the model framework
of the conditional variance, Section 3 proposes the semiparametric estimator using ML to
estimate the nonparametric component, Section 4 shows how forecasts are made via the
semiparametric estimator, Section 5 runs through a simulation example, Section 6 illustrates
an empirical example using S&P 500 daily returns, and Section 7 concludes the paper.
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2. The Model

Consider the following model:

yt = αt + εt, (1)

αt = g(Ut, β) (2)

where εt satisfies E[εt|Ft−1] = 0 and E[ε2
t |Ft−1] = σ2

t and Ut ∈ Ft−1 represents a vector of
regressors, and β represents the vector of parametric parameters for the mean regression.
The function g(·) can be any parametric function of the data Ut and parameter vector β,
such as an Autoregressive Moving Average (ARMA) function or a constant function for the
conditional mean function. Note that since Ut ∈ Ft−1, Var[yt|Ft−1] = Var[yt − αt|Ft−1] =
Var[εt|Ft−1] = σ2

t .
Similar to Glad (1998) and Mishra et al. (2010), we can redefine the conditional variance,

σ2
t = E[ε2

t |Ft−1] as

E[ε2
t |Ft−1] = σ2

p,tE
[(

εt

σp,t

)2∣∣∣∣Ft−1

]
, (3)

where σ2
p,t ∈ Ft−1 is found by a parametric specification of the conditional variance. Let

σ2
np,t = E

[
(εt/σp,t)2|Ft−1

]
∈ Ft−1 denote the nonparametric specification of the conditional

variance. We can think of (εt/σp,t)2 as a new dependent variable in the nonparametric
estimation stage. Then, the final semiparametric estimator of the conditional variance is

σ2
t = σ2

p,tσ
2
np,t. (4)

The idea is that if the parametric form of the conditional variance fails to capture some
feature of the true conditional variance, the nonparametric form of the conditional variance
will have a multiplicative correction factor that will hopefully be easier to estimate. If the
parametric conditional variance underestimates the true conditional variance, in which the
parametric model will be subject to misspecification, the nonparametric component, σ2

np,t,
will be greater than one and vice versa. In the extreme case, where the parametric form
of the conditional variance is correctly specified, the nonparametric component, σ2

np,t, will
hopefully be constant over time.

3. The Semiparametric ML Estimator

Since εt is unobservable, the first step is to obtain the residuals of the estimated
regression equation.

ε̂t = yt − α̂t, t = 1, . . . , T (5)

where α̂t = ĝ(Ut, β̂) is the estimated regression function, e.g., ARMA process and T is the
total number of observations in the sample. We will then use the residuals in Equation (5)
to estimate both the parametric and nonparametric components of the conditional variance.

3.1. Estimating the Parametric Component

Let σ2
p,t = σ2

p(X1,t) denote the paramatric conditional variance, which depends on
regressors X1,t ∈ Rd1 . We can estimate the parametric conditional variance, σ2

p(X1,t), by
using the squared residuals obtained from Equation (5), with any parametric form, such
as an ARCH(1) model, where σ2

p(X1,t) = ω + α1ε2
t−1 and X1,t = εt−1. Any GARCH type

model may also be used, which is often estimated by the quasi maximum likelihood
approach. Note that the parametric form may be misspecified. The idea is that even if the
parametric form is misspecified, the nonparametric component will hopefully pick up the
parts of the conditional variance that the parametric part failed to estimate correctly. Once
the parametric conditional variance is estimated, predictions can be made by σ̂2

p(x1) for
some test observation x1.
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3.2. Estimating the Nonparametric Component via ML

To get the new dependent variable to be used in the nonparametric estimation of
the conditional variance, we can estimate the standardized residuals as zt = ε̂t/σ̂p(X1,t),
t = 1, . . . , T, using the estimated residuals and the estimated parametric conditional vari-
ance evaluated at each data point in the sample. Let z2

t = z2(X2,t) depend on regressors
X2,t ∈ Rd2 . Note that the regressors, Xj,t ∈ Ft−1 for j = 1, 2, are considered past in-
formation. Then, we can regress z2

t on X2,t to get the nonparametric component of the
conditional variance.

For KRLS based ML, the function σ2
np(·) can be approximated by some function in the

space of functions constituted by

σ2
np(x2) =

T

∑
i=1

ctKγ(X2,i, x2), (6)

where X2,i, i = 1, . . . , T is the vector of regressors considered for the nonparametric
estimation for some test observation x2 and where ci, i = 1, . . . , T are the parameters of
interest, which can be thought of as the weights of the kernel functions Kγ(·). The subscript
of the kernel function, Kγ(·), indicates that the kernel depends on the bandwidth parameter,
γ. We will use the Radial Basis Function (RBF) kernel,

Kγ(Xi, x2) = e
− 1

γ2 ||Xi−x2||2 . (7)

Notice that the RBF kernel is very similar to the Gaussian kernel, in that it does not
have the normalizing term out in front and that γ is proportional to the bandwidth h
in the Gaussian kernel often used in nonparametric local polynomial regression. This
functional form is justified by a regularized least squares problem with a feature mapping
function that maps x into a higher dimension, see Hainmueller and Hazlett (2014), where
this derivation of KRLS is also known as Kernel Ridge Regression (KRR). Overall, KRLS
uses a quadratic loss with a weighted L2-regularization. Then, in matrix notation, the
minimization problem is

arg min
c

(z−Kγc)>(z−Kγc) + λc>Kγc, (8)

where z =
(

ε̂2
1/σ̂2

p(X1,1), . . . , ε̂2
T/σ̂2

p(X1,T)
)>

is the vector of the standardized squared
residuals to be used as the responses in this regression and Kγ is the kernel matrix, with
Kγ,i,j = Kγ(Xi, Xj) for i, j = 1, . . . , T and c is the vector of coefficients that is optimized over.
The solution to this minimization problem is

ĉ = (Kγ + λI)−1z. (9)

The kernel function and its parameters are user specified but can be found via cross
validation along with the regularization parameter λ. In simulation and in the empirical
application, leave one out cross validation is used to find the hyperparameters, γ and
λ. Finally, predictions for the nonparametric ML conditional variance estimator can be
made by

σ̂2
np(x2) =

T

∑
i=1

ĉiKγ(Xi, x2), (10)

for some test observation x2.



J. Risk Financial Manag. 2022, 15, 38 5 of 12

3.3. The Semiparametric ML Estimator

Now that we have both the estimated parametric, σ̂2
p(x1), and nonparametric, σ̂2

np(x2),
components of the conditional variance, we can estimate the final semiparametric condi-
tional variance in a multiplicative way and predictions can be made by

σ̂2
sp(x) = σ̂2

p(x1)σ̂
2
np(x2), (11)

for some test observation point x =
(
x>1 , x>2

)>.
Notice that both X1 and X2 can be unobservable. To illustrate, we will discuss the

GARCH(1, 1) model of the conditional variance, σ2
t (X1,t) = ω + αεt−1 + β1σ2

t−1. Here,

X1,t =
(
εt−1, σ2

t−1
)>. The estimate for σ2

p,t can be obtained by any parametric model
based on quasi maximum likelihood estimation (QMLE), which is standard for ARCH and
GARCH models. Now, suppose that we estimate the nonparametric component in a similar
fashion but instead of imposing a parametric form of the conditional variance, we will use
ML. That is, we estimate σ2(X2,t) nonparametrically via ML, where X2,t =

(
εt−1, σ2

t−1
)>.

In this case, we estimate the lagged residuals by Equation (5) and we will use the paramet-

ric conditional variance estimates for σ2
t−1. Therefore, we use X̂2,t =

(
ε̂t−1, σ̂2

p,t−1

)>
as

regressors for the nonparametric estimation. Then, Equation (11) can be used to obtain
the final conditional variance estimate. This estimator will be denoted as SPMLGARCH
estimator for using a GARCH model for the parametric component and ML for the non-
parametric component. Without loss of generality, the procedure can be extended to higher
order lags.

4. Forecasting

To forecast the conditional variance, we can use Equations (10) and (11). Let h ∈ Z+

denote the number of periods ahead we wish to forecast, e.g., h = 1 for a one-step-ahead
forecast. First, we use the training sample to fit a parametric model of the conditional
variance, σ̂2

p , and forecast h periods ahead using standard techniques, σ̂2
p(x1,T+h). Then,

we use the standardized residuals to fit a nonparametric model of the conditional vari-
ance via ML, σ̂2

np, and forecast h periods ahead using Equation (10), σ̂2
np(x2,T+h). Finally

combining the two components gives the h period ahead forecast for the semiparametric
conditional variance,

σ̂2
sp(xT+h) = σ̂2

p(x1,T+h)σ̂
2
np(x2,T+h), (12)

where xT+h =
(

x>1,T+h, x>2,T+h

)>
.

In the case of the GARCH(1, 1) model, parametric forecasts can be made in the stan-
dard way. However, for the nonparametric case, the forecasts may depend on regressors
that include future residuals and conditional variances that are unobservable. Recall
that a possile vector of regressors for the nonparametric regression of σ2(X2,t) can be

X2,t =
(
εt−1, σ2

t−1
)> as in the SPMLGARCH example discussed previously. To deal with

this, we estimate future residuals, εT+h−1, to be 0 for h > 1. When h = 1, i.e., one-step-ahead
forecast, εT can be estimated by the T-th residual from the estimated regression function. To
be consistent with the estimation procedure, the parametric conditional variance forecasts
will be used for future predictions of σ2

t−1 in X2,t when forecasting the nonparametric com-

ponent of the conditional variance. That is, let x2,T+h =
(

ε̂T+h−1, σ̂2
p,T+h−1

)>
denote the

test observation point, or the conditioning set, to be used in forecasting the nonparametric
component of the conditional variance in Equation (12).

5. Simulation

This section evaluates the semiparametric ML estimator in a simulation setting. The
data-generating process will come from GJR’s model of conditional variance, which takes
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the leverage effect into consideration, see Glosten et al. (1993). Consider the following
data-generating process (DGP):

yt = εt

σ2
t = ω + α1ε2

t−1 + β1σ2
t−1 + γ1ε2

t−11(εt−1 ≤ 0)
(13)

where we assume that the mean function αt = 0, ω = 0.03, α1 = 0.5, β1 = 0.4, and

γ1 = 0.03.1 We also assume that εt = σtνt, where νt
i.i.d.∼ N(0, 1), E[εt|Ft−1] = 0, and

E[ε2
t |Ft−1] = σ2

t . The leverage effect comes from the indicator function, 1(·), which makes
the effect of negative shocks different; a positive shock is captured by α1 and a negative
shock is captured by α1 + γ1. The simulated data and GARCH models are estimated by the
R package rugarch from Ghalanos (2020).2

We evaluate five models: ARCH(1), see Engle (1982), denoted by ARCH, GARCH(1, 1),
see Bollerslev (1986), denoted by GARCH, their semiparametric ML counterparts, denoted
by SPMLARCH and SPMLGARCH, where ARCH and GARCH models are estimated in
the first stage, and the fully nonparametric ML using KRLS, denoted as NPML. For NPML,
the estimation procedure is similar to the procedure detailed in Section 3.2; the residuals
(ε̂t), instead of the standardized residuals (zt), are used in constructing the dependent
variable. For the second stage in SPMLARCH and for NPML, we let X2,t = εt−1 and

in SPMLGARCH, we let X2,t =
(

εt−1, σ̂2
p,t−1

)>
, where σ̂2

p,t−1 is the fitted parametric
conditional variance estimates in the first stage. To avoid the starting-out effect, we discard
the first 500 observations and use a sample size of n = 200. The number of replications is
M = 200. To evaluate these five models, we will use the mean squared error (MSE) criteria.

MSE =
1
M

M

∑
m=1

1
n− 1

n

∑
t=2

(
σ̂2

t,m − σ2
t

)2
, (14)

where σ̂2
t,m is the estimated conditional variance at time t for replication m and σ2

t is the
true condtional variance at time t. The lowest MSE suggests the best model.

Table 1 displays the MSEs for each of the five estimators considered. For this DGP,
both the parametric and the semiparametric ARCH models, compared to the GARCH
models, perform the worst. Although the parametric GARCH model performs adequately
well, SPMLGARCH improves upon the parametric GARCH and outperforms all other
models in terms of MSE. Since the ARCH models only consider lagged values of the
residuals, these models fail to pick up the importance of the GARCH effects in the true
conditional variance. The SPMLARCH model actually is the least preferred, comparing
models with parametric estimation, and shows that the nonparametric estimation stage
may not help if GARCH effects are not considered when these effects are actually present.
Notice that the semiparametric estimators, SPMLARCH and SPMLGARCH, dominate the
NPML estimator in terms of MSE. A possible explanation is that as long as the parametric
conditional variance, estimated in the first stage, can capture some shape features of the
true conditional variance function, the semiparametric estimator can outperform the fully
nonparametric estimator. Regardless, the SPMLGARCH model, where GARCH effects
are considered in both the parametric and nonparametric estimation stages, is deemed
the most appropriate model in this scenario, which has the lowest MSE compared to the
parametric GARCH model as well as compared to the others.
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Table 1. The table shows MSEs calculated by Equation (14) for the ARCH, GARCH, NPML, SPM-
LARCH, and SPMLGARCH models under the DGP specified in Equation (13). The sample size for
each estimation is n = 200 and the number of replications is M = 200.

MSEs of Estimators for Conditional Variance

ARCH GARCH NPML SPMLARCH SPMLGARCH

0.2294 0.0317 0.7982 0.3768 0.0209

6. Application

In this section, we fit the semiparametric ML model to real data, obtained from
Federal Reserve Economic Data (FRED).3 The data contain S&P 500 daily returns from
5 August 2016 to 5 August 2021 (1305 observations). Missing oversations due to non-
trading days are imputed as means of the previous and following daily returns. We allow
for the mean component αt to be an ARMA process. For the conditional variance, we
evaluate five models ARCH, GARCH, SPMLARCH, SPMLGARCH, and NPML. That is,
in the first-stage parametric estimation, we estimate αt by an ARMA model, and estimate
the parametric conditional variance models ARCH(1) and GARCH(1, 1) by using the
Gaussian QMLE method. In the second-stage nonparametric modeling, we estimate σ2

np,t

by using the conditioning set εt−1 for SPMLARCH and
(
εt−1, σ2

t−1
)> for SPMLGARCH.

To evaluate out of sample predictions, we split the full sample into a training data set where
t = 1, . . . , 925 and the testing data set where t = 926, . . . , 1305. The data are split in this
way so that the volatility can be forecasted for a time period in which there is high volatility.
The date t = 925 corresponds to 20 Febuary 2020, which is right when COVID-19 started to
have a huge impact on the U.S. as well as its financial markets. A rolling window scheme
with the window size of T = 925 is used for one and five steps ahead forecasts.

It is common practice to study the impact of the innovation, εt on the current con-
ditional variance, holding all other factors fixed, which is known as the news impact
curve, see Engle and Ng (1993). Due to the nature of ARCH and GARCH models, these
parametric models often have symmetric news impact curves where both negative and
positive shocks in absolute value have the same effect on the conditional variance, which is
uncommon in financial data. The goal of estimating the nonparametric component is to
pick up the asymmetry, and other nonlinearities, in the data. To see this, we can plot the
nonparametric component of the conditional variance evaluated across different values of
εt. In the extreme case where the parametric model is correctly specified, the nonparametric
component will be a constant and the curve will be a horizontal line at one.

Using the training data set from t = 1, . . . , 925, the estimated news impact curve and
second-stage nonlinearities are shown in the left two plots of Figure 1. Since the GARCH
model has two variables in the conditioning set

(
εt−1, σ2

t−1
)>, we evaluate the curves

at 100 evenly spaced points from −3 to 3 for εt−1 while holding σ2
t−1 = σ̄2

p fixed at the
mean of the estimated lagged parametric conditional variances. For the ARCH model, the
conditioning set only contains one variable, εt−1, where we evaluate the ARCH model at
100 evenly spaced points from −3 to 3. As expected, the news impact curve for both the
ARCH and GARCH models seem to be symmetric. However, the nonparametric curve
is not constant at one and in fact is somewhat downwards sloping. This implies that the
nonparamtric component is able to detect the nonlinearity in the data and shows that the
leverage effect is present in these data, which is common in various financial data.
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Figure 1: The left two plots show the news impact curves in black and second-stage nonlin-
earities in red for S&P 500 daily returns. The right two plots show the conditional variance
estimates for SPMLGARCH and SPMLGARCH.

the training data set as well as the full data set and the results are similar. A key takeaway
from this table is that the coefficient the GARCH term is around 0.7 and is statistically
significant at the 5% level in both sample sizes, indicating that there is a GARCH effect
present in the data. In addition, all ARCH effects are siginicant at the 5% level.

Now, to have a better understanding of how estimating the nonparametric component
can help estimate the conditional variance, we evaluate the mean absolute percentage change
in the semiparametric conditional variance due to the nonparametric component by the
following

|%∆np| =
1

T − 1

T∑

t=2

∣∣∣∣
σ̂2
sp,t − σ̂2

p,t

σ̂2
p,t

∣∣∣∣× 100 =
1

T − 1

T∑

t=2

∣∣σ̂2
np,t − 1

∣∣× 100. (15)

The idea here is to see what percentage change is present of the semiparamtric estimate rela-
tive to the parametric estimate, and using the identity in Eq. (4), this percentage change can
be thought of as the amount that we need to adjust the parametric component by. The abso-
lute percentage change is used to take into consideration that the nonparametric component
may in fact increase or decrease the parametric conditional variance. These mean percentage
changes are reported in the last column of Table 2. For example, the GARCH(1, 1) model
of the conditional variance, under the sample using t = 1, . . . , 925 observations, is on aver-
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Figure 1. The left two plots show the news impact curves in black and second-stage nonlinearities
in red for S&P 500 daily returns. The right two plots show the conditional variance estimates for
SPMLGARCH and SPMLGARCH.

The right two plots of Figure 1 show the conditional variance estimates for innovations
spanning−3 to 3, holding other factors fixed. Visually, these plots are found by multiplying
the nonparametric component and the news impact curve in the left two plots. Using
Equation (11), the final conditional variance estimates do in fact show an asymmetry effect
where negative shocks appear to correspond with higher conditional variances and positive
shocks appear to correspond with lower conditional variances. In addition, we also estimate
the semiparametric conditional variance on the entire sample using all 1305 observations,
where the news impact curves are also symmetric, the nonparametric components are all
downwards sloping, and the final semiparametric conditional variance estimates all exhibit
the existence of the leverage effect. On the other hand, if a parametric model is estimated,
the model would fail to pick up the inherent leverage effect present in the data.

To investigate the first stage estimation step, Table 2 reports the coefficients and
standard errors of the ARCH(1) and GARCH(1, 1) models. We have estimated these
models based on the training data set as well as the full data set and the results are similar.
A key takeaway from this table is that, the coefficient, of the GARCH term is around 0.7
and is statistically significant at the 5% level in both sample sizes, indicating that there is
a GARCH effect present in the data. In addition, all ARCH effects are significant at the
5% level.
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Table 2. The table reports coefficients of the ARCH(1) and GARCH(1, 1) models with standard
errors in parentheses. The results from the top panel are based on estimates obtained from the
training data set, t = 1, . . . , 925, whereas the results from the bottom panel are based on estimates
obtained from the entire data set t = 1, . . . , 1305. ω1 is the intercept of the conditional variance, α1

is the coefficient of the ARCH term, and β1 is the coefficient of the GARCH term. The last column
contains the estimates of the mean absolute percentage change of the conditional variance due to the
nonparametric component, calculated by Equation (15).

Estimated Parameters in the First Stage Estimation
and Absolute Percentage Change in the Variance

ω1 α1 β1 |%∆| Due to NP

GARCH(1, 1) 0.0382 0.1864 0.7481 12.06
(0.0076) (0.0328) (0.0352)

ARCH(1) 0.3725 0.3554 9.02
(0.0229) (0.0611)

GARCH(1, 1) 0.0407 0.2779 0.7032 15.8
(FULL) (0.0069) (0.0354) (0.0284)
ARCH(1) 0.4986 0.7443 27.53
(FULL) (0.0296) (0.0822)

Now, to have a better understanding of how estimating the nonparametric component
can help estimate the conditional variance, we evaluate the mean absolute percentage
change in the semiparametric conditional variance due to the nonparametric component
by the following

|%∆np| =
1

T − 1

T

∑
t=2

∣∣∣∣∣
σ̂2

sp,t − σ̂2
p,t

σ̂2
p,t

∣∣∣∣∣× 100 =
1

T − 1

T

∑
t=2

∣∣∣σ̂2
np,t − 1

∣∣∣× 100. (15)

The idea here is to see what percentage change is present of the semiparamtric estimate
relative to the parametric estimate, and using the identity in Equation (4), this percentage
change can be thought of as the amount that we need to adjust the parametric component
by. The absolute percentage change is used to take into consideration that the nonpara-
metric component may in fact increase or decrease the parametric conditional variance.
These mean percentage changes are reported in the last column of Table 2. For example,
the GARCH(1, 1) model of the conditional variance, under the sample using t = 1, . . . , 925
observations, is on average changed by 12% via the multiplicative adjustment from the
nonparametric component. The ARCH(1) model is on average affected by a 9% change.
Furthermore, in the full sample these estimates are even larger, indicating that the estima-
tion of the nonparametric component is vital in picking up nonlinearities or other signals
from the conditional variance that the parametric models failed to pick up. Lastly, the
estimate for the ARCH(1) model is the largest at around 28%. A possible explanation is
that, under the full sample, which includes the highly volatile time period due to COVID-19,
the parametric ARCH model may fail to pick up the these highly volatile peaks in the data,
so the nonparametric part may have to uncover more of the signal from the data, and as a
result the parametric component may change drastically.

Now, to evaluate forecasts, the validation set is used with a rolling window scheme. A
window width of 925 observations is used to re-estimate a model and to forecast h = 1 and
h = 5 periods ahead. First, we train a model, both parametric and nonparametric compo-
nents, from the first 925 observations and forecast h periods ahead. For the nonparametric
component, the hyperparameters, γ and λ, are found via leave one out cross validation
(LOOCV). Then, we roll the window h periods forward and re-estimate the parametric
component using the new data set. For the nonparametric component, ĉ is re-estimated
using the new data; however, instead of performing cross validation repeatedly to estimate
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the hyperparameters, γ and λ, these hyperparameters will be the ones found in the original
sample using t = 1, . . . , 925 observations, i.e., observations in the first window.

The one-step-ahead, h = 1, forecasts are plotted in Figure 2. The left plot contains
the GARCH and SPMLGARCH forecasts and the right plot contains the ARCH and SPM-
LARCH forecasts. Note that the last 506 observations are plotted to save space in the figures
but the rolling window procedure uses the entire sample of 1305 observations. Since the
true conditional variance is unknown we will use the squared residuals as a proxy. In order
to do so, we estimate a parametric model, e.g., ARMA process, of the mean and obtain
the residuals for the entire sample using Equation (5) and square them as an estimate of
the conditional variance.4 This will be used for reference when comparing the conditional
variance estimates obtained from the five models.
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Figure 2: The left plot shows the one step ahead GARCH and SPMLGARCH forecasts
and the right plot shows the one step ahead ARCH and SPMLARCH forecats. The forecast
period is from t = 926, . . . , 1305, or Febuary 21, 2021 to August 5, 2021. The vertical black
dashed line indicates the start of the forecasting period. The red and blue curves indicate the
semiparametric and parametric models respectively. The solid curves represent fitted values
of the conditional variance based on the training data set and the dashed curves denote the
forecasts based on the validation data set. The forecasts were calcuated using a rolling window
scheme of window size 925.

the GARCH and SPMLGARCH forecasts and the right plot contains the ARCH and SPM-
LARCH forecasts. Note that the last 506 observations are plotted to save space in the figures
but the rolling window procedure uses the entire sample of 1305 observations. Since the true
conditional variance is unknown we will use the squared residuals as a proxy. In order to do
so, we estimate a parametric model, e.g. ARMA process, of the mean and obtain the resid-
uals for the entire sample using Eq. (5) and square them as an estimate of the conditional
variance.4 This will be used for reference when comparing the conditional variance estimates JD: Pro-
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As we can see from the data, the conditional variance is very high during March of
2020, depicted by the grey curves indicating the squared residuals. The red and blue curves
indicate the semiparametric and parametric estimates of the conditional variance. All four
models appear to pick up the peaks of the conditional variances especially around March of
2020, the most volatile period of the series. However, looking closely at the figures, both
SPMLGARCH and SPMLARCH pick up more of the volatility peaks around this time,
indicating that the semiparametric ML models may be better suited for forecasting S&P 500
returns.

As mentioned previously, the true conditional variance is unknown, and as a proxy we
will use the squared residuals estimated from an ARMA process of the entire sample. For
this data set,we found αt to follow an MA(2), under the full sample. To assess forecasting

4The squared daily returns or squared demeaned daily returns can also be used as proxies of the unknown
conditional variance. In all cases, the results are similar and SPMLGARCH is the superior model in terms
of RMSFE.
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Figure 2. The left plot shows the one-step-ahead GARCH and SPMLGARCH forecasts and the
right plot shows the one-step-ahead ARCH and SPMLARCH forecast. The forecast period is from
t = 926, . . . , 1305, or 21 Febuary 2021 to 5 August 2021. The vertical black dashed line indicates the
start of the forecasting period. The red and blue curves indicate the semiparametric and parametric
models, respectively. The solid curves represent fitted values of the conditional variance based on the
training data set and the dashed curves denote the forecasts based on the validation data set. The
forecasts were calculated using a rolling window scheme of window size 925.

As we can see from the data, the conditional variance is very high during March of
2020, depicted by the grey curves indicating the squared residuals. The red and blue curves
indicate the semiparametric and parametric estimates of the conditional variance. All four
models appear to pick up the peaks of the conditional variances especially around March
of 2020, the most volatile period of the series. However, looking closely at the figures, both
SPMLGARCH and SPMLARCH pick up more of the volatility peaks around this time,
indicating that the semiparametric ML models may be better suited for forecasting the
volatility of S&P 500 returns.

As mentioned previously, the true conditional variance is unknown, and as a proxy we
will use the squared residuals estimated from an ARMA process of the entire sample. For
this data set, we found αt to follow an MA(2), under the full sample. To assess forecasting
ability, we will use the root-mean-squared forecast error (RMSFE) as

RMSFE =

√√√√ 1
T′

T′

∑
t=1

(σ̂2
t − ε̂t

2)2 (16)

where ε̂t are the estimated residuals under the full sample. Table 3 reports the RMSFE’s
of the one and five steps ahead forecasts. For both h = 1 and h = 5, SPMLGARCH
outperforms all other models in terms of having the lowest MSFE. In addition both the
parametric and semiparametric GARCH models outperform the ARCH models, implying
that GARCH effects may be present in the data, as we have seen from Table 2. In both ARCH
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and GARCH cases, the semiparametric counterparts perform better than the parametric
ones. In addition, both semiparametric estimators exhibit superior foecasting ability relative
to the nonparametric estimator, implying that the parametric components play a role in
detecting some features of the true volatility function. Overall, SPMLGARCH appears to
be the best model for forecasting the volatility of S&P 500 daily returns.

Table 3. The table reports RMSFE’s for h = 1 and h = 5 steps ahead forecasts and for the following
estimators: SPMLGARCH, SPMLARCH, GARCH, ARCH, and NPML.

RMSFE’s of Estimators for Forecasting Conditional Variance

SPMLGARCH GARCH SPMLARCH ARCH NPML

One Step Ahead 8.5628 8.7587 9.6357 9.6594 10.4932
Five Steps Ahead 8.9648 9.0916 10.0129 10.0471 10.5647

7. Conclusions

This paper proposes a semiparametric estimator for the conditional variance of a
stochastic series. The estimator combines a parametric component and a nonparametric
component via ML in a multiplicative way. The estimator is able to pick up asymmetric
effects even when the parametric component can not. The ability to find asymmetric effects
is directly due to the nonparametric ML estimation stage, where nonlinearities can be
estimated via a kernel-based machine learning algorithm. A metric is also created to show
the importance of the nonparametric component by providing on average how much the
parametric component is changed by. We show that the semiparametric estimator performs
better in simulations, and in the empirical application, the proposed estimator is superior to
the other considered models and is able to forecast future volatility given a conditioning set.
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Notes
1 The parameters α1 = 0.5 and β1 = 0.4 capture how shocks will affect future volatility and the high persistence in volatility. The

parameter γ1 = 0.03 captures the small leverage effect. Since γ1 is positive, negative shocks will correspond to larger values of
volatility, which is commonly seen in financial data.

2 All other packages used include Wickham et al. (2021); Hyndman et al. (2020); Warnes et al. (2017); Borchers (2021) and Zeileis
and Grothendieck (2005).

3 The data can be obtained from https://fred.stlouisfed.org/series/SP500# (accessed on 5 August 2021).
4 The squared daily returns or squared demeaned daily returns can also be used as proxies of the unknown conditional variance.

In all cases, the results are similar and SPMLGARCH is the superior model in terms of RMSFE.
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