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Abstract: Quantitative researchers often use Student’s t-test (and its p-values) to claim that a par-
ticular regressor is important (statistically significantly) for explaining the variation in a response
variable. A study is subject to the p-hacking problem when its author relies too much on formal
statistical significance while ignoring the size of what is at stake. We suggest reporting estimates
using nonlinear kernel regressions and the standardization of all variables to avoid p-hacking. We are
filling an essential gap in the literature because p-hacking-related papers do not even mention kernel
regressions or standardization. Although our methods have general applicability in all sciences,
our illustrations refer to risk management for a cross-section of firms and financial management in
macroeconomic time series. We estimate nonlinear, nonparametric kernel regressions for both exam-
ples to illustrate the computation of scale-free generalized partial correlation coefficients (GPCCs). We
suggest supplementing the usual p-values by “practical significance” revealed by scale-free GPCCs.
We show that GPCCs also yield new pseudo regression coefficients to measure each regressor’s
relative (nonlinear) contribution in a kernel regression.

Keywords: kernel regression; standardized beta coefficients; partial correlation

JEL Codes: C30; C51

1. Introduction and Avoiding p-Hacking with Enhanced Regression Tools

Consider a usual ordinary least squares (OLS) linear regression with normal ho-
moscedastic errors:

x1t = α11 + Σp
i=2α1ixit + εt, εt ∼ N(0, σ2). (1)

The estimated numerical magnitudes of p regression coefficients α̂1i are sensitive to units of
measurement of the variables xit. The assumption of normally distributed errors εt implies
that the sampling distribution of α̂1i defined over all possible samples of data follows the
Student’s t density, see Kendall and Stuart (1977). A coefficient is statistically significantly
different from zero if the p-value is less than 0.05 at the usual 95% level.

The p-hacking problem recently discussed in Wasserstein et al. (2019), Brodeur et al.
(2020), and others associated with (1) occur when too many p-values in published papers
are just below 0.05. The regression literature is too vast to cite; even papers related to
p-hacking exceed 80. In a Special Issue of the American Statistician, Wasserstein and others
suggest the following actions (among many others) for avoiding p-hacking: (i) Do not
conclude anything about scientific or practical importance based on statistical significance
(or lack thereof); (ii) accept uncertainty, and be thoughtful, open, and modest, or the
acronym ATOM; and (iii) measure the size of what is at stake instead of the falsification of
a null hypothesis.

This paper suggests new tools for implementing these actions, such as wider ac-
ceptance of nonlinear nonparametric kernel regressions. Since nonparametric means no
coefficients as parameters, their p-values do not exist. How to interpret and explain the
estimated kernel regression to the public remains a challenge. One can explain the kernel
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regression in terms of the estimated partial derivatives of the dependent variable with
respect to regressors as coefficients. This paper suggests new pseudo-regression coefficients
for Nadaraya–Watson kernel regressions using generalized (partial) correlations allowing
for nonlinear relations.

We use scale-free generalized partial correlation coefficients (GPCCs) mentioned
in Vinod (2021a) (without the acronym) to develop our pseudo regression coefficients.
Hence, let us begin by reviewing well-known relations between scale-free partial correla-
tion coefficients, scale-free so-called standardized beta coefficients, and usual OLS linear
regression coefficients.

We distinguish between (a) the practical numerical significance of a regressor in ex-
plaining the variation in the dependent variable, and (b) its statistical significance measured
by the t-test based on the sampling distribution of the regression coefficient over the pop-
ulation of all-possible data samples. Hirschauer et al. (2021) emphasize sample selection
problems with traditional inference. The t-test p-values (used by p-hackers) rely on the
unverified assumption that errors ε are normally distributed. If a researcher wants to assess
whether the practical significance of x2 exceeds that of x3, it would be highly misleading to
check the corresponding inequality among OLS estimates, α̂12 > α̂13, because the numerical
magnitudes of all OLS coefficient estimates can be almost arbitrarily changed by rescaling
the variables. For example, if the regressor x2t in (1) is multiplied by 100, its regression
coefficient α̂12 become multiplied by (1/100).

Since the 1950s, some researchers have described regression coefficients of a stan-
dardized model as “standardized beta coefficients” obtained when all variables are stan-
dardized to have zero mean and unit standard deviation. One uses the transformation
xsi = (xi − x̄i)/sxi for all i, where sxi denotes the standard deviation (sd) of xi. Ridge
trace has standardized beta coefficients on the vertical axis and various biasing parameters
k ∈ [0, ∞) on the horizontal axis allowing a choice of k in a “stable region” of coefficients.
The reporting of standardized beta coefficients has been so rare in recent decades that
Wasserstein does not even mention it. We argue in favor of bringing back reporting stan-
dardized beta coefficients in addition to the p-values to discourage p-hacking. Lower
panels of Tables 1 and 2 illustrate their use for two examples discussed later.

Result 1 (Standardized Betas and Practical Significance). The magnitude of any particular
standardized beta coefficient is comparable to that of any other standardized beta coefficient belonging
to a regression model. Hence, numerical magnitudes of standardized beta coefficients represent an
approximation to the “practical significance” of the regressor.

The regression model from (1) above in standardized units becomes:

xs1t = Σp
i=2β1ixsit + εt. (2)

The subtraction of each variable from its mean removes the intercept, making the true
unknown intercept zero, or β11 = 0. The software can force the estimate, β̂11, to equal zero,
except that such forcing slightly changes all slope coefficient estimates.

The effect of standardization is that all variables are measured in their own standard
deviation (sd) units, making the magnitudes of variables and the corresponding coefficients
comparable with each other. The practical significance computation is quite distinct from
the statistical significance measured by p-values (and confidence intervals). We argue that
the estimation of practical significance provides additional insights, helping safeguard
against p-hacking.

The relation between the usual OLS slope coefficients (alpha) and corresponding
standardized beta coefficients (all variables are standardized with zero mean and unit
sd) is:

α̂1i = β̂1i(sx1/ssxi), i = 2, . . . , p, (3)
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where the ‘sd’ (standard deviation) of the dependent variable is sx1. We obtain the OLS
slope coefficients from the standardized beta coefficients by multiplying by the ‘sd’ of the
dependent variable and dividing by the regressor’s ‘sd.’ We shall use similar multiplications
in the sequel to obtain our pseudo-regression coefficients from scale-free GPCCs, formally
defined later in (15).

Table 1. OLS estimation of a risk management model for ROA. Denoting standardized regressors
with the ‘s’ suffix and forcing a zero intercept, lower panel ‘estimates’ suggest practical significance
in a linear model.

Estimate Std. Error t Value Pr (>|t|)
(Intercept) −1.4327 1.4109 −1.02 0.3107

RMC −0.1665 0.1665 −1.00 0.3180
Lev −0.2624 0.0709 −3.70 0.0003
Sale 4.0282 1.3209 3.05 0.0025

PCost −1.3925 0.3217 −4.33 0.0000
OCost −0.1530 0.1236 −1.24 0.2168

RMCs −0.0561 0.0560 −1.00 0.3172
Levs −0.1997 0.0538 −3.71 0.0002
Sales 0.1691 0.0553 3.05 0.0025

PCosts −0.2494 0.0575 −4.34 0.0000
OCosts −0.0733 0.0592 −1.24 0.2160

Table 2. OLS Results for Macro Example: money supply (m) regressed on prices, income, and interest
rates. Denoting standardized regressors with the ‘s’ suffix and forcing a zero intercept, lower panel
‘estimates’ suggest practical significance in a linear model.

Estimate Std. Error t Value Pr (>|t|)
(Intercept) −0.5830 0.0933 −6.25 0.0000

p 0.8090 0.0836 9.68 0.0000
y 1.1016 0.0725 15.20 0.0000
r −0.0715 0.0074 −9.71 0.0000

ps 0.4491 0.0461 9.74 0.0000
ys 0.6255 0.0409 15.28 0.0000
rs −0.1479 0.0151 −9.77 0.0000

Steps for Better Modeling Strategies

A proper understanding of the newer methods, including GPCC, needs further defi-
nitions and mathematical notation. We shall formally discuss them in later sections with
examples. This subsection provides a step-by-step preview of the proposed methods. We
list R software commands (algorithms) selected from the R package generalCorr here. R
being open source, any interested reader can see all steps inside each algorithm by simply
typing its name. The following R commands often assume that the researcher has collected
the data for all variables in a matrix denoted by ‘mtx,’ usually having the response variable
in its first column:

1. A regression specification usually requires that the variables on the right-hand side
are ‘exogenous’ and approximately cause the response on the left-hand side, see
Koopmans (1950). One can check if all right-hand side variables are ‘causal’ in some
sense by issuing the command causeSummBlk(mtx). If the output of this command
says that the response variable might be causing a regressor, the model specification is
said to suffer from the endogeneity problem. Careful choice of the model for response
and regressors will require accepting uncertainty while remaining thoughtful (causal
variables as regressors), open (to alternate specifications), and modest, (ATOM), as
suggested by Wasserstein.
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2. Estimate the regression (1) with the usual p-values, t-statistics, and the R2 using
reg=lm(.);summary(reg) commands. The output allows one to rank regressors so
that the regressor with the highest t-stat is statistically “most significant”.

3. Standardize all variables by using the command scale(x). Regression with standard-
ized variables forces the intercept to be zero. The coefficients of standardized OLS
model are numerically comparable to each other. One can rank the absolute values
of the standardized coefficients by their size so that the regressor with the highest
magnitude is practically “most significant”.

4. Estimate the same regression (1) by kernel regression (using kern2()). It is necessary
to use the argument gradients=TRUE to the function kern2. The output helps check
how large the kernel regression R2 is compared to the unadjusted R2 of the linear
regression. If the difference is large, we can conclude that non-linear relations will be
more appropriate. Scatterplots illustrated in Figures 1 and 2 reveal nonlinear relations.
Then, one needs nonparametric kernel regressions and revised estimates of practical
significance.

5. If kernel regression is to be preferred (comparing two R2 values) the commands,
k2=kern2(.); apply(k2,2,mean), will produce a vector of approximate kernel re-
gression coefficients. Alternative coefficients are produced by sudoCoefParcor(mtx).

6. Estimate the GPCC of (15) using the R command parcorVec(mtx) to measure the
practical significance of each regressor in a kernel regression. One can rank the absolute
values of its output for assessing relative practical importance.

The papers cited by Wasserstein and others in the p-hacking literature do not attempt
to accomplish what our algorithmic steps listed above do. When a researcher applies
these steps to a data matrix, it will become clear that new algorithms in this paper (many
incorporating nonlinearities) represent a significant advance over available alternatives.
An example where they reverse the conclusion based on traditional methods is mentioned
later. A limitation of these methods is that different algorithms for the same task can give
conflicting results, undermining their credibility to general readers. Wasserstein’s advice
for overcoming this limitation is to ask the reader to “accept uncertainty”.

Figure 1: cross-section example scatterplot of production cost and ROA
illustrating presence of nonlinearity
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of Table 2. Unfortunately, we find that risk management capability (RMC),
operating costs (OCost), and production costs (PCost) are in the ‘response’
column of the table. Thus the firm’s performance measured by ROA may
drive the RMC, OCost, and PCost, rather than vice versa. One possibility
is that high ROA firms create a robust and virtuous feedback loop reducing
costs and changing RMC. Of course, feedbacks also cause the endogeneity
of regressors. The column titled ‘strength’ measures the strength of causal
dependence, column ‘corr’ has Pearson’s correlation coefficient. The column
entitled ‘p-value’ reports the p-value for testing the null hypothesis that the
population correlation coefficient is zero. The package vignettes explain all
details, including our definition of causal strength, omitted here for brevity.

The first testable hypothesis (H1) in Khan et al. (2020) is “There is a
significant and positive relationship between RMC and firm performance”
(measured by ROA). Using their OLS results based on questionable model
specification, which ignores the endogeneity problem in their Table 4, they
state on page 90 that “regression coefficient of RMC with firm performance is
positive and significant. Hence we accept H1”. Our results tend to reject H1.
Their statistical significance seems illusory as it is the opposite of practical
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Figure 1. Cross-section example scatterplot of production cost and ROA illustrating presence of
nonlinearity.



J. Risk Financial Manag. 2022, 15, 32 5 of 13

Figure 2: Macro example scatterplot of m and r illustrating nonlinearity
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Table 4: The dependent variable m is in the cause column when paired
with y and r. Therefore, they have an endogeneity problem. Algorithm:
generalCorr::causeSummBlk()

cause response strength corr. p-value
1 p m 100 0.9579 0
2 m y 63.78 0.9905 0
3 m r 37.008 0.3926 0.00013

The plan of the remaining paper is as follows. Section 3 begins with
Pearson’s symmetric correlation matrix R = {rij} and its asymmetric gen-
eralization R∗ = {r∗i|j} where r∗i|j ̸= r∗j|i. Section 4 begins with defining usual
partial correlation coefficients and develops generalized partial correlation
coefficients (GPCC). Section 5 starts with a somewhat less well-known link
between the usual partial correlations and scale-free standardized beta co-
efficients and generalizes it to GPCC. Section 6 describes proposed pseudo
regression coefficients and includes our final remarks.

12

Figure 2. Macro example scatterplot of m and r illustrating nonlinearity.

2. Application of Standardization and Kernels

The methods described above are applicable in all quantitative fields where regression
is used. This paper considers illustrations from risk management and financial management
to appeal to the readers of this journal (JRFM). Risk management is needed in a great many
human activities. (Mouras and Badri 2020) study occupational safety and health-related
risks. They correctly mention both quantitative and qualitative issues. Valaskova et al.
(2018) study bankruptcy risk. Their dozens of references involving regression models do
not refer to kernel regressions. Wasserstein et al. (2019) cites Goodman (2019), who in
turn refers to a study where a drug causes elevated risk of heart attack. The conclusion is
proved by a statistically significant (p-value = 0.03) regression coefficient for a relative risk
parameter. Though Goodman suggests more detailed risk reporting, he does not illustrate
conclusion reversals or mention the possible presence of nonlinear kernel regressions.

We use one cross-section data illustration from risk management (Section 2.1) and a
time series illustration dealing with macroeconomic financial management (Section 2.2).

2.1. Risk Management Cross-Section for Firm Performance

Our first example concerns a firm-level risk management study using a cross-section
of 301 Pakistani firms. Khan et al. (2020) specify (1) with p = 6 regressors, five of which
are used by many researchers. One regressor originally developed by Anderson (2008)
and Anderson and Roggi (2012) is not commonly used. The idea in these papers is that
dynamic risk management capabilities (RMC) of a firm are revealed by their ability to
dynamically respond to market factors beyond management’s control, so as to stabilize
corporate earnings. They define RMC = (coefficient of variation of sales)/(coefficient of
variation of firm performance).

(x1t) = ROA or firm’s performance, ROA = (Net Income)/(Average Assets), or return
on assets.

(x2t) = RMC or firm’s risk management capabilities defined above as a ratio of two
coefficients of variation.

(x3t) = PCost or production cost = (cost of goods sold)/sales,
(x4t) = OCost or operational cost = (general selling and administrative Expenses)/sales,
(x5t) = Size or firm’s size measured by total sales,
(x6t) = Lev or firm’s leverage = (long term debt)/ equity.
Our data is a panel (cross-section of time series over 2011 to 2015) of 301 Pakistani

companies been kindly provided by Khan et al. (2020). Our cross-section of 301 companies
has five-year average of each company’s values over 2011 to 2015. See Table 1 for our OLS
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results, where the adjusted R2 = 0.1485. The lower panel of the table has the standardized
beta coefficients. The beta coefficient of the regressor PCost in the lower panel is (−0.25),
where the negative sign indicates the direction of the effect on ROA when rounded to two
places. Note that PCost is “practically the most significant" regressor for determining the
ROA performance of the firm. Hence, these OLS regression results suggest that reducing
production costs is the most important variable for improving the firm’s performance.

The practical significance as measured by generalized nonlinear partials (GPCCs), for-
mally defined later in (15), are (RMC =−0.0574, LEV =−0.1342, Sale = 0.0041, PCost = −0.0906,
and OCost = 0.0432), where LEV is practically most significant. Note that the practical
(negative) significance of RMC on ROA is near zero when based on OLS (−0.0561), as well
as GPCC (−0.0574). Khan et al. (2020)’s hypothesis that RMC and ROA are significantly
related to each other is not supported.

The consistent negative sign of the coefficient of RMC regressor is problematic be-
cause when a firm’s risk management capabilities improve, we expect its ROA perfor-
mance to also improve. However, the simple correlation between the two variables is
negative (=−0.0984581). The generalized correlation coefficient defined later in (11) is
r∗ROA|RMC = −0.164071, and r∗RMC|ROA = −0.1370585 is also negative. That generalized
correlations are 60% larger than Pearson’s linear correlations suggests that the relation is
nonlinear. Perhaps we can blame the definition of RMC by Anderson (2008) and Anderson
and Roggi (2012), who place the ‘coefficient of variation of ROA’ in its denominator.

The OLS computations in Table 1 assume that relations are linear, a strong assumption.
Are the relations truly linear? The scatterplot() command of the R package ‘car’ by John
Fox and Sanford Weisberg displays nonlinearities by a dashed line representing locally
best-fitting curves called lowess (locally weighted scatterplot smoothing). Kernel regression
fitted curves are similar to lowess lines, free from parameters. Figure 1 reveals the nonlinear
dependence between the two variables. Other scatterplots (omitted for brevity) also contain
evidence of nonlinearities implying rejection of OLS.

The R package ‘generalCorr’, Vinod (2021b), uses nonlinear nonparametric regressions
to determine whether any of the regressors might have the so-called ‘endogeneity problem.’
The R function causeSummBlk(mtx) studies endogeneity. The first column of the input
matrix ‘mtx’ to the R algorithm has the dependent variable (ROA) data, and the remaining
columns have data on all regressors. The algorithm produces the rows of Table 3, where
we pair each regressor with the dependent variable.

The dependent variable ROA being our model’s response, we expect ROA to be always
in the response column of each row. There is no ‘endogeneity problem’ if all pairs show
that ROA is in the ‘response’ column along each row of Table 3. Unfortunately, we find
that risk management capability (RMC), operating costs (OCost) and production costs
(PCost) are in the ‘response’ column of the table. Thus, the firm’s performance measured
by ROA may drive the RMC, OCost, and PCost, rather than vice versa. One possibility
is that high ROA firms create a robust and virtuous feedback loop reducing costs and
changing RMC. Of course, feedbacks also cause the endogeneity of regressors. The column
titled ‘strength’ measures the strength of causal dependence, column ‘corr’ has Pearson’s
correlation coefficient. The column entitled ‘p-value’ reports the p-value for testing the
null hypothesis that the population correlation coefficient is zero. The package vignettes
explain all details, including our definition of causal strength, omitted here for brevity.
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Table 3. If ROA is in the ‘cause’ column, that variable in the response column has a potential
endogeneity problem. See generalCorr::causeSummBlk() for vignettes and details.

Cause Response Strength Corr. p-Value

1 ROA RMC 100 −0.0985 0.08815
2 Lev ROA 31.496 −0.1576 0.00615
3 Sale ROA 12.598 0.2246 8 × 10−5

4 ROA PCost 63.78 −0.3008 0
5 ROA OCost 31.496 −0.1732 0.00257

The first testable hypothesis (H1) in Khan et al. (2020) is “There is a significant and
positive relationship between RMC and firm performance” (measured by ROA). Using
their OLS results based on questionable model specification, which ignores the endogeneity
problem in their Table 4, they state on page 90 that the “regression coefficient of RMC
with firm performance is positive and significant. Hence, we accept H1”. Our results tend
to reject H1. Their statistical significance seems illusory as it is the opposite of practical
significance. The practical significance of RMC in explaining ROA from the lower part
of Table 1 shows a negative effect (=−0.0561) on ROA. PCost (production costs) have the
practically most significant (−0.2494) impact on firms’ ROA performance.

The right-hand sides of well-specified regressions should have approximately ‘causal’
variables according to Koopmans (1950). Hence, line 1 of Table 3 suggests that if RMC is
the response (on the left-hand side of a regression specification), then ROA is better placed
on the right-hand side. We are asking Khan et al. (2020) to admit two uncertainties in their
research: (a) The regression equation might be misspecified, and (b) the risk management
capabilities of Pakistani firms (RMC) as defined by a ratio of two coefficients of variation
may not be correctly measuring them. Otherwise, why would RMC have a negative
correlation with the firm’s return on assets? In summary, our first example shows that our
software tools enrich the results based on OLS regression methods applied to cross-sectional
data. Next, we consider a second time-series example.

2.2. Macroeconomic Time Series Explaining Money Supply

Our second example considers a time-series study of economy-wide financial manage-
ment of changes in the money supply. We use annual macroeconomic data ‘Mpyr’ from
the R package called ‘Ecdat’ from 1900 to 1989 (T = 90). The data names are ‘m’ for the
money supply, ‘p’ for prices measured by the price deflator for the net national product, ‘y’
for national income, and ‘r’ for market interest rates on 6-month commercial paper. An
OLS regression model similar to (1) will have p = 4 regression coefficients, including the
intercept. A more realistic model discussed later will have a nonlinear, nonparametric
kernel regression instead of OLS.

All slopes are statistically significant with near-zero p-values in Table 2. The adjusted
R2 = 0.9914 for the time series data. The practical significance is revealed by the relative
magnitudes of estimated coefficients in the lower panel. In Table 2, income y is most
important with the coefficient (+0.63) for explaining the money supply (m) as the dependent
variable. The next practically important variable is price p (+0.45), and the interest rate r is
(−0.15), rounded to two places. Using macro time-series data, the practical significance
ordering assuming linearity is y > p > r. We expect that after incorporating nonlinearity
via GPCC, the practical significance ordering will change.

Now, we illustrate a scatterplot in Figure 2 showing that variables in the time-series
data are not linearly related. The dashed lowess line (mentioned earlier in the context of
Figure 1) is not straight. The evidence of nonlinearities implies a rejection of OLS.

Consider the potential endogeneity problem with the model specification where m
depends on (p, y, r) after admitting nonlinear relations. As we did for the cross-section
example, we use the causeSummBlk() algorithm of the R package ‘generalCorr’ to yield
Table 4. This table is similar to Table 3, and the meaning of headings is described above
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in that context. See package vignettes for details regarding measuring the “strength” of
causal dependence.

Table 4. The dependent variable m is in the cause column when paired with y and r. Therefore, they
have an endogeneity problem. Algorithm: generalCorr::causeSummBlk().

Cause Response Strength Corr. p-Value

1 p m 100 0.9579 0
2 m y 63.78 0.9905 0
3 m r 37.008 0.3926 0.00013

The plan of the remaining paper is as follows. Section 3 begins with Pearson’s sym-
metric correlation matrix R = {rij} and its asymmetric generalization R∗ = {r∗i|j}, where
r∗i|j 6= r∗j|i. Section 4 begins with defining usual partial correlation coefficients and develops
generalized partial correlation coefficients (GPCC). Section 5 starts with a somewhat less
well-known link between the usual partial correlations and scale-free standardized beta
coefficients and generalizes it to GPCC. Section 6 describes proposed pseudo regression
coefficients and includes our final remarks.

3. Generalized Measures of Correlation and R∗ Matrix

The product–moment (Pearson) correlation coefficient between variables Xi and Xj is:

rij = cov(Xi, Xj)/
√
(var(Xi) ∗ var(Xj)). (4)

It is helpful to view Pearson’s matrix of correlations, R = {rij}, in terms of flipped
linear regressions among only two variables at a time, allowing us to extend them to kernel
regressions in the sequel. Let us write the fitted values (denoted by hats) as conditional
expectations for each pair of Xi and Xj:

E(Xj|Xi) = X̂OLS
j . (5)

Equation (5) provides a linear conditional expectation function X̂OLS
j (Xi) for each

value of Xi. We also consider a flipped regression:

E(Xi|Xj) = X̂OLS
i , (6)

While OLS multiple correlations satisfy R2(Xi|Xj) = R2(Xj|Xi), the kernel regressions do
not. The product–moment correlation coefficient rij of (4) is the square root of multiple
correlations of flipped linear regressions.

The linearity assumption can underestimate the dependence by some 83% in a non-
linear example, where x has integers 1 to 10, and y = sin(x). Verify that ryx = −0.1705
only, even though x and y are perfectly dependent (the absolute measure of dependence is
unity). The R command generalCor::depMeas(y,x) yields −1 as the correct measure of
dependence. Our Figures 1 and 2 show that the cross-section and time-series models often
present nonlinearities. Hence, our kernel regression software tools are better suited than
OLS for a deeper understanding of dependence relationships.

Result 2 (Expression for rij Ready for Generalized R∗ matrix). The elements of the usual
correlation matrix R can be equivalently written as the signed square roots of multiple R2 values of
two flipped OLS regressions, illustrated by (5) and (6), as follows:

rij = sign(rij)
√

R2(Xj|Xi) = sign(rij)
√

R2(Xj|Xi). (7)
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Let the subscript t denote the observation number. A nonlinear, nonparametric kernel
regression generalizes the OLS model as:

Xjt = Gj(Xit) + εjt, t = 1, . . . , T, (8)

The flipped kernel regression obtained by interchanging Xi and Xj in Equation (8), is:

Xit = Gi(Xjt) + εit, t = 1, . . . , T. (9)

The main attraction behind the kernel regressions is their superior fit to the data. It is
accomplished by removing the requirement that a parametric formula should describe the
regression relation.

Starting with the usual analysis of variance decomposition and assuming finite vari-
ances (EX2

i < ∞ and EX2
j < ∞), the generalized measures of correlation (GMC) defined

by Zheng et al. (2012) are defined from the pair of flipped kernel regressions in (8) and
(9). Assuming the respective fitted values are conditional expectations, X̂j = E(Xj|Xi) and
X̂i = E(Xi|Xj), they define GMCs as variance ratios:

GMC(Xj|Xi) = [
var(E(Xj |Xi))

var(Xj)
] = Explained Variance

Total Variance ,

GMC(Xi|Xj) = [
var(E(Xi |Xj))

var(Xi)
] = Explained Variance

Total Variance ,
(10)

computed as the multiple R2(Xj|Xi) and R2(Xi|Xj) from the two flipped kernel regressions.
Since generalized measures of correlation (GMCs) are multiple R2 from kernel regressions,
we can recall Result 2 to generalize the OLS result of (7) by replacing OLS R2 with GMCs
as follows.

As measures of correlation, the non-negative GMC’s in the range [0, 1] provide no
information regarding the up or down overall direction of the relation between Xi and
Xj, revealed by the sign of the Pearson coefficient rij. Since a proper generalization of rij
should not provide less information, Vinod (2017) proposes the following modification. A
general asymmetric correlation coefficient from the GMC(Xj|Xi) is:

r∗j|i = sign(rij)
√

GMC(Xj|Xi), (11)

where −1 ≤ r∗j|i ≤ 1. It generalizes (7). A matrix of generalized correlation coefficients
denoted by R∗ is asymmetric: r∗i|j 6= r∗j|i.

We are denoting generalized correlations by an asterisk. A function gmcmtx0(.), in
the R package “generalCorr,” readily provides the R∗ = {r∗Xi |Xj

} = {r∗i|j} matrix from a

data matrix where Xi denotes the row variable, and Xj denotes the column variable. Note
that the conditioning is always on the column variable, consistent with the matrix algebra
convention of naming rows i and columns j.

4. Generalizing Partial Correlation and Standardized Beta Coefficients

The partial correlation r12;3 equals the simple (linear) correlation between (X1, X2) after
removing the effect of (X3). A standard formula is:

r12;3 =
r12 − r13r23√

(1− r2
13)

√
(1− r2

23)
. (12)

The numerator (r12 − r13r23) in (12) has the correlation coefficient between X1 and X2 after
subtracting the linear effect of X3 on them, while the denominator performs a normalization
to obtain a scale-free correlation coefficient.

More generally, we start with p variables Xi, where i = 1, 2, . . . p. We want to con-
sider the partial correlation coefficient between Xi and Xj after removing the effect of all
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remaining variables collectively denoted by Xk. A common derivation for the general case
by Raveh (1985) uses the elements of the inverse matrix (R)−1, which fails when (R)−1 is
unavailable. Our general correlation coefficient matrix R∗ is asymmetric, and its inverse
is often unavailable. Hence, the next few paragraphs describe an equivalent but slightly
cumbersome Kendall and Stuart (1977) method, which is always available for computing
generalized partial correlation coefficients (GPCCs).

Consider the general case with p variables where OLS regression of Xi on Xk yields a
residual vector denoted by ui,k. Like ui,k above, uj,k is defined as the residual of the OLS
regression of Xj on all variable(s) Xk. Kendall and Stuart (1977) suggest that an alternate
estimate of the usual partial correlation coefficient is the Pearson (symmetric) correlation
coefficient between two relevant residuals as the partial correlation coefficient:

rij;k = Uij;k =
cov(ui,kuj,k)

σ(ui,k)σ(uj,k)
. (13)

Thus, one can compute the partial correlation coefficients for larger models with many
regressors by using Xk as a matrix of several variables and defining suitable residual
vectors. Thus, one can always bypass Raveh’s formula requiring the existence of the
inverse matrix R−1.

5. Relation between Partial Correlations and Standardized Beta Coefficients

Recall that when p = 2, estimates of standardized beta coefficients, denoted as
(β̂12, β̂13), are obtained by regressing standardized x1s on (x2s, x3s) in (2). Similarly, the
standardized beta coefficients denoted as (β̂21, β̂23) are obtained by a similar regression
(after interchanging 1 and 2, or flipped) of x2s on (x1s, x3s). It is known that squared partials
equal a product of flipped standardized beta coefficients:

r2
12.3 = β̂12 β̂21. (14)

This equality may not be intuitively obvious, but is easily checked with the numerical
values of an example.

A nonparametric kernel regression of Xi on Xk yields a residual vector denoted by
u∗i,k, with an asterisk added to distinguish it from OLS residuals ui,k. While u∗i,k subtracts
from Xi nonlinear fitted values of Xi based on Xk, analogous u∗j,k subtracts nonlinear fitted
values of Xj based on Xk. Now we are ready to define our GPCC based on u∗i,k and u∗j,k,
yielding a more general version of (13). Our GPCC uses the sign(U∗ij;k) similar to the sign

appearing in (11). The GPCC also uses R2 values (denoted as GMC’s) of flipped regressions
identical to those used in defining the R∗ matrix in (11).

Now, the R2 of kernel regression, u∗i,k = f (u∗j,k) + ε1, is GMC(u∗i,k|u∗j,k). Similar R2 of
a flipped kernel regression, u∗j,k = f (u∗i,k) + ε2, is GMC(u∗j,k|u∗i,k). The generalized partial

correlations will be asymmetric since the R2 of two flipped kernel regressions will be
distinct, implying that

GMC(u∗i,k|u∗j,k) 6= GMC(u∗j,k|u∗i,k).
Finally, we can define the asymmetric GPCC as:

r∗(Xi, Xj; Xk) = sign(U∗ij;k)
√
[GMC(u∗i,k|u∗j,k)]. (15)

Often, we simplify the notation and write the GPCC as r∗i,j;k.
From elementary statistics, all correlation coefficients are pure numbers because they

do not change if the variables are re-centered or rescaled (standardized). Accordingly,
the GPCC of (15) is also a scale-free pure number. Furthermore, the scale-free GPCCs are
non-symmetric quantities similar to standardized beta coefficients. After all, standardized
beta coefficients of flipped regressions obtained by interchanging the subscripts i and j are
rarely, if ever, identical.
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Result 3 (GPCC are generalized standardized beta coefficients). Generalized partial corre-
lation coefficients (GPCCs) are scale-free generalized standardized beta coefficients obtained by
allowing for nonlinear relations.

Result 3 generalizes (14) or (r2
12;3 = β̂12 β̂21), where standardized betas are already

asymmetric, leading to (r∗12;3 r∗21;3 = β̂∗12|3 β̂∗21|3). More generally, we use subscripts (i, j, k)

instead of (1, 2, 3) to write β̂∗ij|k = r∗ij;k. Thus, we accomplish the realism of asymmetry,

β̂∗12|3 6= β̂∗21|3.

Hybrid GPCCs Are Useful When p Is Relatively Large

The definition (15) of GPCC attempts to remove the effect of all other variables xk
on two main variables xi, xj. Its first term is the sign of U∗ij;k based on the covariance
of residuals u∗i,k of kernel regression x̂i = E(xi|xk), and similar residuals u∗j,k of kernel
regression x̂j = E(xi|xk). The sign is multiplied by the asymmetric generalized correlation
coefficient r∗ between the two sets of residuals u∗i,k and u∗j,k. Our GPCC r∗ij;k is the square

root of the R2 of the kernel regression of u∗i,k on u∗j,k.
The kernel fitted values can be too close to the values of the dependent variable,

leaving too little information in residuals. We fear that u∗i,k and u∗j,k may also have too little
information, especially when there are several variables in xk. Then, we suggest using a
hybrid GPCC or HGPCC based on OLS residuals u. We call it hybrid because we use a
nonparametric kernel regression (not OLS) to regress ui,k on uj,k (instead of u∗i,k and u∗j,k
with the asterisk) in defining HGPCC as:

rh∗(Xi, Xj; Xk) = sign(Uij;k)
√
[GMC(ui,k|uj,k)], (16)

where the two asterisks from the last GMC of Equation (15) are absent. One uses the square
root of the R2 of kernel regression of OLS residuals ui,k on uj,k. Often, we simplify the
notation and write the HGPCC as rh∗

i,j;k.
Our cross-section example of Section 2.1 has the following GPCCs, implying practical

significance in a nonlinear setting: rounded to three places, Sale = +0.004, RMC = −0.006,
OCost = 0.035, PCost = 0.087, and Lev = −0.144. The practical significance in explaining
ROA is lowest for the firm’s sales and highest for its leverage. These ranks are distinct from
linearity-based results, even though leverage remains among the top two and sales remains
among the bottom two in Table 1. Since the number of regressors here is small, the hybrid
version is not recommended. We report HGPCC estimates for completeness as follows:
RMC = −0.0034, OCost = 0.0056, sale = 0.1531, PCost = −0.1648, Lev = −0.1734.

Our macro time series example of Section 2.2 has the following GPCCs, r = −0.125,
y = 0.302, p = 0.727. The GPCCs imply that the interest rates have the smallest and price
level p has the highest practical significance in explaining money supply m in standard
deviation units. This partly agrees with the linearity-based result that interest rates have
the smallest practical significance in moving the money supply in standard deviation units
in Table 2. Again, since the number of regressors in the model is small, one does not need
the hybrid version. We report HGPCC’s practical significance estimates for completeness
as follows: r = −0.695, y = 0.743, p = 0.554. The choice between GPCC and hybrid GPCC
depends on the information contained in the relevant sets of residuals. We leave a deeper
graphical analysis of two sets of residuals and a simulation for future work. Our current
recommendation is to use GPCC, unless the number of regressors p exceeds 10.

6. Pseudo-Regression Coefficients and Final Remarks

The introduction to this paper lists three suggestions to avoid the p-hacking problem
made by Wasserstein et al. (2019). More recently, Hirschauer et al. (2021) state that formal
inference might often be “tricky or outright impossible” when it is not clear whether the
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observed data represent a random sample. This paper provides software tools to implement
some of those suggestions while de-emphasizing p-values.

We argue for nonlinear, nonparametric kernel regressions to supplement the OLS. A
wider acceptance of kernel regressions is hampered by the absence of something akin to
regression coefficients. This paper suggests GPCCs and pseudo-regression coefficients
as new tools to help practitioners compute the “practical significance” of regressors in
addition to statistical significance.

The previous section defined the GPCC in (15) and a hybrid version HGPCC in (16).
Result 3 has established that GPCCs are standardized (scale-free) regression coefficients
for nonparametric kernel regressions. Ranking the absolute values of GPCCs helps to
determine which regressor is the most important. Hence, GPCCs allow us to estimate
the ‘practical significance’ of various regressors in explaining the dependent variable in
standard deviation units. Starting with scale-free GPCCs, one can go back to the units in
the original OLS specification of the model as follows.

We simply rescale the GPCCs similar to the rescaling of standardized beta coefficients
in (3). The rescaling yields our new pseudo regression coefficients. If a kernel regression
with the dependent variable y is specified as y = G(Xi, i = 1, . . . p), the pseudo regression
coefficients are:

byi = r∗yi;k
sd(y)

sd(Xi)
, (17)

where the standard deviations are based on all T observations. The computation of r∗yi;k
is very simple by using parcorVec(.) from the R package ‘generalCorr,’ providing the
vector of generalized partial correlation coefficients (GPCC). The pseudo-coefficients need
not have any partial derivative interpretation.

Result 4 (Pseudo-Coefficients as Partial Derivatives). The pseudo-regression coefficients of
kernel regressions can be considered partial derivatives of the dependent variable with respect to the
relevant regressor.

An alternative to the “np” package used in the “generalCorr” package is the “NNS”
package by Viole (2021). NNS offers a convenient function for computing the partial deriva-
tives. Vinod and Viole (2018) report a simulation in their Section 4.1, where the NNS mean
absolute percent error (MAPE) from the known true value of the derivatives is superior
to the np package derivatives obtained by using the gradient option of a local linear fit
by (regtype="ll"). Since nonparametric kernel regressions have no parametric coeffi-
cients, partial derivative estimates have been proposed as pseudo-regression coefficients
in the literature. The cross-section example pseudo-coefficients given by the R command
sudoCoefParcor() are RMC = −0.028, Lev = −0.185, Sale = 2.615, PCost = −0.503, and
OCost = 0.101. The macro time series example has p = 1.309, y = 0.671, and r = −0.060 as the
pseudo-coefficients based on GPCCs. Thus, this paper adds two new pseudo-regression
coefficients based on GPCC and its hybrid version.

The usual partial correlation coefficients rij;k are scale-free comparable pure numbers.
Their absolute values can be sorted from the smallest to the largest to yield the order
statistics, if needed. The regressor with the largest absolute partial correlation after remov-
ing the linear effect of all other variables in the regression is practically most significant.
The GPCCs generalize these ideas so that the absolute values of scale-free r∗ij;k can be
ordered from the smallest to the largest. They measure nonlinear practical importance in
explaining standardized values of the dependent variable Xi. Regressors Xj with a larger
absolute GPCC with the dependent variable |r∗ij;k| suggest greater practical significance
after incorporating nonlinearities.

This paper provides a cross-section and a time-series example.
The cross-section example illustrates how the evidence does not support hypothesis

H1 in Khan et al. (2020) despite statistical significance cited by the authors. Thus, traditional
t-tests need to be supplemented by newer tools.
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The idea of comparing the practical contribution of each regressor by ranking the
standardized beta coefficients is old, developed in the mid-20th century, but rarely used.
What is new here is our nonlinear GPCC, r∗yi;k, based on the generalized asymmetric
correlation matrix, R∗. The R command parcorVec(mtx) yields GPCCs with the variable
in the first column of the input matrix (mtx).

Our tools supplement statistical significance results. Our GPCCs reveal practical
significance in nonlinear settings. Since practitioners need a way to compare the practical
numerical impact of each regressor in a realistic nonlinear setting, the ideas discussed in
this paper deserve further attention.
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