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Abstract: This paper develops and implements an equilibrium model of systemic risk. The model
derives a systemic risk measure, loss beta, in characterizing all too-big-to-fail banks using a capital
insurance equilibrium. By constructing each bank’s loss portfolio with a recent accounting approach,
we perform a comprehensive empirical study of this loss beta measure and document all TBTF banks
from 2002 to 2019. Our empirical findings suggest a significant number of too-big-to-fail banks in
2018–2019.
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1. Introduction

The financial crisis of 2007–2009 generates a significant amount of interest in measuring
systemic risk and ensuring the health of the financial system. The most vivid response is the
passing of the Dodd-Frank Act. Measuring systemic risk has been at the center of academic
research since 2008. For example, Acharya (2009), Acharya et al. (2012), and Brownless
and Engle (2016) show that time-varying correlation structure plays a crucial role in their
systemic risk measurements and develop an expected shortfall measure approach. Adrian
and Brunnermeier (2016) develop a CoVaR approach conditional on financial institutions
being in a state of financial distress. Acemoglu et al. (2015), and Elliott et al. (2014) develop
a network approach for systemic risk.1 While these quantitative and statistical metrics are
straightforward to apply, the precise economic channel to which the systemic risk enters the
metrics is somewhat lacking. Moreover, Benoit et al. (2019) identify several shortcomings
in the systemic-risk scoring methodology.

From an insurance equilibrium perspective, Panttser and Tian (2013) and Ivanov (2017)
present a capital insurance approach to address systemic risk and identify too-big-to-fail
(TBTF) banks. Developing a rational expectation equilibrium model of the capital insurance
market to address systemic risk was initially proposed in Kashyap et al. (2008). In the
equilibrium model of capital insurance, a central player (regulator or insurer) sells an
insurance product, capital insurance, on the systemic risk of all banks. The insurer injects
the guaranteed capital contingent upon a stressed period, while each bank pays insurance
premium upfront in exchange for an implicit guarantee subsidy. In equilibrium, each bank
predicts the optimal insured amount and the insurer determines the optimal pricing
structure. As a result, those banks purchasing capital insurance are characterized as TBTF
banks under this approach, so TBTF banks are identified endogenously. In characterizing
the equilibrium, this approach introduces a new equilibrium-based systemic risk measure,
loss beta.

Compared with numerous systemic risk measures in previous literature, the equilibrium-
based systemic risk measure, such as loss beta, is unique since it captures the perspective
from all banks together as well as an issuer about each bank’s systemic risk. Moreover,
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both the implicit guarantee subsidy and TBTF banks are determined endogenously and
simultaneously.2 Since the framework and its pricing structure are motivated by a clas-
sical insurance setting, the capital insurance equilibrium is similar to classical insurance
equilibrium models such as Borch (1962), Arrow (1971), and Raviv (1979) for a new type
of insurance product on the systemic risk. Nevertheless, the strong law of large numbers
is no longer satisfied for capital insurance because of the particular correlated feature of
systemic risk among banks (Acharya et al. (2012) and Adrian and Brunnermeier (2016)).

This paper extends the equilibrium analysis in Panttser and Tian (2013) and Ivanov
(2017) in several theoretical and empirical aspects. First, this paper characterizes the
equilibrium for a general class of capital insurance. We focus on identifying TBTF banks,
whereas Panttser and Tian (2013) study the welfare analysis of capital insurance as a
financial innovation. Second, and more importantly, we introduce a new methodology to
construct an individual bank’s loss portfolio with systemic risk components consistent with
Basel documentations.3 Building on the deposit insurance model developed in Diamond
and Dybvig (1983) and Peck and Shell (2003), we construct an appropriate loss portfolio
with systemic risk exposure by modifying a recent accounting model in Atkeson et al. (2019)
for commercial banks. Using deposit, loan, equity, and debt together, we construct a loss
portfolio in every period and the time series of loss beta for each bank. In contrast, an asset-
equity leverage ratio is used in Ivanov (2017) to construct the asset loss portfolio, but other
specific information for commercial banks is not incorporated. Finally, we implement the
proposed approach for U.S. banks and provide a comparison to the previously developed
systemic risk measures.

Specifically, there are three significant contributions in this paper. First, we characterize
the equilibrium of general capital insurance for the entire banking sector. This equilibrium
model helps us identify TBTF and how much premium TBTF banks should pay upfront
to hedge the systemic risk. Since our model is building on the insurance principle, it
complements the equilibrium asset-pricing model of systemic risk in Allen and Gale (2000).
At the same time, since our model focuses on the systemic risk only, we can construct an
equilibrium-based systemic risk measure and identify TBTF simultaneously, which is not
addressed in Allen and Gale (2000).

Second, we propose a new methodology to construct the loss portfolio and use this
loss portfolio to develop an equilibrium systemic risk measure—bank loss beta. Given
each bank’s loss portfolio, a bank’s loss beta is a ratio of the covariance between a bank’s
loss portfolio with the aggregate loss portfolio in the entire banking sector to the variance
of the aggregate loss portfolio. The innovation of this methodology is to use all deposit,
loan, and equity and debt information that is important to analyze a commercial bank’s
systemic risk exposure.

Third, we implement the equilibrium approach for U.S. banks.4 Using the “Call Report"
of all U.S. banks with assets over $50 billion in each quarter from 2002 to 2019, we identify
TBTF banks in each quarter. Our empirical findings suggest highly concentrated TBTF
banks in the financial crises period and a significant number of TBTF banks starting from
2019Q1. We also calculate CoVaR simultaneously and find a positive and significant
relationship between CoVaR and loss beta for a comparative purpose. As a comparison,
we further implement the asset loss beta approach in Ivanov (2017) for all institutions
with a Standard Industrial Classification (SIC) code between 6000 and 6499 and assets
over $50 billion from quarter 1 of 2002 to quarter 2 of 2019. In our empirical findings,
both approaches to constructing the loss portfolio generate a reasonably consistent group
of TBTF banks during the same period, but the accounting approach covers a much
larger group of commercial banks. Overall, the empirical implementation and comparison
between these two approaches support the idea of using capital insurance to identify
TBTF banks.

The paper contributes to the literature on TBTF banks and identifies such banks
through a new equilibrium approach. For instance, in the network approach to systemic
risk of Acemoglu et al. (2015) and Elliott et al. (2014), the connectedness amongst the banks
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plays a key role. In other words, only the most relevant banks affect a bank’s systemic risk.
By contrast, whether one bank is TBTF in our approach relies on all loss betas of financial
institutions in the market. Therefore, the capital insurance approach highlights the relative
weight of loss beta in the whole financial system. In Acharya et al. (2012) and Adrian and
Brunnermeier (2016), specific distribution-based measures are calculated and sorted, so all
banks’ systemic risks are compared with each other. In our approach, we use the loss beta as
a criterion to measure and sort the systemic risk, so this approach provides an intuitive and
robust way to measure the systemic risk in the spirit of CAPM. Eisenberg and Noe (2001)
consider each bank’s cash flow and outflow and study the clearing payment to ensure each
system member clears the obligation (not default). We also use the deposit, loan, debt,
and equity information in our approach, but this information is used to construct a loss
portfolio with systemic risk exposure. Instead of examining the clearing payment vector
(with a topology method) in Eisenberg and Noe (2001), we characterize the equilibrium of
systemic risk based on economic and finance principles.

Since we study the appropriate amount of guarantee subsidy in exchange for a govern-
ment bailout (injection), this paper also complements a recent paper by Berndt et al. (2021)
on TBTF banks. Statistically speaking, it is impossible to estimate the government bailout
probability since Lehman Brothers might be the only large bank that has not been bailed
out. Therefore, Berndt et al. (2021) develop a structural model to compute a government
bailout’s market-implied (risk-neutral) probabilities, and these authors find a significant
post-Lehman reduction in market-implied probabilities of government bailout for both
globally systemically important banks (GSIBs) in the U.S. and other large banks that are not
large enough to be classified as GSIBs.5 Kelly et al. (2016) also demonstrate the collective
government guarantee for the financial sector using options data on the financial sector
index and individual banks. Because Kelly et al. (2016) use the options data, the govern-
ment guarantee is also interpreted under the risk-neutral probability measure. By contrast,
our approach builds on the insurance principle to compute the insurance premium under
the real-world expectation of the loss portfolio. In our approach, we do not estimate the
real-world bailout probability directly. However, since the firm should pay a premium to
buy insurance from the government in exchange for the government bailout, the capital
insurance premium is essentially the expected bailout amount, a product of the bailout ex-
posure and the bailout probability under the real-world probability measure. Like Berndt
et al. (2021), we find that the number of TBTF banks gradually decreases post-Lehman
until 2019.6

The paper proceeds as follows. Section 2 introduces a simple accounting model to
construct each bank’s loss portfolio with a systemic risk component. In Section 3, we
characterize the capital insurance equilibrium and derive a general property about the loss
beta measure. Finally, we report our empirical results in Section 4, and Section 5 concludes.
Appendix A presents several properties of general capital insurance.

2. Bank’s Loss Portfolio

In this subsection, we explain bank’s loss portfolio in a Diamond-Dybvig frame-
work (Diamond and Dybvig (1983) and Peck and Shell (2003)). We start with a motivated
example. Then we present its formal description.

2.1. A Motivated Example

Consider a bank with equity investment $100 at time zero. There are two future times
t = 1 and t = 2. There are identical households who are ex-ante identical and endowed
with $1 at time t = 0. We assume that there are in total 800 such households to deposit in
the bank, thus the bank has $800 of short-term debt (deposit) at time t = 0. In addition, the
bank issues a subordinated debt of face value $100 at maturing time t = 2 and the coupon
rate is 5%.7 On the other hand, the bank loans $1000 to long-term borrowers with random
gross return R̃1 in the first time period (if liquid at t = 1) and random gross return R̃2 at
time t = 2. Depositors have no risk because of deposit insurance issued by the Federal
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Deposit Insurance Corporation (FDIC). For simplicity, we assume that the deposit cost
(including the deposit insurance premium and operational cost) for the bank is zero, and
the deposit interest rate is also zero.

There are two types of depositors in the presence of idiosyncratic uncertainty. The first
type of depositor needs to consume at time t = 1 while the second type of depositor only
withdraws and consumes at t = 2. The depositor’s type is revealed in t = 1 in equilibrium.
Since we focus on systemic risk in the banking system, we assume the withdraw probability
is λ = 0.4 at time t = 1 in a good (Diamond-Dybvig) equilibrium, and there is no bank run
equilibrium in the presence of deposit insurance.

At time t = 1, $320 (=λ × 800) are withdrawn and a $5 coupon payment for the
subordinated debt is paid. We assume that the prepaid probability is µ and no loan
defaults; thus, the cash inflow is 1000µR̃1 from the loan (project). Let

Y1 = 1000µR̃1 + E1 − 325,

where E1 is the market price of the equity at time t = 1. Y1 presents a “profit and loss (P & L)
portfolio” including the liquid common equity asset. If Y1 > 0, there exists sufficient cash
inflow to cover the cash outflow, thus no systemic risk to the economy.

If, however, 1000µR̃1 + E1 ≤ 325 at time t = 1, the bank might sell the long-term
illiquid asset (and could be subject to asset fire-sales) to avoid the default. In this situa-
tion, the total sum of 1000µR̃1 and the fair value (at time t = 1) of the future payment
1000(1− µ)R̃2 is the “fair value” of the long-term loan. Similarly, the subordinated debt
obligation is represented by the market value of the debt. Therefore, we replace the P & L
portfolio Y1 by

Z1 = FL1 + E1 − FD1 − B1

where

• FL1 is the fair value of the long-term loan at time t = 1;
• FD1 is the fair value of the deposit at time t = 1;
• B1 is the market price of the subordinated debt.

If Z1 is positive, the bank does not generate systemic risk to the economy since the
total asset value is greater than the total obligation to both short-term and long-term debt
holders. On the other hand, if Z1 is negative, since the asset value is not sufficient to meet
its obligation to both depositor (short-term debt holder) and long-term debt holder, the
bank not only defaults but also generates systemic risk to the economy. Therefore, the
bank’s loss portfolio is characterized as

L1 = max(−Z1, 0),

the maximum between negative Z1 and zero.
Similarly, let

Y2 = 1000(1− µ)R̃2 + E2 − 580− (100 + 5),

where E2 is the market price of the equity at time t = 2. Conditional on no-default in the
previous time period, we notice that

Y2 = Z2 = FL2 + E2 − FD2 − B2

where FL2 = 1000(1− µ)R̃2 is the fair value of the loan, FD2 = $580 is the fair value of the
deposit and B2 = $105 is the market price of the subordinated debt at time t = 2. Hence,
the banks’ loss portfolio at time 2 is

L2 = max(−Z2, 0).
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2.2. Construction of Bank’s Loss Portfolio

In this subsection we define the bank’s loss portfolio by modifying a recent accounting
model in Atkeson et al. (2019). The construction extends the idea in the last motivated
example. For simplicity, we assume the Treasury interest rate is a constant r.

Specifically, D denotes the total face value (or the book value) of the deposit on
the bank’s balance sheet. In each time period, every dollar of deposits costs the bank
cD, including the interest paid on deposit, the serving cost and the deposit insurance
premium paid to FDIC. The deposit is withdrawn with probability, µD, which depends
on the depositor’s type in Diamond-Dybvig’s framework. Since a depositor’s withdrawal
decision relies on an idiosyncratic shock, his type is revealed upon new information, so
the probability µD is a random variable at each time period. The fair value of the debt is
denoted by FDt at time t. Following Atkeson et al. (2019), the fair value FDt is given by8

FDt =
cD +EQ

t [µD,t+1]

r +EQ
t [µD,t+1]

D (1)

where EQ
t [·] denotes the conditional expectation operator under a risk-neutral probabil-

ity measure.
On the other hand, L denotes the total face value of the loan. In every time period,

every dollar of loan pays a coupon cL, net of serving cost. The fair value of the loan depends
on the prepaid probability µL, and the loan default probability δL on the face value. By a
similar derivation, the fair value of the loan at time t is 9

FLt =
cL +EQ

t [µL]

r +EQ
t [µL] +EQ

t [δL]
L. (2)

The bank issues a subordinated debt as well as the equity. At each time t, the common
equity’s market value is denoted by Et, and the market value of the subordinated debt is
written as Bt. By the discussion in the motivated example, the bank’s P & L portfolio at time
t is

Zt = FLt + Et − FDt − Bt, (3)

and the bank’s loss portfolio at time t is

Lt = max{FDt + Bt − FLt − Et, 0}. (4)

According to its definition, Lt represents the bank’s loss exposure to systemic risk. To
see it, the loss exposure is positive if any only if

FDt + Bt > FLt + Et. (5)

There are two terms on the left side of the last formula, denoting the obligation to
short-term debt holders (depositor) and long-term debt holders, while the right side is a
sum of the (liquid asset) common equity and (illiquid asset) loan. Regardless depositors or
debt holders, as long as the bank’s obligation is greater than the total asset value, the bank
endures a loss to the economy; thus a positive loss exposure Lt.

We notice that Atkeson et al. (2019) consider a representative bank with an additional
loan-making arm and the deposit-taking arm. Then the government guarantee is one com-
ponent in the bank market-to-book ratio. In contrast, we consider a group of heterogenous
banks and we argue that the bank’s systemic risk and the government (implicit) guarantee
are driven by the “correlated structure” of all banks’ loss portfolios, in a theory of capital
insurance below.
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3. Loss Beta Measure

In this section, we introduce an equilibrium-based loss beta measure of a bank’s
systemic risk. We present an equilibrium model of a capital insurance market and char-
acterize TBTF banks in this equilibrium approach. Our classification of TBTF relies on
equilibrium-based loss beta measures of all banks simultaneously in the banking system.
We further discuss several examples of the loss beta measures.

3.1. An Equilibrium Model

Following Panttser and Tian (2013) and Ivanov (2017), we present a model of capital
insurance market.

There are N financial institutions, namely banks, indexed by i = 1, · · · , N, in a
financial sector. Each bank is endowed with a loss portfolio (or exposure, and we do
not distinguish between these two concepts in this paper), L1, · · · , LN , respectively. The
aggregate loss portfolio is

L = L1 + · · ·+ LN . (6)

While our empirical results are based on the bank loss portfolio introduced in the last
section, we highlight that the loss portfolios are merely inputs in the presented equilib-
rium model.

To hedge the potential loss, each bank decides whether or not to purchase a capital
insurance contract from an insurance company, which determines the insurance premium.
The insurance contract is written on the aggregate loss portfolio L instead of individual
loss to each bank. Specifically, the payoff of one unit of the insurance payoff is written
as I(L), where I(·) is a continuous monotonic increasing function.10 Thus, the insurance
company and all banks are the market participants in the capital insurance market, in
which the equilibrium is obtained if all participants achieve their highest expected utilities,
respectively.

Following the standard insurance equilibrium literature (Arrow (1971) and Raviv (1979)),
the insurance premium for each unit is P = (1 + ρ)E[I(L)], where ρ is a load factor that
is determined by the issuer. Given the premium structure, each bank i decides how much
insurance to purchase, namely, ai I(L), where ai ≥ 0, for a premium aiP accordingly. A bank
decides the percentage coefficient ai to optimize its expected utility. At the same time, the
insurance company determines the load factor, i.e., the premium structure, by the market
demand ai I(L) from each bank i. Therefore, {ρ, ai, i = 1, · · · , N} are determined in this
equilibrium.

Specifically, we assume that each bank is risk-averse, and its risk preference is rep-
resented entirely by the mean and the variance of the wealth with the reciprocal of risk
aversion parameter A > 0.11 Given a premium structure ρ, bank i solves an optimal
portfolio problem by choosing the best coinsurance coefficient:

max
{ai≥0}

{
E[W̃i]− 1

2A
Var(W̃i)

}
, (7)

where W̃i = Wi
0 − Li + ai I(L)− (1 + ρ)E[ai I(L)] is the ex post terminal wealth for the bank

i after purchasing the capital insurance and Wi
0 is the initial wealth of bank i. Similarly,

Wi = Wi
0 − Li represents the ex ante wealth of bank i before buying capital insurance.

By the first-order condition in (7), the optimal coinsurance coefficient for bank i is
given by

ai(ρ) = max
(

Cov(Li, I(L))− ρE[I(L)]A
Var(I(L))

, 0
)

. (8)

The issuer is assumed to be risk-neutral.12 Therefore, the expected terminal wealth of
the issuer is

Wr =
N

∑
i=1

(1 + ρ)E[ai I(L)]−
N

∑
i=1

ai I(L)−
N

∑
i=1

c(ai I(L)), (9)
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where c(·) denotes the issuance cost, which can be a fixed cost, a constant percentage of the
indemnity or a general function of the indemnity. To focus on the equilibrium analysis of
TBTF, we assume that the regulatory cost is a constant for each bank.

Given the optimal demand ai(ρ) for each bank with a load factor ρ in (8), the issuer
maximizes the expected welfare E[Wr]. By plugging Equation (8) into Equation (9), the
issuer’s optimal load factor is derived from the following optimization problem:

max
{ρ>0}

ρ
N

∑
i=1

max
(

Cov(Li, I(L))− ρAE[I(L)]
Var(I(L))

, 0
)

(10)

and the optimal coinsurance coefficient for each bank i = 1, · · · , N is given by ai(ρ
∗), where

ρ∗ is the optimal load factor in (10). As a result, the capital insurance’s payoff for each
bank i, ai(ρ

∗)I(L), relies on both demand (from all banks) and supply (from the regulator)
in a rational expectation equilibrium. Both the optimal ai(ρ

∗) and ρ∗ are determined
endogenously. Bank i is TBTF under the capital insurance I(L) if and only if ai(ρ

∗) > 0.
Equation (10) is first discussed and solved for particular capital insurance contract in

Panttser and Tian (2013) and Ivanov (2017). We next discuss in detail how to determine
TBTF banks in this equilibrium approach for general capital insurance.

3.2. Characterizing TBTF Banks

In this subsection, we characterize the equilibrium for general capital insurance. Our
new result is to demonstrate that this approach captures each bank’s systemic risk to some
extent (Proposition 1) for a general capital insurance contract.

We first assume that all banks are TBTF under this approach. Then, Equation (10)
becomes

max
{ρ>0}

ρ
N

∑
i=1

Cov(Li, I(L))− ρAE[I(L)]
Var(I(L))

,

yielding the optimal load factor13

ρ̂ ≡ ∑N
i=1 Cov(Li, I(L))

2ANE[I(L)]
=

Cov(L, I(L))
2ANE[I(L)]

> 0.

Since ai(ρ̂) must be positive, for each i, the covariance between the loss Li with
I(L) satisfies

Cov(Li, I(L)) >
Cov(L, I(L))

2N
.

Clearly, if all covariances Cov(Li, I(L)) are sufficiently close so that each of them is
greater than the half of their average, the last condition is satisfied, and the optimal load
factor is ρ̂. In particular, if Cov(Li, I(L)) = Cov(Lj, I(L)), ∀i 6= j, all banks are TBTF.

From the above analysis, we see that the covariance Cov(Li, I(L)) provides some
insights about the bank’s systemic risk. More importantly, the TBTF concept depends on all
covariances Cov(Li, I(L)), instead of on individual bank’s loss portfolio. Indeed, by virtue
of Equation (8), bank i is too-big-to-fail as long as

Cov(Li, I(L)) > ρ∗AE[I(L)]. (11)

But the optimal load factor ρ∗ in (11) is determined endogenously. The optimal load
factor is solved by (10), and it depends on all loss portfolio information. Even the load
factor ρ̂ depends on all covariance terms Cov(Li, I(L)). Therefore, an individual bank’s
loss beta is not sufficient yet to recognize whether it is too big to fail or not; rather, we have
to study the entire financial sector as a whole to identify all TBTF banks simultaneously.
Briefly speaking, a bank is TBTF only when its covariance with the aggregate loss portfolio
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is relatively large compared with other banks’ corresponding covariances in the same
financial sector.

Therefore, we introduce the loss beta of bank i with a capital insurance I(L),

βi =
Cov(Li, I(L))

Var(I(L))
, (12)

in analyzing systemic risk. We reorder {β1, · · · , βN} such that β1 ≥ · · · ≥ βN > 0. We
omit those banks with negative or zero loss betas. Clearly,

N

∑
i=1

βi =
Cov(L, I(L))

Var(I(L))
. (13)

The total beta of all banks is the beta (regression) coefficient of the aggregate loss
portfolio to the indemnity of the capital insurance. Appendix A presents an algorithm
to characterize all TBTF banks. In particular, a bank with high loss beta is TBTF. Con-
versely, the next result shows that all TBTF banks’s loss betas must be bounded below
by 1

2N
Cov(L,I(L))
Var(I(L)) , regardless of the distribution of loss exposure of each bank. Therefore, a

TBTF must have a large loss beta, and vice versa to a certain extent. Proposition 1 thus
justifies our systemic risk measurement in terms of loss betas.

Proposition 1. For any capital insurance I(L), the loss beta of a TBTF bank must be greater than
or equal to 1

2N
Cov(L,I(L))
Var(I(L)) .

Proof. See Appendix A.

We present two examples below to illustrate the equilibrium approach to identify
TBTF banks.

Example 1. We assume that N = 15. The loss portfolios follow a one-factor model, Li = αiY + εi;
E[Y] = 1 billion and Var(Y) = 5%, εi has standard deviation moving from 40% to 12% equally
from i = 1 to i = 15, while αi moves from 4% to 6.8% equally. We also assume that A = 1 and
I(L) = L.

Table 1 represents loss betas, ρ∗ and the optimal coinsurance ai(ρ
∗). We note that when

i = 13, 14, 15, Cov(Li, L) >
∑i

j=1 Cov(Lj ,L)
2i for i = 13, 14, 15. Moreover, the first 12 banks

are TBTF. The optimal load factor is ρ∗ = 8.1%. The expected total aggregate loss is
∑12

i=1 aiE[Y] = 0.81 billion. The coinsurance coefficient ai(ρ
∗) increases with respect to the

loss beta.

Example 2. Assume that N = 5, and any two different banks’ loss portfolios have the same
correlation coefficient ρ = 0.10. Var(Li) = k2iσ2 for 0 < k < 1.

Table 2 demonstrates that TBTF banks must have large betas, but the inverse statement
is not completely valid. In fact, only the last bank has a small beta, but the first three banks
are TBTF banks. Both examples provide a crucial insight into the equilibrium approach.
Even though some banks contribute positively to systemic risk and banks are heavily
correlated, those banks might still not be TBTF banks, as shown by the last example.
The intuition is as follows. By insuring the bank with the most significant systemic risk
exposure, other banks’ systemic risks can be insured to some extent. As a consequence,
other banks are not TBTF anymore.



J. Risk Financial Manag. 2021, 14, 414 9 of 24

Table 1. This table displays a bank sector with 15 banks and identifies “too-big-to-fail” banks
following the presented capital insurance approach. The loss portfolios follow a one-factor model,
Li = αiY + εi; E[Y] = 1 billion and Var(Y) = 5%, εi has standard deviation moving from 40% to
12% equally from i = 1 to i = 15, while αi moves from 4% to 6.8% equally. We also assume that each

A = 1. We note that when i = 13, 14, 15, Cov(Li, L) is strictly greater than ∑i
j=1 Cov(Lj ,L)

2i . Then, the last
three banks, banks 13, 14, and 15, are not “too-big-to-fail”. The optimal load factor is ρ∗ = 8.1%. The
expected total aggregate loss is ∑12

i=1 aiE[Y] = 0.81 billion.

Bank Cov(Li, L) ∑i
j=1 Cov(Lj ,L)

2i
Cov(Li ,L)

Var(L)
ai (1 + ρ∗)ai

1 0.2106 0.1053 0.1226 8.46% 9.14%
2 0.1934 0.1010 0.1126 7.46% 8.06%
3 0.1770 0.0968 0.1031 6.50% 7.03%
4 0.1614 0.0928 0.0940 5.59% 6.04%
5 0.1466 0.0889 0.0854 4.73% 5.11%
6 0.1326 0.0851 0.0772 3.92% 4.23%
7 0.1194 0.0815 0.0695 3.15% 3.40%
8 0.1070 0.0780 0.0623 2.43% 2.62%
9 0.0954 0.0746 0.0556 1.75% 1.89%

10 0.0846 0.0714 0.0493 1.12% 1.21%
11 0.0746 0.0683 0.0435 0.54% 0.59%
12 0.0655 0.0653 0.0381 0.01% 0.01%
13 0.0571 0.0625 0.0332 0 0
14 0.0495 0.0598 0.0288 0 0
15 0.0427 0.0573 0.0248 0 0

Table 2. Example 2. This table displays a bank sector with 5 banks and identifies “too-big-to-fail”
banks following the presented equilibrium approach. In this example, any two different banks
have the same parameter ρ = 10%, and Var(Li) = k2iσ2 where k = 0.8. In this example, we see
that “too-big-to-fail” banks can be found using beta vector entirely. In this example bank 5 is not
“too-big-to-fail”

Bank βi
βi

∑i
k=1 βk

Coinsurance Coefficient ai

1 0.4690 1 35.24%
2 0.3206 0.4060 20.40%
3 0.2215 0.2191 10.49%
4 0.1548 0.1328 3.82%
5 0.1095 0.0859 0

3.3. Examples of Loss Beta

In the above equilibrium model of capital insurance, the payoff function (i.e., indem-
nity of the insurance contract) of the aggregative loss, I(L), is an input element. In this
subsection, we provide several examples of loss beta for various payoff functions of the
aggregative loss portfolio.

3.3.1. Aggregate Loss Beta

We first specialize the capital insurance-aggregate capital insurance-by assuming that
the indemnity, I(L), is the aggregate loss L. It is motivated by the standard coinsurance
contract in the insurance market.

Since the loss beta concept depends on the capital insurance contract, we call the
loss beta for the aggregate capital insurance an aggregate loss beta. Clearly, the aggregate
loss beta becomes the classical beta in classical portfolio choice literature (See Hogan and
Warren (1974) and Bawa and Lindenberg (1977)),

βi =
Cov(Li, L)

Var(L)
,
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and the total loss beta, ∑N
i=1 βi = 1. If each βi = 1

N , all banks are TBTF. In this case,
Proposition 1 is proved in Ivanov (2017) that a TBTF bank’s aggregate loss beta is greater
than 1

2N .

3.3.2. Deductible Loss Beta

In addition to the coinsurance, aL as we discuss above, it is natural to consider a
deductible capital insurance with payoff I(L) = max{L−M, 0} where M is a deductible
level. In other words, the bank does not receive a percentage of the aggregate loss, but
receives a percentage of the deductible L−M. In the insurance literature, this deductible
part (loss) ai M is borne by the bank itself. Arrow (1971) shows that the deductible is
optimal for the insured under the linear premium principle. The corresponding beta is the
deductible loss beta

βi,M =
Cov(Li, max(L−M, 0)
Var(max(L−M, 0))

.

3.3.3. Cap Loss Beta

If the deductible represents an optimal one for the insured, Raviv (1979) finds the
optimal one from the insurer’s perspective in classical insurance literature. In a principal-
agency setting, Raviv (1979) shows that the cap insurance is optimal for the insurer. There-
fore, we can also consider a cap capital insurance with the payoff I(L) = min(L, c), and
the corresponding loss beta is

βC
i =

Cov(Li, min(L, c))
Var(min(L, c))

.

Despite the difference among aggregate, deducible, and cap loss beta, the empirical
implications are reasonably similar, as shown in Ivanov (2017). Therefore, the payoff struc-
ture of capital insurance is only second-order, while the construction of the loss portfolio
has first-order importance, as will be explained in detail in empirical Section 4 below.

3.3.4. Other Capital Insurance Contracts

Our equilibrium approach can be applied to a larger class of capital insurance concept.
Instead of the aggregate loss portfolio L, we can consider a general specification in all
individual loss such as

I(L1, · · · , LN)

where I(x1, · · · , xN) is a multi-variable function which is increasing with respect to each
component. By a similar analysis about multi-claim in Raviv (1979) we can show that
the payoff structure of the optimal contract must be a function of the aggregate variable
L = L1 + · · ·+ LN . Therefore, the capital insurance written on the aggregate loss portfolio
is an optimal design from the insurance perspective.

However, other specifications of the capital insurance are also plausible. For instance,
in their earlier proposal, Kashyap et al. (2008) suggest the following specification of the
capital insurance for bank i,

I(L− Li)

in which this bank’s loss portfolio is excluded. Its intuition is to reduce the asymmetric
information effect so the bank has no incentive to misreport the loss information. In a
welfare analysis of certain correlated structures of the loss portfolios, Peck and Shell (2003)
document that this kind of capital insurance is dominated by the capital insurance on
the aggregate insurance. Furthermore, Ivanov (2017) demonstrates that the moral hazard
issue can be resolved effectively by implementing capital insurance. For these reasons,
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we suggest the specification form I(L) as a capital insurance in studying the systemic risk
through this presented insurance approach.

3.4. Analytical Expression of Loss Betas

We examine the loss beta calculation when the loss portfolios are normally distributed.
We assume that all P &L portfolios Yi are represented in a factor model as follows.

Yi = bi +
M

∑
j=1

bij f j + εi, i = 1, · · · , N

in which the factors ( f1, · · · , fK) ∼ N(0N , IN), a standard multivariate normal distribu-
tion. Each noise, εi ∼ N(0, σ2

i ), is independent from each other, and these noises are
independent from all factors. Therefore, the distribution of the individual loss is given by
Li = max(−Yi, 0), and

−Yi ∼ N

(
−bi,

M

∑
j=1

b2
ij + σ2

i

)
.

Li is truncated and normally distributed. The aggregate loss L = L1 + · · · + LN ∼
max(−Y1, 0) + · · · + max(−YN , 0). Therefore, the loss beta βi can be obtained analyti-
cally or well approximated.

3.5. Conditional Loss Betas

At first sight, it is challenging to extend the loss beta concept in a dynamic setting
due to the time-inconsistent feature of the mean-variance preference. However, we can
consider the capital insurance contract repeatedly, so both the regulator and the financial
market monitor systemic risk in a prompt manner. At each period, the existing capital
insurance is expired, and the bank updates new loss portfolios. The insurance company
issues the capital insurance at each period. Then each bank’s systemic risk is updated, and
all TBTF are also updated through the new capital insurance market.

Specifically, we use Ft to represent the information set at time t, and the updated loss
portfolios at time t are L1 = max(−Y1, 0), · · · , LN = max(−YN , 0). Therefore, the loss beta
at time t is

βi =
Cov(Li, I(L)|Ft)

Var(I(L)|Ft)
,

and the same discussion on (unconditional) loss beta in the previous section can be applied
in this situation.

For instance, we consider the same factor model as in the last subsection, and a shock
s̃ arrives at time t. Assume that ( f1, · · · , fM, ε) has a multivariate normal distribution.
Therefore, the conditional P&L variables are

Yi|{s̃ = s} = bi +
M

∑
j=1

bij f j|{s̃ = s}+ εi|{s̃ = s}, i = 1, · · · , N.

We assume that the covariance-variance matrix of ( f1, · · · , fM, s̃) is(
IN α>

α σ2
s

)
.

Then, these factors f1, · · · , fM, are multivariate normally distributed conditional on
s̃ = s, with mean α′ s

σ2
s

, and the covariance-variance matrix IN − αα′

σ2
s

. Analytical expression
of the conditional loss betas follows from the discussion in the last subsection.
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3.6. Loss Betas with Tail Risks

Since our equilibrium approach is model-free, any profit and loss portfolio distribution
and the loss portfolio can be used.14 Therefore, we can incorporate tail risk or the skewness
in the profit and loss portfolio, particularly for the portfolio with significant derivative
positions. Moreover, the correlation structure between these loss portfolios can calibrate
the correlated structure in the market.

Specifically, we let Fi(x) denote the distribution of the loss variable Li, and the joint
distribution of {L1, · · · , LN} is written as

F(x1, · · · , xN) = C(F1(x1), · · · , FN(xN)), x1, · · · , xN ≥ 0

where C(u1, · · · , uN) is a copula function. Sklar’s theorem states that any joint distribution
can be written in this way, so the copula function C(·) measures the correlation struc-
ture of the loss variables. In practice, the copula functions can be Gaussian copula and
Archimedean copula. Those marginal distributions Fi(xi) can be chosen to capture the
tail risk.

The loss beta in this setting can be calculated easily via a simulation method. For
instance,

E[Li I(L)] =
∫

xi I(x1 + · · ·+ xN)dC(F1(x1), · · · , FN(xN)).

4. Empirical Results

This section takes our model into the data to study the empirical implication of our
equilibrium-based measure of systemic risk. Our objective is to identify TBTF banks in the
U.S. financial market over the period 2002 to 2019. We first construct the loss portfolio of
each bank based on an empirically accessible proxy. Then we calculate the loss beta and
identify TBTF banks using the algorithm in Section 3.

We conduct two approaches in constructing the loss portfolio. In the first approach, we
follow the accounting-based methodology introduced in Section 2. In the second approach,
we follow Ivanov (2017) to construct the loss portfolio. Moreover, we compare with the
CoVaR approach in Adrian and Brunnermeier (2016).

4.1. Data and Sample

In our first approach to construct the loss portfolio, we use data from FFIEC 031 Forms,
also called “Call Reports”. FEIEC 031 forms are the forms that every commercial bank
or thrift institution must file quarterly, regardless of regulation by the Federal Deposit
Insurance Corporation (FDIC), Office of the Comptroller of the Currency (OCC), or Federal
Reserve. FFIEC 031 includes bank deposits, loans, and other bank characteristics of interest.

In our sample, we focus on all commercial U.S.banks with assets over $50 billion,
which is the threshold to be classified as Large Banking Organization by the Federal
Reserve. Large Banking Organizations are subject to stricter examination for their systemic
risk, as evident by an additional layer of examination in annual stress testing. We choose
Large Banking Organizations to be in our sample of interest since they are the candidates
for higher systemic risk. The final sample contains 2821 bank-quarter observations over
70 quarters, from the first quarter of 2002 to the second quarter of 2019. Since the data panel
is unbalanced as banks exit and enter the sample throughout the sample period, there are
67 unique banks in total.

In this section, we compare our loss beta with an established measure of systemic risk,
CoVaR.15 To calculate CoVaR, we extend the measure from Adrian and Brunnermeier (2016)
to the second quarter of 2019 based on stock return data from CRSP and macroeconomic
variables from the FRED.16 For tests on the correlation between loss beta and CoVaR, the
sample is restricted to public banks since CoVaR requires stock return data that are only
available to public firms. We use the CRSP-FRB link provided by the Federal Reserve Bank
of New York to merge our loss data measures with the CoVaR measure.
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Finally, in our second approach to construct the loss portfolio, we construct the bank’s
loss portfolio based on information available in Compustat and CRSP, following Adrian
and Brunnermeier (2016) and Ivanov (2017). Specifically, we obtain the bank total asset
from Compustat and bank total equity from CRSP. Our sample is limited to publicly traded
financial institutions only in this approach.

4.2. Bank Loss Beta

Following the model provided in Section 2, we estimate the bank loss portfolio. From
the Call Reports, we gather the book value of the bank’s total loans, the book value of
the bank’s total equity, the book value of the bank’s total deposits, and the book value
of the bank’s subordinated debt. We use these book values as proxies for the fair value
of the loans and deposits, and the market value of the equity and the subordinated debt.
Then, we use these book values to calculate each bank’s loss portfolio for each quarter as
explained in Section 2. The aggregate loss portfolio is also calculated for each quarter in
the sample period.

Figure A1 shows the histogram of all banks’ loss portfolios by quarter. As shown, the
distribution of loss portfolio across all banks is highly skewed. Moreover, the probability
of a large loss, such as an over $800 billion loss, is not marginal, showing a clear tail risk in
the banks’ portfolios.

Given all loss portfolios and assuming that A = 1, we compute all aggregate loss
betas, Cov(Li ,L)

Var(L) , for each quarter. Figure A2 reports both mean and the standard deviation
of all loss betas for each quarter. Since the total number of banks in our sample is N = 67,
the mean of loss beta is close to 1/67. However, we observe a relatively high standard
deviation, meaning that some banks have substantial systemic risk components. Therefore,
some banks are TBTF and some are not.

TBTF banks are identified in each quarter using the algorithm described in Appendix A.
Figure A3 reports the number of TBTF in each quarter from 2002 to 2019. The number of
TBTF is time-varying. For example, there are 9 TBTF in 2004, then the number gradually
decreases. During the 2007–2008 financial crisis period, there are 3–5 TBTF, but each TBTF’s
systemic risk is substantial. As shown in Acharya et al. (2012), 5 firms provide 50% of the
entire systemic risk in the U.S. financial markets, and 15 firms account for 92% of the sys-
temic risk. This highly concentrated feature of TBTF banks is thus consistent with Acharya
et al. (2012). This finding is also confirmed by the second empirical approach below.

Table 3 reports all TBTF in a particular quarter. No bank is TBTF for the whole sample
period, but four banks are TBTF the vast majority of the time. Not surprisingly, those banks
are the “Big Four”—Bank of America, JP Morgan Chase, Wells Fargo, and Citibank. From
the start of the data in 2001, the number of TBTF banks declined steadily even before the
crisis, dropping to just three TBTF banks in the fourth quarter of 2008 (JP Morgan Chase,
Bank of America, and Citibank). Interestingly, Wachovia is identified as TBTF over the
period 2007 Q4 to 2008 Q3. The number of TBTF banks stayed low until 2014, when BNY
Mellon, State Street, and Capital One briefly joined the Big Four before abruptly falling
out after 2015. The number of TBTF banks reached a sample low of two (Bank of America
and Wells Fargo) TBTF banks from 2017Q2 to 2018Q1, before rapidly expanding to 2019Q2,
with a sample high of 11 banks.
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Table 3. List of TBTF Bank based on Bank Loss Portfolio Approach. This table reports TBTF banks
from the first quarter of 2002 to the second quarter of 2019 based on the bank loss portfolio approach.
TBTF banks are identified base on the loss betas constructed following the models in Section 2 using
Call Reports. The sample contains 2821 quarterly observations from the first quarter of 2002 to the
second quarter of 2019 with 67 unique commercial U.S.banks with assets over $50 billions.

Name TBTF Quarters

Bank of America 2002Q1–2013Q2, 2014Q1–2019Q2

Citibank 2002Q1–2010Q4, 2012Q2–2015Q4,
2019Q1–2019Q2

JP Morgan Chase 2002Q1–2017Q1, 2018Q2–2019Q2

Fleet National 2002Q1–2004Q1

US Bank 2002Q1–2004Q1

Merrill Lynch 2002Q1–2004Q1

Bank One 2002Q1–2004Q3

Suntrust 2002Q1–2003Q4

Wachovia 2003Q2–2007Q2, 2007Q4–2008Q3

Wells Fargo 2004Q1–2008Q3, 2010Q1–2019Q2

Bank of New York Mellon 2014Q1–2015Q4

State Street 2014Q3–2015Q4

Capital One 2014Q4–2015Q4, 2018Q4–2019Q2

Charles Schwab 2018Q2–2019Q2

Goldman Sachs 2018Q4–2019Q2

Ally 2019Q1–2019Q2

TD Bank 2019Q1–2019Q2

American Express 2019Q1–2019Q2

4.3. Comparison between Loss Beta and CoVaR

As a comparison, we implement the CoVaR methodology in Adrian and Brunnermeier
(2016). We calculate CoVaR for each quarter in the same time period. Figure A4 reports
mean and standard deviation (SD) of CoVaR in each quarter. Table 4 reports summary
statistics of bank assets, loss portfolios, loss beta, TBTF, and CoVaR. Bank assets are from
Call Reports.

We also take a step further by running panel regressions of loss beta with respect to
CoVaR. Table 5 reports the regression coefficients and statistical significance. The number
of sample is slightly different, reducing from 2824 to 2018, because the stocks of some of
the banks in the Call Report are not publicly traded. Table 5 show a positive and significant
relationship between Loss Beta and CoVaR. The magnitude decreases once we control for
quarter fixed effect and a bank-specific characteristic, total assets. As shown in Table 5,
loss beta is positively correlated with an established systemic risk measure, CoVaR, and
captures some additional aspects of systemic risk.
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Table 4. Summary Statistics. This table reports summary statistics of bank assets, loss portfolios, loss
beta, TBTF, and CoVaR. Bank assets are from Call Reports. Loss portfolio and loss beta following
the models in Section 2 using Call Reports. TBTF is a dummy variable the equals one if the bank
is identified as a TBTF bank based on the loss betas constructed. CoVaR is constructed following
Adrian and Brunnermeier (2016). The sample is from the first quarter of 2002 to the second quarter of
2019 with U.S.banks with assets over $50 billion.

Observations Mean SD Min Max

Assets 2824 211.62 383.42 0.58 2354.81
Loss Portfolio 2824 129.74 237.00 0.00 1388.28
Loss Beta 2824 0.03 0.05 0.00 0.35
TBTF 2824 0.16 0.33 0.00 1.00
CoVaR 2018 0.01 0.01 −0.02 0.05

Table 5. Loss Beta and CoVaR. This table reports coefficients and standard errors of panel regressions
of loss beta on CoVaR. Loss beta following the models in Section 2 using Call Reports. CoVaR is
constructed following Adrian and Brunnermeier (2016). Controls include bank asset obtained from
Call Report. The sample is from the first quarter of 2002 to the second quarter of 2019 with U.S.banks
with assets over $50 billions. Standard errors are reported in parentheses. ***, **, and * indicate
statistical significance at the 1%, 5%, and 10% levels, respectively, based on a t-test.

(1) (2) (3) (4)
CoVaR CoVaR CoVaR CoVaR

Loss Beta 0.494 *** 0.438 *** 0.330 * 0.396 **
(0.127) (0.126) (0.187) (0.185)

Controls Yes Yes
Quarter FE Yes Yes
Observations 2018 2018 2018 2018
R-squared 0.007 0.075 0.008 0.075

4.4. Alternative Approach: Asset Loss Beta

In this subsection, we present the result of loss beta using an alternative approach.
Specifically, we calculate the loss beta using the total asset from Compustat and total
equity from CRSP, in the spirit of Adrian and Brunnermeier (2016). This approach was
implemented in Ivanov (2017) for 14 big financial institutions between 2004 to 2012.17 For a
comparison purpose, we extend Ivanov (2017) to include all institutions with a Standard
Industrial Classification (SIC) code between 6000 and 6499 and assets over $50 billion
from quarter 1 of 2002 to quarter 2 of 2019. This sample has significant overlap from
our banking loss portfolio, in particular, the publicly traded Large Banking Organization.
It includes financial institutions that are not banks, such as insurance companies and
securities brokers and dealers.18 To distinguish, we name the loss beta in this approach as
“asset loss beta”, whereas the first one is “bank loss beta”. Our purpose is to identify TBTF
banks in this period with the asset loss beta and present the effect of loss portfolio input to
the identification of TBTF banks. In particular, we explain that the bank loss beta might be
more appropriate for commercial banks.

In this alternative approach, we estimate the key input parameters in this approach as
follows. For each financial institution i. Let

• li
t: the leverage ratio of institution i at time t, the ratio of total asset value over the total

equity value;
• Mi

t: the market capitalization of institution i at time t;
• Yi

t : the profit and loss of institution i at time t, that is, Yi
t ≡ li

t ·Mi
t − li

t−1 ·Mi
t−1;

• Li
t: the loss portfolio of institution i at time t, that is, Li

t ≡ max{−Yi
t , 0}.
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Table 6 shows the TBTF financial institutions identified using this alternative approach.
Among the TBTF are traditional large commercial banks, such as JP Morgan Chase, Bank
of America, Citigroup, and Wells Fargo, large investment banks such as Morgan Stanley
and Goldman Sachs, and large insurance firms like American International (AIG) and
Metlife. Interestingly, AIG, Wachovia, and Countrywide Financial were identified as
TBTF financial institutions before they were bankrupt or acquired. Specifically, Table 6
identifies Countrywide Financial as TBTF in the third quarter of 2007, but this firm was
not considered in Ivanov (2017). We also notice that American Express, which is missing
in Ivanov (2017), is identified as a TBTF in 2001Q1–2003Q2 and 2004Q1–2005Q4. Table 6
provides additional empirical evidence on the validity of our measure.

Table 6. List of TBTF Financial Institutions based on Asset Loss Beta. This table reports TBTF financial
institutions from 2002Q1 to 2019Q2 from the publicly listed firms with assets over $50 billion by using
asset loss portfolio. The asset loss portfolio is estimated based on the total asset from Compustat and
total equity from CRSP in the spirit of Adrian and Brunnermeier (2016). This table extends Ivanov
(2017) from 14 financial institutions between 2004 to 2012 to a more extensive set of institutions with
a Standard Industrial Classification (SIC) code between 6000 and 6499 and assets over $50 billion
from quarter 1 of 2002 to quarter 2 of 2019.

Name TBTF, Quarters

American Express 2002Q1–2003Q2, 2004Q1–2005Q4

Bank of America 2002Q1–2004Q2, 2008Q2–2019Q2

Bank One 2002Q1–2002Q2

Citigroup 2002Q1–2019Q2

JP Morgan Chase 2002Q1–2007Q3, 2008Q4–2019Q2

Morgan Stanley 2002Q1–2005Q3, 2006Q1–2006Q2,
2007Q3–2013Q3, 2014Q1–2019Q2

American International Group 2002Q3–2007Q3, 2008Q2–2008Q3

Goldman Sachs 2004Q2–2005Q3, 2007Q3, 2008Q1–2013Q3,
2014Q1–2019Q2

Countrywide Financial 2007Q3

Wachovia 2008Q3

Wells Fargo 2009Q1–2019Q2

Metlife 2014Q1–2018Q1

Compared with Ivanov (2017), the identified TBTF banks are relatively similar even
though our dataset contains significantly more financial institutions than Ivanov (2017).
We also find that the Big Four commercial banks—Bank of America, Citigroup, JP Morgan
Chase, and Wells Fargo—are identified as TBTF since 2008. In addition, Morgan Stanley
and Goldman Sachs are also consistently identified as TBTF after 2014.

A comparison of bank loss beta with asset loss beta yields interesting results. Asset
loss beta can identify non-bank financial firms that are TBTF, such as AIG and Metlfie,
or the large investment banks before they reorganized in 2008. However, asset loss beta
fails to take into account any firms that are not publicly traded. Since bank loss beta relies
on only banks’ data, it cannot identify non-bank financial institutions as TBTF. However,
bank loss beta has the benefit of identifying TBTF regardless of the public status of the
firm. It also identifies more banks as TBTF than the asset loss beta measure. Moreover, it is
convenient from a policy perspective as banks fall under the same regulatory structure,
unlike other non-bank financial institutions.

Table 3 identifies TBTF institutions using bank loss beta, and Table 6 uses asset loss
beta. The findings are slightly different even when only looking at banks. Both approaches
are fairly consistent in identifying the largest commercial banks, such as Bank of America,
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JP Morgan Chase, Citigroup, Wachovia, and Wells Fargo, as TBTF. However, the bank loss
beta, by not taking into consideration non-bank financial institutions, is more informative
within the banking sector as it much more consistently and frequently identifies relatively
smaller banks as TBTF, such as Bank One, Fleet National, US Bank, and Suntrust as TBTF
before the 2008 Financial Crisis, and BNY Mellon and State Street after the crisis, and
even Capital One, Charles Schwab, Ally, and TD Bank in the most recent quarters of the
data sample. Notably, in the most recent quarter 2019Q2, using asset loss beta, only 6
institutions, Bank of America, Citigroup, JP Morgan Chase, Morgan Stanley, Goldman
Sachs, and Wells Fargo, were TBTF. However, using bank loss beta, 11 institutions are
TBTF, the six under asset loss beta, and Capital One, Charles Schwab, Ally, TD Bank, and
American Express. Overall, the bank loss beta provides a more consistent and frequent
signal that a commercial bank should be considered TBTF.

5. Conclusions

In this paper, we provide an equilibrium approach based on economic theories to mea-
sure the systemic risk of financial institutions and identify TBTF financial intermediaries
such as banks, insurance companies, or other types of intermediaries. This paper sheds
light on why and how financial crises such as the 2007–2009 form and grow in magnitude.
The recent episode of Covid-19 also sparks considerable interests on the systemic risk due
to unexpected shocks. By constructing each financial intermediary’s expected loss portfolio
in a recent accounting model, we suggest a capital-based insurance approach to address
the systemic risk that is crucial to the health of the entire financial market. We derive a
systemic risk measure, termed loss beta, in a characterization of the capital-based insurance
equilibrium. We perform a comprehensive empirical implication and document U.S. TBTF
financial intermediaries from 2002 to 2019. We demonstrate a time-series pattern of U.S.
TBTF financial intermediaries, and a significant number of TBTF banks starting from 2019.

Compared with previous literature on systemic risk, our approach relies on an insur-
ance equilibrium in which all banks with systemic risk exposures and a regulator with
implicit guarantee obligation maximize expected utility separably. Previous important stud-
ies such as Acharya et al. (2012), Billio et al. (2012) and Adrian and Brunnermeier (2016)
introduce some statistical measures that are easy to apply, but these measures are mostly
constructed exogenously. On the other hand, other measures that provide specific channels
such as liquidity mismatching or consumer/real property risk require future data, which is
impossible to implement ex-ante. Our proposed approach advances the literature by pro-
viding a forward-looking systemic risk measure with an insurance equilibrium approach
to determine the TBTF financial intermediaries endogenously. Moreover, since we develop
this approach in an insurance framework, this approach can also be helpful to estimate the
expected bailout and bailout probability under the real-world probability measure.

Our results have policy implications and practical appeals. First, the implementation
of this approach is straightforward. By using a loss portfolio for each bank (provided by
each bank or constructed by the regulator), the regulator can calculate each bank’s loss beta
and identify TBTF banks with a simple algorithm in this conceptual framework. Second,
the regulator is allowed to choose capital insurance contracts in the framework. In this way,
various loss betas can be used to check the robustness of a bank’s systemic risk. Third, the
regulator can use the capital insurance premium to assess the implied guarantee subsidy
or another type of capital for TBTF banks. Finally, through the analysis of the loss portfolio,
the bank can reduce the systemic risk exposure with this approach.

According to our theoretical and empirical study, a loss portfolio is a crucial input in
our approach and affects the identification of TBTF banks. However, the construction of a
loss portfolio is far from unique. While we suggest some accounting-based or asset-based
methods, constructing the most appropriate loss portfolio with systemic risk exposure is
not resolved yet. In other words, we need to understand which bank factors/characteristics
contribute to the systemic risk before constricting the loss portfolio, and there are many
studies in the literature to identify those factors. This paper only compares the loss beta
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approach with CoVaR, but it is also essential to compare it with numerous other systemic
risk measures to understand the loss beta measure better. More importantly, we do not
consider the availability of this approach to other regions, particularly European banks.
We leave these topics to a future study.
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Appendix A. Properties of Capital Insurance

In this appendix, we present several properties of a general capital insurance, extend-
ing Panttser and Tian (2013) and Ivanov (2017). Let Z = I(L), b = AE[Z]

Var(Z) > 0, and

f (ρ) =
N

∑
i=1

max
(

βiρ− ρ2b, 0
)

. (A1)

Without loss of generality, we assume that β1 > β2 > · · · > βN > 0. For each
m = 1, · · · , N, we define

gm(ρ) =
m

∑
i=1

ρ(βi − ρb), (A2)

and  Im =
[

βm+1
b , βm

b

]
, m = 1, · · · , N − 1,

IN =
[
0, βN

b

]
.

(A3)

It can be shown that (see Ivanov (2017), Appendix A) the insurer’s optimization
problem is reduced to

max
ρ>0

f (ρ) = max
m=1,··· ,N

max
ρ∈Im

gm(ρ). (A4)

Let Bm ≡ maxρ∈Im gm(ρ), m = 1, · · · , N, and τm = β1+···+βm
2mb , m = 1, · · · , N.

Case 1. m = 1.
In this case, A1 = g1(max(τ1, β2

b )). The function g1(·) is decreasing over I1 if and only
if β2

b ≥ τ1, that is, β2 ≥ β1
2 .

Case 2. m = N.
In this case, AN = gN(min(τN , βN

b )). The function gN(·) is increasing over IN if
and only if βN

b ≤ τN ; that is, βN ≤ β1+···+βN
2N . Otherwise, if βN > β1+···+βN

2N , then

AN = gN(τN) =
(β1+···+βN)2

4Nb .
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Case 3. m = 2, · · · , N − 1.
3.a. If βm+1

b < τm < βm
b , then Am = gm(τm) =

(β1+···+βm)2

4mb .
3.b. If τm ≤ βm+1

b , then gm(·) is decreasing over Im.
3.c. If τm ≥ βm

b , then gm(·) is increasing over Im.
Characterization of TBTF banks and ρ∗:
Choose m∗ as argmax1≤m≤N Bm, and the least one if there are multiple solutions (see

Panttser and Tian (2013)). Then,

• Bank 1, · · · , m∗ − 1 are TBTF;
• Bank m∗ + 1, · · · , N are NOT TBTF;

• Bank m∗ is TBTF if and only if τm∗ < βm∗ , that is, βm∗ >
β1+···+βm∗

2m∗ .

Moreover, the optimal load factor is

ρ∗ =
β1 + · · ·+ βm∗

2m∗
. (A5)

The next three results follow from the above property of each function gm(ρ) over
Im, 1 ≤ m ≤ N.

Proposition A1. Bank 1 is always a TBTF bank. If β1 is sufficiently large such that following
conditions hold,

β1 + · · ·+ βm

2m
≥ βm, m = 2, · · · , N

then Bank 1 is the only one TBTF bank.

Proof. The first part follows from the above characterization of TBTF banks; see also
Panttser and Tian (2013). By the above discussion, under the proposed condition, the
function gm(ρ) is increasing over Im, m = 2, . . . , N. Therefore maxρ f (ρ) = g1(max(τ1, β2

b )),
m∗ = 1. Since max(τ1, β2

b ) < β1
b , Bank 1 is the only TBTF bank.

Proposition A2. Assume that for each m = 1, · · · , N − 1

βm+1 ≥
β1 + · · ·+ βm

2m
,

and

βN >
β1 + · · ·+ βN

2N
,

then all banks are TBTF.

Proof. Under the first condition, the function gm(ρ) is decreasing over Im, m = 1, · · · , N −
1. Then m∗ = 1. If βN > β1+···+βN

2N , then all banks are TBTF. If βN is not large enough such
that βN ≤ β1+···+βN

2N , then bank N is not TBTF, but all other banks are TBTF.

Proposition A3. Assume 2 ≤ m ≤ N − 1 and the following conditions holds,

βi ≤
β1 + · · ·+ βi

2i
, i = m + 1, · · · , N,

and

β j ≤
β1 + · · ·+ β j

2j
, j = 1, · · · , m− 1.
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1. If β1+···+βm
2m < βm, then all TBTF banks are banks 1, · · · , m.

2. If β1+···+βm
2m ≥ βm, then all TBTF banks are banks 1, · · · , m− 1.

Proof. Given the condition we see that the function gi(·) is increasing over Ii for
i = m+ 1, · · · , N, and the function gj(·) is decreasing over Ij for j = 1, · · · , m− 1. Therefore

m∗ = m, maxρ f (ρ) = maxρ∈Im gm(ρ). If τm < βm
b , then maxρ f (ρ) = gm(max(τm, βm+1

b )).

Then all TBTF banks are 1, · · · , m. Otherwise, τm ≥ βm
b implies that maxρ f (ρ) = gm(

βm
b ).

Then all TBTF banks are 1, · · · , m− 1.

To prove Proposition 1, we need the following lemma that is shown in Ivanov (2017),
Appendix A.

Lemma A1. Given N positive numbers such that b1 ≥ b2 ≥ · · · ≥ bN and ∑N
i=1 bi = 1. If there

exists an integer i such that
bi

∑i
k=1 bi

>
1
2i

, (A6)

then bi >
1

2N . Moreover, if “>" is replaced by ≥ in (A6), then bi ≥ 1
2N .

Proof of Proposition 1. The proof is given for aggregate capital insurance in Ivanov (2017).
We extend its proof as follows.

Case 1. Assume m∗ = m and τm < βm
b .

In this case, βm > β1+···+βm
2m . Then by Lemma A1 for bm = βm

Var(Z)
Cov(L,Z) we obtain

bm > 1
2N . That is, βm > 1

2N
Cov(L,Z)
Var(Z) . Here, all TBTF banks are 1, · · · , m. Hence the loss

betas of all TBTF banks are greater than 1
2N

Cov(L,Z)
Var(Z) .

Case 2. Assume m∗ = m and τm ≥ βm
b .

In this case, maxρ f (ρ) = maxρ∈Im g(ρ) = gm(
βm
b ). Therefore, the function gm−1(·)

must be decreasing over Im−1. Hence, βm−1
b > βm

b ≥ τm−1. It can be written as

βm−1 >
β1 + · · ·+ βm−1

2(m− 1)
.

Then by Lemma A1 again and similar to Case 1, we obtain βm−1 > 1
2N

Cov(L,Z)
Var(Z) . In this

case, all TBTF banks are 1, · · · , m− 1. Hence, the loss betas of all TBTF banks are greater
than 1

2N
Cov(L,Z)
Var(Z) .

Finally, Ivanov (2017) Proposition 3 shows that the capital insurance market improves
the market participants’ utilities. See also Panttser and Tian (2013) for more welfare analysis
of capital insurance and its application to classical insurance market.
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Figure A1. Histogram of Loss Portfolio. This graph displays the histogram bank’s loss portfolios by
quarter. Loss portfolios are constructed following the model in Section 2 using Call Reports. The
sample contains 2821 quarterly observations from the first quarter of 2002 to the second quarter of
2019 with 67 unique commercial U.S.banks with assets over $50 billions.

Figure A2. Loss Beta. This graph displays the mean and the standard deviation (SD) of all loss betas
in each quarter. Loss betas are constructed following the models in Section 2 using Call Reports. The
sample contains 2821 quarterly observations from the first quarter of 2002 to the second quarter of
2019 with 67 unique commercial U.S.banks with assets over $50 billions.
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Figure A3. TBTF banks. This graph displays the number of TBTF time series by each quarter.



J. Risk Financial Manag. 2021, 14, 414 22 of 24

Figure A4. CoVaR. This graph displays the CoVaR time series in each quarter from the first quarter
of 2002 to the second quarter of 2019. CoVaR is estimated following Adrian and Brunnermeier (2016)
and extended to the second quarter of 2019. The sample contains 2018 bank-quarter observations.

Notes
1 Other important approaches include the default probability approach of the whole financial system developed by Shin (2008),

and the CDS premium approach in Zhou et al. (2009). See also Battiston et al. (2012), Billio et al. (2012), Eisenberg and Noe
(2001), Hanson et al. (2011), Hellwig (2009), Lehar (2005) and Van Oordt and Zhou (2016). Hansen (2012) explains the challenge
in measuring systemic risk. A comprehensive survey of systemic risk measures is presented by Bisias et al. (2012).

2 In previous studies, systemic risk is primarily measured exogenously, and the implicit guarantee subsidy or capital surcharge is
not addressed directly. See IMF Report (2014), Greens/EFA Report (2014), and BCBS (2013) for assessment methodology.

3 For a comprehensive discussion about the new Basel capital requirement, we refer to Tian (2017). See also Allen and Carletti
(2013) about the classification of systemic risk.

4 The construction of a loss portfolio for European banks could be different from U.S. banks. Moreover, we also need to modify
the capital insurance approach for European banks since there are at least two layers of regulators for European banks—the
European central bank and the regulator in each country. Based on our available dataset, we consider U.S. banks over the period
2002 to 2019 in this paper. Therefore, our approach here only applies to U.S. commercial banks.

5 These GSIBs U.S. banks are Bank of America, Citigroup, Goldman Sachs, JP Morgan Chase, Morgan Stanley, and Wells Fargo.
6 We notice that our result has no implication to European TBTF banks and implicit government intervention (guarantee). See

Steinruecke (2018) about European TBTF banks from the regulatory reform of expected bailout perspective.
7 Under these particular numbers, the bank meets Tier 1 capital requirement (at least 6 percent) of risk-weighted asset and

total capital (Tier 1 and Tier 2) requirement (10.5%) of risk-weighted asset in Basel III, assuming risk-weight 50% of the
subordinated debt.

8 The derivation is as follows. Let vD,t denote the ratio of the fair to book value of deposits at time t. Then in that time period
[t, t + 1],

vD,t =
1

1 + r
EQ

t [cD + µD,t+1 + (1− µD,t+1)vD,t+1].

Assume that µD,t+1 is independent from vD,t+1 and vD,t = EQ
t [vD,t+1], we obtain

vD,t =
1

1 + r

(
cD + µD,t + (1− µD,t)vD,t

)
where µD,t = EQ

t [µD,t+1] is the conditional deposit withdrawn under risk-neutral probability at time t. Solving vD,t we obtain
the expression of FDt.

9 It follows from the same derivation as in the last footnote, or Atkeson et al. (2019), Section 3.1.
10 The monotonicity condition is consistent with the classical revelation principle and reduces the moral hazard issue. Similarly,

the continuity condition helps to resolve some implementation issues. It is possible to obtain optimal discontinuous and
non-monotonic insurance contracts. See Bernard and Tian (2009) and Huberman et al. (1983).
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11 In other words, each bank is distinguished from the other by the loss portfolio instead of risk attitude. It is straightforward to
extend to different risk-aversion parameters in this setting.

12 The issuer of capital insurance contracts can be a private-sector, reinsurance company, a central bank or a government entity
such as Financial Stability Oversight Council (FSOC) in Dodd-Frank Act, which is universally named as an issuer.

13 It is well known that Cov(L, I(L)) > 0 for any increasing function I(·) and a general random variable L.
14 We only need the finite covariance Cov(Li, I(L)) and finite variance Var(I(L)) in the framework.
15 Here, we use CoVaR as an example of other numerous systemic risk measures to compare with our approach for the following

reasons. (1) The CoVaR approach is intuitive and also based on aggregate loss, (2) Similar to our approach, the CoVaR approach
is robust and also simple to be implemented, and (3) the CoVaR approach also generates consistent empirical insights with other
measures. See discussions in Adrian and Brunnermeier (2016).

16 We would like to thank Markus Brunnermeier for providing the codes to estimate CoVaR.
17 They are: Freddie Mac, Fannie Mae, American International Group, Merrill Lynch, Bank of America, Bear Sterns, Citigroup.

Goldman Sachs, JP Morgan Chase, Lehman Brother, Metlife, Morgan Stanley, Wachovia, and Wells Fargo. We notice that Merril
Lynch, Bear Sterns, Lehman brother, and Wachovia have not existed since 2008.

18 For these reasons, Metlife, American International Group, and Countrywide Financial are included in this approach, while the
first approach concentrates on commercial banks.
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