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Abstract: Management of financial risks and sound decision making rely on the accurate information
and predictive models. Drawing useful information efficiently from big data with complex structures
and building accurate models are therefore crucial tasks. Most commonly used methods for statis-
tical inference in dynamic panel data models are based on the differencing transformation of data.
However, differencing data may cause substantial loss of information, and therefore the subsequent
analysis may fail to capture important features in the original level data. This point is demonstrated
by a real data example where we use a semiparametrically efficient estimation method on the level
data to reach a more favorable model. In particular, we study a second-order least squares approach
which is based on the first two conditional moments of the response variable given the explanatory
variables. This estimator is root-N consistent and its asymptotic variance reaches a lower bound
semiparametric efficiency. Monte Carlo simulations show that this estimator performs favorably in
finite sample situations compared to the first-differenced GMM and the random effects pseudo ML
estimators. We also propose a new diagnostic test to check the working moments assumption based
on the proposed estimator. A real data application is presented to further demonstrate the usage of
this method.

Keywords: panel data; dynamic model; autoregressive processes; random effects; second order least
squares; semiparametric efficiency; diagnostic test; econometric modeling; business economics

1. Introduction

Modern technology and data collection techniques have produced huge amount of
data in business, economics, and many other fields. On the one hand, these data provide
rich information to support decision making; however, on the other hand, the big sizes
and complex structures of the data make the statistical analysis very challenging. How
to draw useful information from data efficiently and how to identify accurate predictive
models are important issues for the management of financial risks and decision making in
general. A common data type is the repeated measurements data that are collected on a
large number of units over certain period of time. In business and economics, the data are
typically collected at regular time points (calendar time) and are usually called panel data.
Statistical methodologies for the analysis of longitudinal data have been extensively studied
in statistics as well as econometrics; however, the research follows two different directions.

In statistical literature, the main stream research focuses on the likelihood or general-
ized estimating equations (GEE) approaches in linear and nonlinear mixed effects models
(e.g., Fitzmaurice et al. 2009). In contrast, in econometric literature, the emphasis is on the
likelihood and generalized method of moments (GMM) approaches in dynamic panel data
models (e.g., Arellano 2003; Baltagi 2008; Hsiao 2003 2011). In particular, The GMM ap-
proach is usually based on some suitable linear transformation such as the first differencing
to eliminate the unobserved subject effects (Arellano and Bover 1995; Arellano and Bond
1991; Blundell and Bond 1998). However, differencing operation may cause substantial

J. Risk Financial Manag. 2021, 14, 410. https://doi.org/10.3390/jrfm14090410 https://www.mdpi.com/journal/jrfm

https://www.mdpi.com/journal/jrfm
https://www.mdpi.com
https://orcid.org/0000-0001-6344-1282
https://orcid.org/0000-0002-1869-9871
https://doi.org/10.3390/jrfm14090410
https://doi.org/10.3390/jrfm14090410
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/jrfm14090410
https://www.mdpi.com/journal/jrfm
https://www.mdpi.com/article/10.3390/jrfm14090410?type=check_update&version=2


J. Risk Financial Manag. 2021, 14, 410 2 of 19

loss of information in the data and therefore lead to the loss of estimation efficiency and
inaccurate model identification. We will show through a real data example that more
favorable model can be reached by applying a semiparametrically efficient estimation
method to the original level data. Moreover, the model specification can be checked by our
proposed diagnostic test.

In this paper, we propose a moments-based approach that is theoretically less restric-
tive than the likelihood-based methods and is fairly efficient and computationally tractable.
This approach requires only the specification of the first two conditional moments of the
unobserved subject effect given the process initial value and covariates, and does not
require any other initial conditions or distributional assumptions. The data generating
process can be either stationary or nonstationary, and does not need to be transformed.
The so-called second-order least squares (SLS) estimator is consistent and asymptotically
normally distributed when the cross section size N is large and the time series length
T is fixed. In addition, this estimator reaches a semiparametric efficiency lower bound.
We also propose a diagnostic test based on the SLS estimator to check the conditional
moments assumption. Our extensive simulation studies show that the proposed estimator
and its variants perform very well in finite sample situations and better than the GMM and
likelihood based estimators in most cases.

The SLS method was first proposed by Wang (2003, 2004) to estimate the nonlinear
measurement error models. It was extended to the nonlinear longitudinal data models
with homoscedastic errors by Wang (2007) and to the censored linear models by Abarin
and Wang (2009). Wang and Leblanc (2008) showed that under a nonlinear (homoscedas-
tic) cross-sectional data model, the SLSE is asymptotically more efficient than the OLSE
(pseudo MLE) when the error term has nonzero third moment, and both estimators are
equally efficient otherwise. Kim and Ma (2012) proved that the SLSE attains the optimal
semiparametric efficiency bound in general. More recently, the SLS method has also been
used in optimal design problems by several researchers, e.g., Gao and Zhou (2014), Bose
and Mukerjee (2015), Gao and Zhou (2017), Yin and Zhou (2017).

This paper is organized as follows. In Sections 2 and 3 we introduce the model
and the semiparametric method for estimation and testing. In Section 4 we derive the
asymptotically most efficient version of the proposed estimators. In Section 5 we carry out
Monte Carlo simulations to study finite sample properties of the proposed estimators and
compare them with other commonly used methods. In Section 6 we apply our method to a
real data set to demonstrate its practical merits. Finally, conclusions and discussion are in
Section 7 and regularity conditions and mathematical proofs are in the Appendices A–F.

2. Model and SLS Estimation

Let (y′i, x′i, ηi), i = 1, 2, . . . , N be independent and identically distributed random
vectors where y′i = (yi0, yi1, . . . , yiT) and x′i = (x′i1, x′i2, . . . , x′iT) are respectively the mea-
surements of the response variable and p covariates taken for the ith subject over T time
periods. Suppose

yit = α0yi(t−1) + β′0xit + ηi + εit, t = 1, 2, . . . , T, (1)

where ηi is the unobserved subject effect and error term εit satisfies E(εit|ηi, yi0, xi) = 0,
E(εitεis|ηi, yi0, xi) = σ2

0 if s = t, and zero otherwise. In addition, we assume that the con-
ditional moments E(η j

i |yi0, xi) = f j(yi0, xi, θ0), j = 1, 2 are known up to an `-dimensional
unknown parameter vector θ0. This assumption is more general than the unrestricted initial
conditions used by Blundell and Bond (1998) and Alvarez and Arellano (2003) to derive
the conditional GLS (CGLS) and the random effects ML (RML) estimators, respectively.
Note that our semiparametric assumption on ηi is not as restrictive as it appears because
the functional forms of f j(yi0, xi, θ0), j = 1, 2 can be specified naturally based on some
diagnostic tools as illustrated in Section 6. Moreover, any suggested specification can be
tested using the test developed in Section 3. Also note that although we explicitly deal
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with an AR(1) model for the sake of simplicity of notation, our approach can be extended
to more general AR(p) models as discussed later.

We propose to estimate unknown parameters in model (1) based on the first two
conditional moments of the response yit given its initial value yi0 and covariates xi. Specifi-
cally, let γ0 = (α0, σ2

0 , β′0, θ′0)
′ and Γ ⊂ IRp+`+2 be the corresponding parameter space. By

backward substitution in Equation (1), we obtain the reduced form equation

yit = αt
0yi0 + at(α0)ηi + β′0 x̃it(α0) + ε̃it(α0), t = 1, 2, ..., T, (2)

where at(α) = ∑t−1
r=0 αr, x̃it(α) = ∑t−1

r=0 αrxi(t−r) and ε̃it(α0) = ∑t−1
r=0 αr

0εi(t−r). Under this
model, the first two conditional moments of yit are given by

µit(γ0) = E(yit|yi0, xi) = αt
0yi0 + β′0 x̃it(α0) + at(α0) f1(yi0, xi, θ0), (3)

νits(γ0) = E(yityis|yi0, xi) = αt+s
0 y2

i0 + at(α0)as(α0) f2(yi0, xi, θ0)

+β′0 x̃it(α0)x̃′is(α0)β0 + σ2
0 cts(α0) + dts(α0)yi0 f1(yi0, xi, θ0)

+yi0β′0wits(α0) + f1(yi0, xi, θ0)β′0kits(α0), (4)

where cts(α) = αt−s ∑s−1
r=0 α2r, dts(α) = αtas(α) + αsat(α), wits(α) = αt x̃is(α) + αs x̃it(α) and

kits(α) = at(α)x̃is(α) + as(α)x̃it(α), t ≥ s. Further, let

hi(γ) = (yit − µit(γ), 1 ≤ t ≤ T, yityis − νits(γ), 1 ≤ s ≤ t ≤ T)′, γ ∈ Γ.

Then the second-order least squares (SLS) estimator for γ is defined by

γ̂N = argmin
γ∈Γ

1
N

N

∑
i=1

qi(γ), (5)

where qi(γ) = h′i(γ)W ihi(γ) and W i is a nonnegative definite matrix whose elements are
real measurable functions of (yi0, xi). It follows from the standard M-estimation theory
that the SLS estimator γ̂N has the following asymptotic properties under the regularity
conditions given in Appendices A.

Theorem 1. (1) Under Assumptions A1–A3, γ̂N
a.s.−→ γ0 as N → ∞ and T is fixed.

(2) Under Assumptions A1–A6,
√

N(γ̂N − γ0)
d→ N(0, A−1BA−1) as N → ∞ and T is

fixed, where

A = E
{

∂h′1(γ0)

∂γ
W1

∂h1(γ0)

∂γ′

}
, (6)

B = E
{

∂h′1(γ0)

∂γ
W1h1(γ0)h

′
1(γ0)W1

∂h1(γ0)

∂γ′

}
. (7)

3. A Diagnostic Test

The estimation approach in the previous section is based on the correct specification
of the first two conditional moments of the response variables. In this section we propose a
test for these moments, called SW for convenience. It is designed to test hypotheses

H0 : E{hi(γ0)|yi0, xi} = 0 vs. Ha : E{hi(γ0)|yi0, xi} 6= 0.

Specifically, let h(γ) = 1
N ∑N

i=1 hi(γ). Then the test statistic is defined as

SW = N h′(γ̂N) Ĝ−1
N h(γ̂N), (8)
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where γ̂N is defined by Equation (5) and ĜN is given by

ĜN =
1
N

N

∑
i=1

P̄i(γ̂N)hi(γ̂N)h
′
i(γ̂N)P̄

′
i(γ̂N)

with

P̄i(γ̂N) = I − D̄N(γ̂N)A−1
N

∂h′i(γ̂N)

∂γ
W i,

AN =
1
N

N

∑
i=1

∂h′i(γ̂N)

∂γ
W i

∂hi(γ̂N)

∂γ′
,

and

D̄N(γ̂N) =
1
N

N

∑
i=1

∂hi(γ̂N)

∂γ′
.

The asymptotic distribution of the test statistic SW is given below.

Theorem 2. Assume that E
{

Pi(γ0)hi(γ0)h
′
i(γ0)P

′
i(γ0)

}
has full rank K = T(T + 3)/2. Then

under Assumptions A1–A6 and H0, SW d→ χ2
K as N → ∞ and T is fixed.

4. Optimal SLS Estimator

From Equations (6) and (7) we see that the asymptotic covariance matrix of γ̂N
depends on the weights W i. It is therefore desirable to chose the optimal weight so that the
asymptotic variance is minimized in the following sense.

Theorem 3. Suppose U1 = E
{

h1(γ0)h
′
1(γ0)| y10, x1

}
is nonsingular with probability one, and

Assumptions A2–A6 are satisfied with W1 = U−1
1 . Then the SLS estimator γ̂o

N obtained by taking
W i = U−1

i , i = 1, 2, ..., N has asymptotic covariance matrix

A−1
0 = E−1

{
∂h′i(γ0)

∂γ
U−1

i
∂hi(γ0)

∂γ′

}
. (9)

Furthermore, for any SLS estimator γ̂N , its asymptotic covariance matrix is such that
A−1BA−1 − A−1

0 is non-negative definite.

However, since the optimal weight U−1
i depends on γ0 and conditional moments

E(εj
it|yi0, xi) and E(η j

i |yi0, xi), j = 3, 4, the optimal SLS estimator γ̂o
N is not feasible. The

corresponding feasible SLS estimator can be calculated by plugging in consistent estimators
of these unknown quantities in U−1

i . This feasible optimal SLS (FOSLS) estimator is consis-
tent under condition (A1) in Appendix A. Moreover, the FOSLS has the same asymptotic
covariance matrix as the (infeasible) optimal SLS estimator (Newey and McFadden 1994,
Th. 6.1).

We also suggest another version of the FOSLS, called FOSLS1, which may be more
robust to any possible stochastic dependence between εit and ηi, and does not require
initial estimates for the third and fourth conditional moments of εit and ηi. It is obtained
by using the weight

Ŵ i = C′
(

yi0, xi, θ̂
0
N , α̂0

N

)( 1
N

N

∑
i=1

h∗i (γ̂
0
N)h

∗′
i (γ̂0

N)

)−
C
(

yi0, xi, θ̂
0
N , α̂0

N

)
, (10)

where γ̂0
N is a preliminary consistent estimator of γ0, and C(yi0, xi, θ, α) is a transformation

matrix that maps hi(γ) into

h∗i (γ) =
(

u∗it, 1 ≤ t ≤ T, u∗itu
∗
is − ν∗its(σ

2, θ), 1 ≤ s ≤ t ≤ T
)′

, (11)
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where u∗it = yit− αyit−1− β′xit− f1(yi0, xi, θ) and ν∗its(σ
2, θ) = f2(yi0, xi, θ)− f 2

1 (yi0, xi, θ)+
σ21{s=t}. It can be shown that the FOSLS1 has the same asymptotic covariance matrix as
the optimal SLS estimator, if εit and ηi have constant second to fourth conditional central
moments given the process initial value and covariate. It is worthwhile to note that the
matrix C and vectors h∗i (γ) do not involve the moments in (3) and (4) which are calcu-
lated based on the reduced form (2). Therefore it is straightforward to generalize them in
AR(p) models.

Some researchers have studied the semiparametric efficient estimators for various
dynamic panel data models. Chamberlain (1992) derived the optimal instrumental variables
for the first-difference equation of model (1) under the sequential conditional moment
restrictions and showed that the GMM estimator based on these optimal instrumental
variables attains the semiparametric efficiency lower bound. Hahn (1997) showed that the
GMM estimator based on an increasing set of instruments as the sample size grows would
achieve the semiparametric efficiency bound of Chamberlain (1992). More recently, Park
et al. (2007) used the geometric approach of Bickel et al. (1993) to construct a semiparametric
efficient estimator under the stationary model with normal error distribution.

A natural question is whether the optimal SLS estimator efficiently uses the informa-
tion in conditional moments (3) and (4). By Lemma 2 of Chamberlain (1987) the minimum
bound of the asymptotic variance under E{hi(γ0)|yi0, xi} = 0 is given by A−1

0 in (9). There-
fore by Theorem 3 the optimal SLS estimator attains Chamberlain’s bound of variance and
is a semiparametric optimal estimator in this sense.

We conclude this section by comparing the asymptotic variance of the optimal SLS
estimator with that of the RML estimator which is identical to the MLE conditional on the
initial observation when the errors are normally distributed. Theoretically, the optimal
SLSE is at least as efficient as the RMLE by (A14)–(A16) in Appendix F. Unfortunately
it is difficult to evaluate the efficiency gain of the optimal SLSE analytically, hence we
compare the asymptotic variances of the two estimators numerically. We considered a large
number of scenarios with various data generating processes (stationary or nonstationary)
and distributions for the error and unobserved random effects.

The percentage gain of efficiency in estimating α0 as a function of T and α0 is shown in
Figure 1, where z-axis represents the percentage reduction in the variance of RMLE(α0) by
using the optimal SLSE(α0). Our simulation results show convincingly that the asymptotic
variance of the optimal SLSE(α0) is strictly less than that of the RMLE(α0) except for the
case µ3(ε) = 0 and µ4(ε) = 3σ4

0 (which is true under normal distribution), in which case
both estimators have the same asymptotic variances.

5

10

15

20

0.2

0.4

0.6

0.8

20

40

60

T

Alpha

%
 V

ar
ia

nc
e 

R
ed

uc
tio

n

0

10

20

30

40

50

60

70

80

(a)

5

10

15

20

0.2

0.4

0.6

0.8
5

10

15

20

25

30

T

Alpha

%
 V

ar
ia

nc
e 

R
ed

uc
tio

n

0

5

10

15

20

25

30

(b)
Figure 1. Cont.
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Figure 1. Reduction (%) in the variance of RML(α0) gained by the optimal SLS(α0). (a) Stationary,
εit|ηi, yi0 ∼ χ2

(1). (b) Stationary, εit|ηi, yi0 ∼ t(5). (c) Nonstationary, εit|ηi, yi0 ∼ χ2
(1). (d) Nonstation-

ary, εit|ηi, yi0 ∼ t(5).

5. Monte Carlo Simulation Studies

In this section we carry out extensive Monte Carlo simulations to examine the finite
sample properties of FOSLS and FOSLS1 estimators, and compare them with some other
popular estimators in the literature, including the linear first differenced GMM (Arellano
and Bond 1991), the marginal pseudo maximum likelihood (MPML) (Arellano 2003) and the
random effects pseudo maximum likelihood (RML) (Alvarez and Arellano 2003) estimators.
For the sake of comparison we adopt the commonly used model setup in these literature,
i.e., the model (1) with no covariates xit but the following specification

E(ηi|yi0) = θ01 + θ02yi0, V(ηi|yi0) = exp (θ03), (12)

E(εj
it|yi0) = µj(ε), E

(
(ηi − θ01 − θ02yi0)

j|yi0

)
= µj(η), j = 3, 4. (13)

This model specification is also used by Blundell and Bond (1998) to derive conditional-
type estimators such as the CGLS, see also Okui (2009).

5.1. Finite Sample Properties and Comparisons

Specifically, the data are generated according to yi0 ∼ i.i.d. N
(
0, 2/(1− α2

0)(1− α0)
)
,

ηi|yi0 ∼ θ01 + θ02yi0 + exp (θ03)F1 and εit|ηi, yi0 ∼ σ2
0 F2 with θ01 = 0, θ02 = c

(
1− α2

0
)
/2

and θ03 = log((1− α0)/2), where c, F1, F2 are chosen as follows to be close to the setups in
the literature.

Normal stationary process: c = 1 and F1, F2 ∼ N(0, 1). Under this setup the MPML
estimator is the true MLE computed using all data including the initial observations.

Nonnormal stationary process: c = 1 and F1, F2 ∼ (χ2
(1) − 1)/

√
2.

Normal nonstationary process: c = 20 and F1, F2 ∼ N(0, 1). Under this setup the y
process is nonstationary in first two moments and the MPML estimator is inconsistent.

Nonnormal nonstationary process: c = 20 and
(a) F1 ∼ N(0, 1), F2 ∼ (χ2

(1) − 1)/
√

2; (b) F1 ∼ N(0, 1), F2 ∼
√

3/5 t(5);
(c) F2 ∼ N(0, 1), F1 ∼ (χ2

(1) − 1)/
√

2; (d) F2 ∼ N(0, 1), F1 ∼
√

3/5 t(5).

In all scenarios the parameter values are α0 = 0.2, 0.5, 0.8 and the sample sizes are
N = 30, 300 and T = 5, 10, 15. In each simulation 1000 Monte Carlo replications are done
and the median estimates and median absolute deviation (MAD) are calculated to assess
the performance of the estimators. To compute the FOSLS estimators, we use the RML
to obtain preliminary consistent estimates of γ0, µj(ε) and µj(η), j = 3, 4, and then plug
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them in the optimal weight U−1
i . As mentioned earlier this does not affect the asymptotic

properties of the second-step estimators.
To save space we only present the numerical results for the nonnormal-nonstationary

(a) scenario in Table 1, where we use the MAD of the FOSLS estimator as reference and
report the relative MADs for all other estimators. For the other scenarios we provide a
summary and discussion of the results below.

Table 1. The MAD of FOSLS and relative MAD (bold font) of all other estimators, and their Median (regular font) for
nonnormal-nonstationary scenario.

α0 = 0.2 α0 = 0.5 α0 = 0.8

FOSLS FOSLS1 RML GMM MPML FOSLS FOSLS1 RML GMM MPML FOSLS FOSLS1 RML GMM MPML

N T = 5
30 0.006 1.07 1.29 1.29 120.57 0.003 1.07 1.44 1.44 124.24 0.002 1.18 1.56 1.54 89.56

0.200 0.20 0.20 0.20 0.90 0.500 0.50 0.50 0.50 0.94 0.800 0.80 0.80 0.80 0.96
300 0.002 0.93 1.44 1.44 394.89 0.001 0.95 1.48 1.47 413.21 0.001 0.89 1.44 1.44 255.54

0.200 0.20 0.20 0.20 0.91 0.500 0.50 0.50 0.50 0.94 0.800 0.80 0.80 0.80 0.96
T = 10

30 0.005 1.26 1.38 1.34 146.48 0.003 1.32 1.55 1.52 191.90 0.001 1.16 1.46 1.45 173.13
0.200 0.20 0.20 0.20 0.95 0.500 0.50 0.50 0.50 0.97 0.800 0.80 0.80 0.80 0.99

300 0.001 0.95 1.44 1.47 468.00 0.001 0.95 1.47 1.46 554.61 0.000 1.01 1.53 1.53 590.03
0.200 0.20 0.20 0.20 0.95 0.500 0.50 0.50 0.50 0.97 0.800 0.80 0.80 0.80 0.99

T = 15
30 0.005 2.00 1.37 1.40 156.16 0.003 2.38 1.43 1.42 193.59 0.001 2.18 1.53 1.54 239.64

0.200 0.20 0.20 0.20 0.97 0.500 0.50 0.50 0.50 0.98 0.800 0.80 0.80 0.80 0.99
300 0.001 1.06 1.50 1.52 497.46 0.001 1.10 1.56 1.57 641.36 0.000 1.18 1.59 1.60 748.73

0.200 0.20 0.20 0.20 0.97 0.500 0.50 0.50 0.50 0.98 0.800 0.80 0.80 0.80 0.99

In the normal-stationary scenario, the MAD of the FOSLS is decreasing in T and
nondecreasing in α0. That the FOSLS and RML have equal asymptotic variance under the
normal error components (see (A16)) appears clearly for α0 = 0.2, 0.5, while larger values
of N are required to see this fact for larger α0. As expected the MPML has the smallest MAD
in almost all cases because it is the most efficient estimator under normality. However, the
gap between the MPML and FOSLS is getting smaller as α0 decreases or T increases. The
first-difference GMM is generally inferior and the problem of weak instruments appears
clearly for large α0, which is consistent with Blundell and Bond (1998). The FOSLS1 is
not reliable for small N because the numerical calculation of its weight matrix is unstable
when N < T(T + 3)/2. Moreover, the relative MADs of the FOSLS1 for N = 300 show
that the estimator has a slower convergence rate than the FOSLS, which was expected. The
downward bias in FOSLS vanishes quickly as T increases.

In the nonnormal-stationary scenario, the results shows wide outperformance of the
FOSLS, specially for small T. The relative MADs of RML reveal that the true levels of
variance reduction gained by FOSLS (see Figure 1a) require N to be larger than 300. The
FOSLS competes well with the MPML for small N. Although the FOSLS1 is not reliable for
small N/T ratio, it performs well for N = 300. The FOSLS has smaller bias for small N
than other estimators.

In the normal-nonstationary scenario, the FOSLS, RML, and GMM compete very
well for small and large N. The close performance of the FOSLS and RML is due to the
normality of εit. The improvement in the GMM performance is due to the nonstationarity
of yit process. The results show clearly how the MPML breaks down everywhere under this
scenario, demonstrating the consequence of misspecifying a nonstationary process. Again,
the FOSLS1 requires large N/T ratio to get stable so it is not recommended in this scenario.

Finally, the results of nonnormal-nonstationary scenario presented in Table 1 show
the effect of the skewness of the εit distribution on the performance of the FOSLS. The
RML and GMM are less efficient than the FOSLS by at least 30% for N = 30, and by as
high as 59% for N = 300. The relative MADs of the RML for large N are consistent with
Figure 1c. Although the true levels of variance reduction gained by FOSLS require N to be
larger than 300, the gain of efficiency for small N is much larger than the corresponding
gain in the nonnormal-stationary scenario. The numerical results of the three remaining
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cases (b,c,d) in this scenario clearly show the outperformance of the FOSLS(α0) when εit
has nonnormal distribution.

We conclude this subsection by examining to what extent the asymptotic variance
formula for the OSLS in (9) can be used to approximate its finite sample counterpart. To
this end we use the asymptotic formula to calculate the standard deviation of the OSLS
estimator for α0 and compare with the sample RMSE calculated through Monte Carlo
simulations for various values of N, T, and α0. Table 2 shows that both results are fairly
close and therefore the asymptotic formula can be safely used in further inference about α0
such as confidence intervals or testing hypothesis.

Table 2. The RMSE of FOSLS calculated by simulation and asymptotic formula (9) for nonnormal-
nonstationary scenario.

α0 = 0.2 α0 = 0.5 α0 = 0.8

Simulation Asy
Formula Simulation Asy

Formula Simulation Asy
Formula

N T = 5
30 0.00866 0.00815 0.00526 0.00501 0.00268 0.00288
300 0.00265 0.00258 0.00159 0.00158 0.00094 0.00091

T = 15
30 0.00729 0.00703 0.00369 0.00364 0.00119 0.00122

300 0.00229 0.00222 0.00112 0.00115 0.00038 0.00039

5.2. Robustness of FOSLS against Unit-Root

It is well known in the literature that linear first-difference GMM is generally inferior
when the autoregressive parameter α0 is close to one due to the problem of weak instru-
ments, see e.g., Blundell and Bond (1998). On the other hand, our simulation results in the
previous subsection show that the performance of FOSLS is not affected by large values
of α0. Furthermore, it becomes closer to the MPML and sometimes is even better due to
the efficiency gain in the case of nonnormal errors. Hence it is interesting to investigate
the performance of FOSLS when α0 is very close to one (unit root case) and see if it breaks
down like the GMM or it is stable like the MPML.

To answer these questions we carry out a simulation using the nonnormal-stationary
model defined before. The results in Table 3 show that the FOSLS is less biased and more
efficient than the RML due to the skewness in the within group errors. Although the FOSLS
has larger downward bias than the MPML, the difference vanishes quickly as T and α0
increase. These results demonstrate that the FOSLS is robust in the case of near unit root
and is even more efficient than the MPML for T = 6 and α0 = 0.99. This may be due
to nonnormality.

Table 3. The RMSE of FOSLS and relative RMSE (bold font) of all other estimators, and their Mean (regular font) for
nonnormal near unit root scenario.

α0 = 0.9 α0 = 0.95 α0 = 0.99

FOSLS RML GMM MPML FOSLS RML GMM MPML FOSLS RML GMM MPML

N T = 3
100 0.216 1.23 4.94 0.45 0.240 1.13 5.04 0.38 0.123 2.36 10.28 0.66

0.82 0.71 0.30 0.88 0.87 0.75 0.12 0.92 0.95 0.77 0.08 0.95
300 0.151 1.21 5.85 0.43 0.130 1.52 8.32 0.44 0.060 3.59 21.85 0.81

0.83 0.78 0.48 0.90 0.89 0.81 0.27 0.94 0.97 0.83 0.09 0.97
T = 6

100 0.086 1.27 5.27 0.67 0.094 1.32 6.21 0.49 0.037 3.75 17.10 1.07
0.87 0.83 0.52 0.90 0.91 0.86 0.43 0.94 0.98 0.88 0.43 0.97

300 0.039 1.85 7.44 0.88 0.064 1.36 7.83 0.48 0.013 7.50 47.90 1.69
0.90 0.86 0.68 0.90 0.92 0.89 0.53 0.95 0.99 0.91 0.43 0.98
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5.3. Performance in the Presence of Covariates

In the previous simulation studies we considered models without covariates in order
to make our numerical results comparable with existing methods in the literature. Now
we investigate if the finite sample performance of the FOSLS changes when the model
includes covariates. A well-known work in this respect is Kiviet (1995) who compared
some least squares and instrumental variable (IV) type estimators (among them the linear
first-difference GMM of Arellano and Bond 1991).

Following Kiviet (1995, Section 5 and Appendix B) we consider model (1) with a
covariate and yt being generated from the reduced form equation (here we omit the
subscript i) yt = βφt + ψt + η/(1− α), t = 0, 1, ..., T, where φt ∼ AR(2) and ψt ∼ AR(1)
are mutually independent stationary processes and both are independent of η ∼ N(0, σ2

η).
The orthogonality and normality assumptions of Kiviet (1995) imply E(η|y0, x1, . . . , xT) =
θ2 y0 + θ4 x1 and V(η|y0, x1, . . . , xT) = exp (θ3) as in our notation in (12).

Kiviet (1995) reported simulation results for 14 different combinations (designs) of
parameter values and sample sizes. We have simulated all the 14 designs but only present
the results for four designs to save space. Table 4 contains the bias, standard deviation and
root mean squared error of the FOSLS, RML, and linear first-difference GMM (Arellano and
Bond 1991) for α and β. As expected, the RML (which is the conditional MLE) is the best in
all cases because the data are generated using the normal distribution. However, the FOSLS
(which is asymptotically as efficient as the RML) is very close to the RML. These results
show that in the presence of strictly exogenous variable the FOSLS is a good alternative
to the most efficient RML under normality. The calculated summary statistics of GMM
are different than the corresponding values of GMM1 in Kiviet (1995), probably due to
two errors in his equation B6 where ξ0 and ξ1 should be standardized. We have also done
another simulation under nonnormal-nonstationary setup and obtained similar results as
in Table 1. They also clearly show the outperformance of FOSLS compared to RML due to
deviation from normality.

Table 4. Bias, standard deviation and RMSE of estimators for Kiviet (1995) model with a covariate,
N = 100.

Bias Std RMSE

Design Estimator α β α β α β

II GMM −0.029 0.002 0.388 0.130 0.396 0.131
RML −0.005 −0.006 0.106 0.093 0.107 0.094

FOSLS −0.005 −0.006 0.107 0.098 0.107 0.099
VI GMM −0.060 −0.026 0.304 0.065 0.313 0.066

RML −0.021 0.023 0.059 0.046 0.059 0.047
FOSLS −0.020 0.023 0.063 0.047 0.063 0.048

X GMM −0.074 −0.011 0.065 0.309 0.067 0.309
RML −0.004 0.009 0.048 0.182 0.048 0.183

FSOLS −0.005 0.009 0.048 0.183 0.048 0.184
XII GMM −0.038 −0.019 0.088 0.344 0.096 0.344

RML 0.000 0.006 0.058 0.178 0.058 0.179
FOSLS −0.030 0.003 0.058 0.180 0.058 0.180

6. Application

In this section we use a real data example to demonstrate the practical usefulness
of the SLS approach in comparison with the IV approach and to assess the practical
gain of efficiency over the RML estimator. In particular, we use a data set published
in Wooldridge (2010) and downloadable at http://mitpress.mit.edu/sites/default/files/
titles/content/wooldridge/statafiles.zip (as of 28 April 2014). The dataset airfare.dta
contains data on airfares, number of passengers, distance, and the market share of the
largest carrier for each of the top 1149 city-pair markets within the contiguous 48 US states
for the fourth quarters of 1997 through 2000. A detailed description of the data can be

http://mitpress.mit.edu/sites/default/files/titles/content/wooldridge/statafiles.zip
http://mitpress.mit.edu/sites/default/files/titles/content/wooldridge/statafiles.zip
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found at http://academic.reed.edu/economics/parker/s10/312/Asgns/proj3.html (as of
28 April 2014).

The main factors that influence airfares are the flight distance (ldist), average number
of passengers (lpassne), and market concentration (concen). All variables except concen are
measured in logarithmic scale. However, while the first factor is time invariant exogenous
variable, the other two factors are clearly endogenous because they are also influenced
by the airfare. Since the airlines usually set the current airfare by adjusting the previous
year’s fare, a linear dynamic regression model with unobserved route heterogeneity and
time dummies may be appropriate to measure the effect of the determinants. Indeed,
from bivariate scatterplots one can clearly see that the linear dependence between the
current and previous airfares, lfare and lfare1 respectively, and moderate positive linear
association between lfare and ldist. However, although theoretically concen and lfare
should be positively correlated, this is not clearly seen. A possible explanation is that the
relation is masked by the negative correlation between concen and ldist, given the positive
correlation between lfare and ldist.

In light of these considerations, it is reasonable to start with the following model
which includes time dummies D99, D00 for years 1999, 2000, respectively:

l f areit = α0 + α1 l f arei(t−1) + β1 ldisti + β2 concenit + β3 conceni(t−1)

+β4 lpassenit + β5 lpasseni(t−1) + β6D99 + β7 D00 + ηi + εit. (14)

We first calculate the naive ordinary least squares (OLS) estimates of the proposed
Equation (14) which are shown in the OLS column of Table 5. Although the OLSE are not
consistent due to the correlation between ηi and l f arei(t−1), the high value of R2 = 0.95
reflects strong explanatory power of the regressors. So we refit the model using the two
stage linear first differenced GMM (GMM2) of Arellano and Bond (1991) and the lags
of order at least two of (l f are, concen, lpassen) as instrumental variables to deal with the
possible endogeneity of these variables. The estimates are calculated using STATA 13.0 and
the results are shown in Table 5 under Model-I.

Wooldridge (2010, p. 373) used the GMM2 to fit a first order linear dynamic model
with only concen (treated as strictly exogenous) and dummy variables and obtained the
estimated autoregressive parameter 0.333 which is not far from ours. According to the
reported value of Sargan test (see Table 5), the GMM sequential moments based on the
reduced form of model (14) are not rejected. However, the estimated elasticity of lfare with
respect to concen is negative (p-value = 0.059). A possible explanation for this unexpected
sign is the problem of weak instruments which is likely to occur in identifying β2 given
the strong positive linear correlation between concen and concen1. This is similar to the
situation where the first differenced GMM estimator is used to estimate the autoregressive
parameter when it is close to one (Blundell and Bond 1998). This problem causes inflation
in the coefficient variance and leads to unreliable estimates. This is an example where the
RE approach with the level data is preferred over the FE approach with differenced data,
because the former does not depend on the instrumental variables and hence is able to give
more reliable estimates.

However, since the sequential moments are correctly specified in Model-I, the GMM
estimates can still be used to recover the within group errors εit and route effect ηi. We fol-
low Arellano (2003, p. 118–19) to estimate the time effect for year 1998 and subsequently ηi.
Then realizations of εit are obtained directly from Equation (14). Since bivariate scatterplots
of η̂i and the initial values (1997) of the variables (lfare0, concen0, lpassen0, and ldsit0)
show possible linear relationships between ηi and these initial values, we fit the following
auxiliary equation where all coefficients are significant at 0.01 level of significance:

η̂i = −5.507 + 0.641 l f arei0 + 0.464 conceni0 − 0.041 ldisti0 + 0.286 lpasseni0. (15)

http://academic.reed.edu/economics/parker/s10/312/Asgns/proj3.html
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Further, simple diagnostics show that ε̂it have constant variance across time and
no significant autocorrelation, hence the assumptions on ηi and εit seem reasonable for
model (14). These assumptions will be implicitly tested by using our SW test latter.

Based on Equation (15) we use the ‘lme’ command in R to calculate the RML estimates
of the following equation and the results are given in Table 5 under Model-I.

l f areit = θ0 + α1 l f arei(t−1) + β1 ldisti + β2 concenit + β3 conceni(t−1)

+β4 lpassenit + β5 lpasseni(t−1) + β6D99 + β7 D00 + θ1 l f arei0

+θ2 conceni0 + θ3 lpasseni0 + η∗i + εit. (16)

A normal QQ plot of the corresponding residuals ε̂it shows a flat tail symmetric
distribution that can be approximated by a Student t distribution with df = 5, indicating
the possibility of efficiency gain by applying the FOSLS estimator. Hence we use the sample
skewness and kurtosis of ε̂it and η̂∗i to calculate the optimal weight matrix for the FOSLS.
To save space we report only the estimated coefficients of the main factors in Table 5, where
the standard errors of GMM2 are computed using the robust formula, while the standard
errors of FOSLS and RML are computed using Formula (9) and (A14), respectively.

Table 5. The models fitted to airfare data with coefficient estimates in bold and standard errors in regular font. The standard
errors of FOSLS and RML are computed using (9) and (A14), respectively.

Model-I Model-II Model-III Model-IV

Coef. OLS GMM2 RML FOSLS GMM2 RML FOSLS GMM2 RML FOSLS GMM2 RML FOSLS

Const: θ0 0.153 — 0.256 −0.122 — 0.248 0.723 — 0.243 0.786 — 0.279 0.708
— — 0.032 0.032 — 0.026 0.025 — 0.010 0.010 — 0.051 0.050

lfare1: α1 0.929 0.216 0.374 0.536 0.216 0.377 0.461 0.157 0.373 0.817 0.169 0.147 0.823
— 0.100 0.039 0.033 0.100 0.014 0.013 0.080 0.009 0.009 0.072 0.017 0.017

ldist: β1 0.031 — 0.049 0.066 — 0.051 0.091 — 0.052 −0.007 — 0.062 −0.019
— — 0.004 0.004 — 0.003 0.003 — 0.001 0.001 — 0.006 0.006

concen: β2 0.119 −0.849 0.108 0.048 −0.849 0.091 0.162 −0.217 0.080 0.070 −0.842 0.095 0.077
— 0.449 0.018 0.018 0.449 0.011 0.011 0.167 0.003 0.003 0.389 0.020 0.019

concen1:
β3

−0.076 0.325 0.013 0.040 0.325 −0.015 −0.032 — — — 0.320 0.000 −0.106

— 0.215 0.022 0.022 0.215 0.011 0.011 — — — 0.187 0.020 0.019
lpassen: β4 −0.374 −0.404 −0.367 −0.556 −0.404 −0.367 −0.108 −0.450 −0.367 −0.094 −0.382 −0.333 −0.084

— 0.081 0.006 0.006 0.081 0.004 0.004 0.057 0.002 0.002 0.060 0.007 0.007
lpassen1:

β5
0.374 0.103 0.175 0.427 0.103 0.176 −0.014 0.106 0.175 0.005 — — —

— 0.141 0.021 0.019 0.141 0.006 0.006 0.111 0.003 0.003 — — —
D99: β6 0.000 0.003 0.016 0.009 0.003 0.016 0.037 0.020 0.016 −0.017 0.005 0.023 −0.014

— 0.013 0.003 0.003 0.013 0.002 0.002 0.006 0.001 0.001 0.012 0.003 0.003
D00: β7 0.042 0.070 0.074 0.060 0.070 0.073 0.092 0.087 0.073 −0.003 0.078 0.090 0.073

— 0.015 0.003 0.003 0.015 0.003 0.002 0.011 0.001 0.001 0.012 0.003 0.003

Diagnostic Statistics
SW/Sargan 6.41 20.98 6.41 4.01 13.90 335.80 8.16 8545.16

p-value 0.268 0.013 0.268 0.911 0.031 0.000 0.226 0.000
RMSE 0.09 5.12 4.02 3.23 5.12 4.04 2.66 5.12 4.07 0.69 5.12 6.01 0.74

In Model-I, while the Sargan test does not reject the GMM sequential moments
(p-value = 0.268), our SW test shows fairly strong evidence against the first and second
moment specification given by Equations (3) and (4) (p-value = 0.013). This motivates us
to check the reliability of SW test by examining its empirical sampling distribution under
(3) and (4) as follows. First, we use the RML estimates of Model-I to generate data from
(16), and draw η∗i and εit from Student t distribution with df = 6 and 5 respectively to be as
close as possible to the estimated residuals and random effect of Model-I. Second, we use
the generated data to fit (16) using the RML followed by FOSLS and then calculate the SW
statistic. We repeat these two steps 1000 times to obtain an approximation to the sampling
distribution of SW statistics under H0. Figure 2 confirms that a sample size of 1149 routes
is sufficient for the empirical sampling distribution to be close to the asymptotic one χ2

9
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under H0. Consequently Model-I needs to be modified by adding or eliminating some
variables to pass the SW test.

To proceed, we fit (16) again without concen0 because it is not of main interest and
has weak correlation with η̂i. This leads to Model-II which contains the same explanatory
variables as Model-I and of course the same value of Sargan test (6.41). On the other hand,
the value of SW statistic drops to 4.01 which is insignificant at any reasonable level of
significance. This suggests that Model-II should be used for testing purpose provided that
the signs of FOSLS estimates are consistent with the economic theory. The robust standard
errors of the FOSLS are computed by Theorem 1 and are reported in Table 6, according
to which two variables concen1 and lpassen1 are the candidates to be dropped from the
model.

SW Test Statistic

D
en

si
ty

0 5 10 15 20

0.
00

0.
04

0.
08

χ2(9)

Figure 2. The empirical vs. asymptotic sampling distribution of SW by 1000 data cloning.

Table 6. Model-II robust standard errors of FOSLS calculated by Theorem 1.

θ0 α1 β1 β2 β3 β4 β5 β6 β7
Const. lfare1 ldist concen concen1 lpassen lpassen1 D99 D00

0.061 0.041 0.007 0.034 0.034 0.026 0.023 0.004 0.005

Model-III is obtained by dropping concen1 only from Model-II, but this new speci-
fication is rejected by both Sargan and SW test. Consequently Model-IV is obtained by
dropping lpassen1 only from Model-II. Interestingly, while SW test rejects Model-IV speci-
fication, Sargan test doesn’t reject the GMM sequential moments of this model. However,
the GMM estimate of β2 is negative, which contradicts the economic theory. It follows
that Model-IV is not desirable and instead Model-II is preferred. It does include both
concen1 and lpassen1 although they may be insignificant according to the robust standard
errors. On the other hand, if the standard errors in Table 5 are used, then both concen1 and
lpassen1 are significant according to FOSLS and only lpassen1 is according to RML. Since
Model-III is rejected by SW test, it follows that using the information inherent in the fourth
moment through FOSLS is effective in keeping the variable concen1 in Model-II.

7. Conclusions and Discussion

We studied the SLS approach as an alternative to the commonly used random effects
ML (RML) or differenced-GMM estimation for linear dynamic panel data models. Our
approach is based on the first two conditional moments of the outcome process and does
not postulate any distributional assumptions on the error components in the model. The
asymptotic and finite sample properties and practical merits of the proposed estimators
are thoroughly investigated.
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This research reveals the following interesting new findings. First, differencing data
and using instrumental variables may cause substantial loss of information and produce
misleading relations, specially when the time varying variables are generated from autore-
gressive process with high autocorrelation (which is common in economic data). In such
a case the linear first-differenced GMM or other similar methods not only are unable to
estimate the effect of the time invariant variables, but also, more harmfully, weakly identify
the effect of the time variant explanatory variables. In contrast the SLS approach makes
use of the information inherent in the level data and therefore can improve the estimation
precision and the goodness of fit considerably.

Second, the information in the sample skewness and kurtosis of the within group
residuals can be utilized by our OSLS to gain more efficiency over the RML and conse-
quently save important explanatory variables from being wrongly eliminated. In other
words, by using the extra efficiency of the OSLS one can avoid falling into misspecification
traps. Third, our newly proposed diagnostic test proved to be very useful not only in
validating the working conditional moments but also for model selection purpose, while
usual goodness of fit criteria such as RMSE, R2 or AIC may be misleading when the model
is incorrectly specified.

We have explicitly dealt with an AR(1) model for the simplicity of notation. However,
our approach can be extended to more general AR(p) models. For example, It is straight-
forward to calculate the FOSLS1 in Section 4 using a generalized form of the transformation
matrix C and the deviation form of the moments as in (10) and (11).

This work also raises some interesting points for future research. Although our diag-
nostic test provides a systematic built-in tool to validate the model conditional moments
assumption, in practice it would be interesting to run some sensitivity analysis to investi-
gate the consequences of possible non-rejected deviations from this assumption. It would
also be interesting to study the properties of the SW test and extend it to check the working
assumption on the third and fourth moments. Last but not least, other general methods
such as GMM or equivalently estimating equations applied on level data could have simi-
lar asymptotic properties as our approach. However, it is important and worthwhile to
compare their finite sample properties and practical implications in real data analysis. The
current work provides a complete set of tools for the inference in linear dynamic models
with level data which has not been studied so far in the literature.
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Appendix A. Regularity Conditions

To establish the asymptotic properties of the SLS estimator γ̂N , the following regularity
conditions are assumed, where ‖·‖ denotes the Euclidean norm.
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Assumption A1. The parameter space Γ is a compact subset of IRp+`+2.

Assumption A2. f j(yi0, xi, θ), j = 1, 2 are Borel measurable functions of (yi0, xi) for each θ in
the corresponding parameter space Θ, and are continuous functions of θ with probability one.
Furthermore, for all t,

E‖W1‖
(

y4
10 + sup

Θ

f 2
2 (y10, x1, θ) + ‖x1t‖4 + η4

1 + ε4
1t + 1

)
< ∞.

Assumption A3. E[h1(γ)− h1(γ0)]
′W1[h1(γ)− h1(γ0)] = 0 if and only if γ = γ0.

Assumption A4. With probability one, f j(yi0, xi, θ), j = 1, 2 are twice continuously differentiable
in int(Θ). Furthermore, for j = 1, 2,

E‖W1‖(y2
10 + ‖x1‖2 + 1)2−j sup

N (θ0)

∥∥∥∥∂ f j(y10, x1, θ)

∂θ

∥∥∥∥2

+

∥∥∥∥∥∂2 f j(y10, x1, θ)

∂θ∂θ′

∥∥∥∥∥
2
 < ∞,

where N (θ0) ⊂ int(Θ) is a closed neighborhood of θ0.

Assumption A5. The matrix

A = E
{

∂h′1(γ0)

∂γ
W1

∂h1(γ0)

∂γ′

}
in (6) is nonsingular.

Assumption A6. It holds

E‖W1‖2

(
y8

10 + ‖x1‖8 + f 4
2 (y10, θ0) + η8

1 + ε8
1t

+
(

y4
10 + ‖x1‖4 + 1

)∥∥∥∥∂ f1(y10, x1, θ0)

∂θ

∥∥∥∥4

+

∥∥∥∥∂ f2(y10, x1, θ0)

∂θ

∥∥∥∥4

+ 1

)
< ∞.

Note that Assumptions A1–A6 are standard regularity conditions in the M-estimation
literature. Assumption A3 is necessary and sufficient for parameter identification, while
Assumptions A2, A4 and A6 are sufficient but not necessary.

Furthermore, for the FOSLSE to be consistent, it is sufficient that

E sup
Γ∗

∥∥∥U−1
1 (γ∗)

∥∥∥(y4
10 + ‖x1‖4 + sup

Θ

f 2
2 (y10, x1, θ) + η4

1 + ε4
1t + 1

)
< ∞, (A1)

where U−1
1 is as in Theorem 3, γ∗ is the vector containing all generic parameters in U−1

1
including γ, and Γ∗ is the corresponding compact parameter space.

Although Assumptions A2–A6 and condition (A1) look complicated for the sake of
generality, they can be simplified by specifying the functional forms of E(η j

i |yi0, xi), j =

1, 2, 3, 4 and E(εj
it|yi0, xi), j = 3, 4. For example, under (12)–(13), U−1

i has a special structure
so that assumptions A2, A4, A6 and condition (A1) are implied by E(y4

i0) < ∞.
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Appendix B. Proof of Theorem 1 (1)

For the simplicity of notation, we use f j, yt, x̃t, at, cts, dts, wts, kts for f j(y10, x1, θ),
y1t, x̃1t(α), at(α), cts(α), dts(α), w1ts(α), and k1ts(α) respectively.

First, by Cauchy-Schwarz inequality we have

‖h1(γ)‖2 ≤ 2
T

∑
t=1

y2
t + 8y2

0

T

∑
t=1

α2t + 8 f 2
1

T

∑
t=1

a2
t + 4

T

∑
t=1

β′ x̃t x̃′tβ + 2
T

∑
1≤s≤t

y2
t y2

s

+ 16y4
0

T

∑
1≤s≤t

α2(t+s) + 16 f 2
2

T

∑
1≤s≤t

a2
t a2

s + 16σ4c2
ts + 16y2

0 f 2
1

T

∑
1≤s≤t

d2
ts

+ 8
T

∑
1≤s≤t

(
β′ x̃t x̃′sβ

)2
+ 16y2

0

T

∑
1≤s≤t

(
β′wts

)2
+ 16 f 2

1

T

∑
1≤s≤t

(
β′kts

)2,

E‖W1‖(ytys)2 ≤ E‖W1‖y4
t E‖W1‖y4

s and E‖W1‖y2
0 f 2

1 ≤ E‖W1‖y4
0 E‖W1‖ f 2

2 . Therefore
by Assumptions A1 and A2 we have E supΓ |q1(γ)| ≤ E‖W1‖ supΓ ‖h1(γ)‖2 < ∞. It
follows from the uniform law of large numbers (ULLN Amemiya 1985; Jennrich 1969) that

sup
Γ

∣∣∣∣∣ 1
N

N

∑
i=1

qi(γ)− Eq1(γ)

∣∣∣∣∣ a.s.−→ 0 as N → ∞ and T is fixed. (A2)

Second, since Eq1(γ) = Eh′1(γ0)W1h1(γ0) + 2E[h1(γ)− h1(γ0)]
′W1h1(γ0), we have

Eq1(γ) ≥ Eq1(γ0) and the equality holds if and only if γ = γ0. Finally the result follows
from (A2) and Lemma 1 of Wang and Leblanc (2008).

Appendix C. Proof of Theorem 1 (2)

First, by the mean value theorem for random functions (Jennrich 1969), Assumptions A1–A4
guarantee that

1γ̂N∈N (γ0)

[
N

∑
i=1

si(γ0) +

(
N

∑
i=1

H̄ i

)
(γ̂N − γ0)

]
= 0, (A3)

where

si(γ) =
∂qi(γ)

∂γ
= 2

∂h′i(γ)
∂γ

W ihi(γ),

matrix H̄ i has rows given by
∂2qi(γ̄

r
N)

∂γ(r)∂γ′
, r = 1, 2, . . . , (p + ` + 2), and γ̄r

N are measur-

able mappings into N (γ0) and lying on the segment joining γ̂N and γ0. By the triangle
inequality we have

∥∥∥∥∂2q1(γ)

∂γ∂γ′

∥∥∥∥ ≤ 2
∥∥∥∥∂h′1(γ)

∂γ
W1

∂h1(γ)

∂γ′

∥∥∥∥+ 2

∥∥∥∥∥∥
(

∂2h′1(γ)
∂γ(i)∂γ(j)

W1h1(γ)

)
i,j

∥∥∥∥∥∥, (A4)

and further by Cauchy-Schwarz inequality we have

E sup
N (γ0)

∥∥∥∥∂h′1(γ)
∂γ

W1
∂h1(γ)

∂γ′

∥∥∥∥ ≤ E‖W1‖ sup
N (γ0)

∥∥∥∥∂h′1(γ)
∂γ

∥∥∥∥2
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and the following inequalities for 1 ≤ s ≤ t ≤ T,(
∂µ1t(γ)

∂α

)2

≤ 4t2α2(t−1)y2
0 + 4

(
∂at

∂α

)2
f2 + 2

(
β′

∂x̃t

∂α

)2
,(

∂ν1ts(γ)

∂α

)2

≤ 8(t + s)2α2(t+s−1)y4
0 + 8 f 2

2

(
as

∂at

∂α
+ at

∂as

∂α

)2
+ 8σ4

(
∂cts

∂α

)2

+ 8y2
0 f2

(
∂dts

∂α

)2
+ 8y2

0

(
β′

∂wts

∂α

)2
+ 8 f2

(
β′

∂kts

∂α

)2

+ 8
(

β′
∂x̃t

∂α

)2(
β′ x̃s

)2
+ 8
(

β′
∂x̃s

∂α

)2(
β′ x̃t

)2,∥∥∥∥∂ν1ts(γ)

∂θ

∥∥∥∥2

≤ 4a2
t a2

s

∥∥∥∥∂ f2

∂θ

∥∥∥∥2
+ 4d2

tsy2
0

∥∥∥∥∂ f1

∂θ

∥∥∥∥2
+ 2
(

β′kts
)2
∥∥∥∥∂ f1

∂θ

∥∥∥∥2
,∥∥∥∥∂ν1ts(γ)

∂β

∥∥∥∥2

≤ 4
∥∥x̃t x̃′s

∥∥2‖β‖2 + 4y2
0‖wts‖2 + 4 f2‖kts‖2.

Hence it follows from Assumptions A2 and A4 that

E‖W1‖ sup
N (γ0)

∥∥∥∥∂h′1(γ)
∂γ

∥∥∥∥2

< ∞. (A5)

Similarly by the Cauchy-Schwarz inequality and Assumptions A2 and A4 we have

E sup
N (γ0)

∥∥∥∥∥∥
(

∂2h′1(γ)
∂γ(i)∂γ(j)

W1h1(γ)

)
i,j

∥∥∥∥∥∥
≤ E‖W1‖ sup

N (γ0)

‖h1(γ)‖2E‖W1‖ sup
N (γ0)

p+`+2

∑
i,j

∥∥∥∥∥ ∂2h′1(γ)
∂γ(i)∂γ(j)

∥∥∥∥∥
2
 < ∞. (A6)

Combining inequalities (A4), (A5), (A6), Assumptions A2, A4 and the ULLN we have

sup
N (γ0)

∥∥∥∥∥ 1
N

N

∑
i=1

∂2qi(γ)

∂γ∂γ′
− E

∂2q1(γ)

∂γ∂γ′

∥∥∥∥∥ a.s.−→ 0 as N → ∞ for fixed T. (A7)

It follows from Lemma 2 of Wang and Leblanc (2008) and the strong consistency of
γ̂N that

1
N

N

∑
i=1

H̄ i
a.s.−→ E

∂2q1(γ0)

∂γ∂γ′
= 2A as N → ∞ for fixed T. (A8)

Further, by Assumption A6 and the central limit theorem (CLT) we have

1√
N

N

∑
i=1

si(γ0)
d→ N(0, 4B) as N → ∞ for fixed T,

where B is given in (7). Hence by Slutzky theorem and (A3), (A8) we have, for fixed T,

√
N(γ̂N − γ0) = −(2A)−1 1√

N

N

∑
i=1

si(γ0) + op(1). (A9)
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Appendix D. Proof of Theorem 2

First, by Theorem 1, Assumption A2 and the mean value theorem, for sufficiently
large N,

h(γ̂N) =
1
N

N

∑
i=1

hi(γ0) +
∂h(γ̃N)

∂γ′
(γ̂N − γ0), (A10)

where ‖γ̃N − γ0‖ ≤ ‖γ̂N − γ0‖. By (A3), for sufficiently large N such that γ̂N ∈ N (γ0),(
N

∑
i=1

H̄ i

)
(γ̂N − γ0) = −2

N

∑
i=1

∂h′i(γ0)

∂γ
W ihi(γ0). (A11)

Further, by (A8),
1
N

N

∑
i=1

H̄ i = 2A + op(1) (A12)

and analog to the proof of (A8), by Assumptions A2, A4 and the ULLN we can verify that

∂h(γ̃N)

∂γ′
=

1
N

N

∑
i=1

∂hi(γ̃N)

∂γ′
= E

{
∂h1(γ0)

∂γ′

}
+ op(1). (A13)

Combining (A10)–(A13) we obtain

√
N h(γ̂N) =

1√
N

N

∑
i=1

hi(γ0) + E
{

∂h1(γ0)

∂γ′

}√
N(γ̂N − γ0) + op(1)

=
1√
N

N

∑
i=1

Pi(γ0)hi(γ0) + op(1), [see Equation (A9)]

where

Pi(γ0) = I − E
{

∂h1(γ0)

∂γ′

}
A−1 ∂h′i(γ0)

∂γ
W i.

Since E
{

Pi(γ0)hi(γ0)h
′
i(γ0)P

′
i(γ0)

}
is nonsingular, the result follows from the CLT.

Appendix E. Proof of Theorem 3

Let

R = U1/2
1 W1

∂h1(γ0)

∂γ′
, Q = U−1/2

1
∂h1(γ0)

∂γ′
.

Then by matrix form of Cauchy-Schwartz inequality it is straightforward to see
that E(R′R) − E(R′Q)E−1(Q′Q)E(Q′R) is nonnegative definite and is zero matrix if
W1 = U−1

1 .

Appendix F. Asymptotic Variance of the RMLE

Using the GMM setup the asymptotic variance of the RML estimator under model (1) is

F0 = E−1(K′VK
)
E
(
K′V MVK

)
E−1(K′VK

)
, (A14)

where

K′ =
(

∂µ′(γ0)

∂γ

∂vech′(S(γ0))

∂γ

)
,

V =

(
S(γ0)

−1 0
0 1

2 L′
[
S(γ0)

−1 ⊗ S(γ0)
−1]L

)
,

M =

(
S(γ0) E

{
u1vech′(u1u′1)|y10, x1

}
. E

{
vech(u1u′1)vech′(u1u′1)|y10, x1

}
− vech(S(γ0))vech′(S(γ0))

)
,
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with µ′(γ) = (µ1t(γ), 1 ≤ t ≤ T), vech′(S(γ)) =
(
atas( f2 − f 2

1 ) + σ2cts, 1 ≤ s ≤ t ≤ T
)

and u1 = (y1t − µ1t(γ0), 1 ≤ t ≤ T)′. Here vec and vech are the usual operators that stack
the columns and lower triangle columns respectively of a matrix to form a vector, and L is
the so-called selection matrix such as vec(S(γ)) = L vech(S(γ)). Using the same notations,
the asymptotic variance of the optimal SLS estimator is given by

F∗0 = E−1
(

K′M−1K
)

. (A15)

Again, by the matrix form of Cauchy-Schwartz inequality F0 − F∗0 is nonnegative
definite and is zero matrix if and only if

MVK = KE−1
(

K′M−1K
)

E
(
K′VK

)
. (A16)
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