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Abstract: This paper evaluates the first-differenced maximum likelihood (FDML) and the continu-
ously updating system generalized method of moments (CU-GMM) estimators of dynamic panel
models when the data is close to non-stationary. This case is far from trivial, as a high degree
of persistence is the norm rather than the exception in economic panels, particularly in financial
management. While the CU-GMM is shown to have lower bias and higher power, it suffers from
severe size distortions, which are exacerbated when the data approaches non-stationarity.
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1. Introduction

Dynamic panel data models are of crucial importance in empirical econometrics,
since their applications can be found in virtually all subfields of economics. For empirical
finance research in particular, several of the most cited papers in recent years have applied
the dynamic panel model Beck et al. (2000); Midrigan and Xu (2014); Wintoki et al. (2012).
In the financial management literature, the dynamic panel model has been used to an-
swer, for instance, whether cash flow impacts innovation (Brown et al. 2009; Carpenter
and Guariglia 2008), and how dividend smoothing differs between private and pub-
lic firms (Michaely and Roberts 2012). The model is chiefly used when the number of
cross-sections, N, is high, but the number of time periods, T, is relatively small.

The econometric techniques for parameter estimation in the dynamic panel model
have traditionally been based on the generalized method of moments, GMM. Two GMM-
based methods for dynamic panels have been particularly successful: the difference GMM
estimator, which is due to Arellano and Bond (1991), and the system GMM of Arellano
and Bover (1995) and Blundell and Bond (1998). A likelihood-based estimator, the first-
differenced ML (FDML), was developed by Hsiao et al. (2002). However, the performance of
both these classes of estimators in the situation in which the data is close to non-stationary
remains relatively unexplored. For the GMM, the system estimator is usually preferred
to the difference estimator (cf. Blundell and Bond 1998; Hayakwa and Pesaran 2015).
This is because of the considerable increase in bias that results from using the difference
GMM in lieu of the system GMM for highly persistent data. Additionally, Hansen et al.
(1996) have made further contributions to GMM theory by introducing the so-called
continuously updating GMM (CU-GMM), which can be shown to decrease the finite-sample
bias of GMM estimators.1 As a high degree of persistence is the norm rather than an
exception in economic panels, this is a situation with potentially serious ramifications.
The finite-sample properties of the FDML in the almost non-stationary setting has not been
evaluated either. Failing to perform in the nearly non-stationary case would be considered
a serious drawback of this relatively new method, potentially limiting its usability in
practical situations.

In this paper, I compare the local-to-unit-root performance of the system CU-GMM,
which was tailor-made for this setting, with the FDML. The results of the Monte Carlo
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simulations show that the FDML has higher absolute bias in the nearly non-stationary
case, particularly for low values of T, compared to the continuously updating system
GMM. Moreover, for low values of T, the power of the FDML is lower than for the system
CU-GMM. However, the CU-GMM estimator suffers from severe oversizing, which is
exacerbated as N and T increase. This size distorsion problem was not seen when applying
the FDML.

This paper contributes to a rich literature on the CU-GMM and FDML estimators
of dynamic panel models. Recent contributions on the CU-GMM include the work by
Ashley and Sun (2016), who adjust the standard two-step estimator by applying continuous
updating on the autoregressive parameter only, and by Kleibergen and Zhan (2021) on
CU-GMM robustness tests for under weak identification and potential misspecification.
Further, a second strain in the literature focuses on the sensitivity of the CU-GMM to the
choice of instruments. Newey (2004) gives standard errors for the CU-GMM that adjust for
the number of overidentifying restrictions, whereas Donald et al. (2009) develop moment
selection criteria for various GMM-based estimators, including the CU-GMM. Recent
research on the FDML includes, for instance, extensions to the situation with arbitrary
initial conditions (Kruiniger 2018b).

Despite its good theoretical properties, the FDML is more seldom used by practi-
tioners compared to the GMM. What is more, recent research has shown that the FDML
outperforms the GMM in terms of size, power, and bias in most finite-sample cases:
Elhorst (2010) and Hsiao and Zhang (2015) provide evidence when comparing with the
Arellano-Bond difference GMM, and Hayakwa and Pesaran (2015) extend this to include
the system GMM, including the CU-adjusted estimator. However, none of these papers
consider the situation with local to unit root data2, for which the Arellano-Bond estimator
is inconsistent due to weak instruments. The present paper aims to fill this gap.

The rest of the paper is structured as follows. Section 2 introduces the CU-GMM and
FDML estimators for the dynamic panel model. Section 3 describes the Monte Carlo design.
Section 4 presents the results of the simulation study. The paper concludes with Section 5.

2. Theory

The AR(1) dynamic panel data model can be described by

yit = αi + φyi,t−1 + uit (1)

for individuals i = 1, . . . , N and time periods t = 1, . . . , T, where αi are the fixed ef-
fects, φ is the autoregressive (AR) parameter, and uit is the idiosyncratic error term. It
is assumed that the error terms uit are independent and identically distributed, and
E[uit] = 0, V[uit] = σ2

u , E[|uit|4] < ∞ and E[uituis] = 0 for each t 6= s. Further, it
is assumed that the initial observations yi0 = Op(1) are observed, and that E[αi] = 0,
V[αi] = σ2

α = limN→∞
1
N ∑N

i=1 α2
i < ∞, E[αiuit] = 0, and E[yi0uit] = 0. Using the fixed

effects estimator to estimate (1) gives biased estimates of φ (Nickell 1981). For T large, we
can write plimN−→∞(φ̂− φ) ≈ −(1 + φ)/(T− 1), meaning that when φ is near unity, the
bias can be sizable.

The first to propose an unbiased estimator of (1) were Anderson and Hsiao (1981).
However, the Anderson-Hsiao estimator is asymptotically inefficient for all values of φ,
and the absolute bias and variance of the estimator both increase significantly when φ
approaches unity (cf. Arellano and Bover 1995). These problems have caused the empirical
importance of the Anderson-Hsiao estimator to decline significantly. Instead, this paper
considers GMM and FDML, which dominate present-day empirical research.

2.1. CU-GMM

The first estimation technique considered in this paper is the system CU-GMM. I shall
focus particularly on the performance of the CU version of the GMM in this paper, as it has
received relatively little attention in the literature compared to the one-step and two-step
GMM estimators.
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Let πit = αi + uit. Then, Arellano and Bond (1991) show that for t = 3, . . . , T, the
moment conditions E[yis∆πis] = 0, where ∆ is the difference operator, can be utilized. If
uit ∼ MA(0), it holds that s ≥ 2, and s ≥ 3 if uit ∼ MA(1). Now, the instrument matrix
Zi is

Zi =


yi1 0 0 . . . 0 . . . 0
0 yi1 yi2 . . . 0 . . . 0
...

...
... . . .

... . . .
...

0 0 0 . . . yi1 . . . yi,T−2

 (2)

and the vector of first-differenced errors is ∆πi = (∆πi3, . . . , ∆πiT)
′. Using this notation, the

moment conditions can be written E[Z′i∆πi] = 0 for i = 1, . . . , N. However, Blundell and
Bond (1998) show that the Arellano-Bond estimator significantly underestimates φ in the
local-to-unity case. In order to remedy this problem, it is possible to introduce additional
moment conditions, namely E[πit∆yi,t−s] = 0 for t = 3, . . . , T and i = 1, . . . , N. For uit ∼
MA(0), it holds that s = 1, and if uit ∼ MA(1), then s = 2. The joint moment conditions
can be written in matrix form as E[Z̃′iπ

∗
i ] = 0 where Z̃i = diag(Zi, ∆yi2, ∆yi3, . . . , ∆yi,T−1),

π∗i = (∆πi, πi)
′, where ∆πi is as defined previously and πi = (πi3, . . . , πiT)

′, for i =
1, . . . , N. Using these additional moment conditions, the Blundell-Bond (otherwise known
as the system GMM) CU estimator is the solution to the optimization problem

arg min
φ∈Φ

(
1
N

N

∑
i=1

π∗i
′Z̃i

)
WN(φ)

(
1
N

N

∑
i=1

Z̃′iπ
∗
i

)
(3)

where Φ is the compact set of all possible parameters and WN is a positive semi-definite

weight matrix, for which it holds that WN
P−→ W by the law of large numbers. The CU

technique allows for the weight matrix to be a function of φ. Thus, instead of fixing WN in
each stage of the estimation, it is altered as the value of φ̂ changes during the minimization
process. This reduces the finite-sample bias of the estimator without altering its asymptotic
properties (Hansen et al. 1996; Newey and Smith 2004; Pakes and Pollard 1989).

I will use φ̂GMM to denote the continuously updating system GMM. Under stationarity,
the following theorem regarding the limiting distribution of φ̂GMM holds.

Theorem 1. Given |φ| < 1, if (log T)2/N −→ 0, and provided that T/N −→ c, 0 ≤ c < ∞,
the limiting distribution of the GMM estimator φ̂GMM of φ is

√
NT
[

φ̂GMM −
(

φ− 1
N
(1 + φ)

)]
L−→ N (0, 1− φ2) (4)

Proof. See Alvarez and Arellano (2003).

The asymptotic bias is Op(
√

T/N), which implies that as N/T −→ ∞, the asymp-
totic bias disappears. Moreover, the limiting variance in (4) is equal to the Cramér-Rao
lower bound (Hahn and Kuersteiner 2002). Hence, as N/T −→ ∞, the GMM estimator is
asymptotically efficient. However, if |φ| = 1, the limiting distribution is no longer normal,
as manifested by Theorem 2.

Theorem 2. For |φ| = 1, the limiting distribution of the GMM estimator φ̂GMM of φ is

√
T(φ̂GMM − 1) L−→ 2 C (5)

as N, T −→ ∞ jointly.

Proof. See Phillips (2014).

Here, C denotes a standard Cauchy variate. However, it can be shown that normality
can break down even for values of φ local to unity, although it has not been empirically



J. Risk Financial Manag. 2021, 14, 405 4 of 9

tested how close to unity φ must be in order for the limiting distribution to become Cauchy
(Phillips 2014).

2.2. FDML

An alternative approach to estimating φ is by using FDML. In order to eliminate αi,
take the first difference of (1) to obtain

∆yit = φ∆yi,t−1 + ∆uit (6)

For t = 1, the above expression is not well defined, since ∆yi1 = φ∆yi0 + ∆ui1 and
∆yi0 is not observable. However, by continuous substitution,

∆yi1 = φm∆yi,−m+1 +
m−1

∑
j=0

φj∆ui,1−j = φm∆yi,−m+1 + ηi1 (7)

Now, the analysis will differ slightly depending on whether the process is stationary
or not. Assume first that |φ| < 1 and m −→ ∞. Then, it holds for t = 3, . . . , T and i =
1, . . . , N that E[∆yi1] = 0, V[∆yi1] = 2σ2

u/(1 + φ), C[ηi1, ∆ui2] = −σ2
u , and C[ηi1, ∆uit] = 0.

Alternatively, if |φ| ≥ 1, the process has started from a finite point m that is behind the 0:th
time point, so that E[∆yi1] = b, V[∆yi1] = cσ2

u , C[ηi1, ∆ui2] = −σ2
u , and C[ηi1, ∆uit] = 0,

where b, c ∈ R+. Assuming stationary increments, let ∆yi be as defined previously, and
∆u∗i = (∆yi1 − b∗, ∆ui2, . . . , ∆uiT)

′. Here, b∗ = 0 if |φ| < 1 and b∗ = b if |φ| ≥ 1. The
covariance matrix of ∆u∗i is C(∆u∗i ) = Ω = σ2

uΩ∗, where Ω∗ is

Ω∗ =


ω −1 0 . . . 0
−1 2 −1 . . . 0
0 −1 2 . . . 0
...

...
...

...
...

0 0 0 −1 2

 (8)

where ω = (1/σ2
u)V(∆yi1). This is equal to 2/(1 + φ) if |φ| < 1, and c else. To find the

likelihood function of ∆yi, use that ∆u∗i is a linear combination of ∆yi, and that the Jacobian
of this transformation is equal to unity. Thus, the joint probability density functions (p.d.fs)
of ∆u∗i and ∆yi are equal. Then, assuming that the uit:s are independent normal, the joint
p.d.f. of ∆yi is equal to the likelihood function of (1), and is given by

L =
N

∏
i=1

(2π)−T/2|Ω|−1/2exp
{
−1

2
u∗i
′Ω−1u∗i

}
(9)

The corresponding log-likelihood is

logL =
−NT

2
log(2π)− N

2
log|Ω| − 1

2

N

∑
i=1

u∗i
′Ω−1u∗i (10)

The two unknown elements of Ω are σ2
u and ω. Proceeding from here, the FDML

technique involves utilizing the Anderson-Hsiao estimator φ̂AH to find an initial estimate of
φ. Then, the variance σ2

u is estimated by σ̂2
u = ∑N

i=1 ∑T
t=2
(
∆yit − φ̂AH∆yi,t−1

)2/2N(T − 2).
In the stationary case, ω can be estimated by 2(1 + φ̂AH)

−1. In the non-stationary case,
ω is estimated by ω̃ = 1

(N−1)σ̂2
u

∑N
i=1(∆yi1 − b̂)2, where a consistent estimator of b is b̂ =

N−1 ∑N
i=1 ∆yi1. Then, (10) is maximized numerically until convergence.

Theorems 3 and 4 provide the asymptotic results for the FDML.
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Theorem 3. Given |φ| < 1, for T large and N arbitrary, the limiting distribution of the FDML
estimator φ̂FDML of φ is √

NT(φ̂FDML − φ)
L−→ N (0, 1− φ2) (11)

Proof. See Kruiniger (2008a).

Hence, the FDML estimator is asymptotically unbiased, asymptotically normal and,
for T large, asymptotically efficient. For the unit root case, Theorem 4 holds.

Theorem 4. For |φ| = 1, the limiting distribution of the FDML estimator is

T
√

N(φ̂FDML − 1) L−→ N (0, 8) (12)

as N, T −→ ∞ jointly.

Proof. See Kruiniger (2008a).

The rate of convergence is Op(T
√

N), which is faster than the rate of convergence in
the stationary case, which is Op(

√
NT) according to Theorem 3. Note that normality of the

FDML does not break down in the unit root case, which is a clear contrast to the GMM.

3. Monte Carlo Setup

I now proceed to evaluate the performance of the CU-GMM and FDML in the close-
to-non-stationary setting. The model of interest is

yit = (1− φ0)αi + φ0yi,t−1 + uit (13)

where uit ∼ N (0, 1) or uit ∼ N (0, 2). Individual effects are generated according to
αi = (λi − 1)/

√
2, where λi ∼ χ2(1), so that E[αi] = 0 and V[αi] = 1.3 For the initial

observations yi0, I set yi0 = αi/(1− φ0) + ui0, where ui0 ∼ N [0, 1/(1− φ2
0)]. The AR

parameter is varied according to φ0 ∈ {0.90, 0.95, 0.99}. The number of Monte Carlo
replications is set to 1000.

4. Results

Tables 1–3 present the mean and median biases, size, and power for the FDML and
CU system GMM, using standard standard errors in computing size and power. Table 1
corresponds to φ = 0.90, Table 2 to φ = 0.95, and Table 3 is for the case when φ = 0.99.

Table 1. Mean bias, median bias, size and power for φ = 0.90.

N/T
FDML GMM

5 10 20 30 50 5 10 20 30 50

Mean bias (× 100)
50 −7.333 −1.501 −0.037 0.025 0.090 0.739 −1.496 – – –
150 −4.692 0.120 0.225 −0.006 −0.056 −2.088 −1.087 −0.709 −0.659 −0.050
500 −2.345 0.537 0.052 0.048 −0.034 −0.942 −0.439 −0.114 −0.173 −0.123

Median bias (× 100)
50 −4.397 −0.826 −0.288 −0.135 −0.0090 3.323 0.889 – – –
150 −2.993 0.077 −0.017 −0.010 0.423 −2.933 −0.071 −0.407 −0.369 1.342
500 −1.512 0.184 −0.041 0.023 −0.035 0.196 −0.053 −0.240 −0.056 −0.058

Size
50 15.0 16.6 17.7 9.6 4.8 54.5 80.0 – – –
150 14.5 20.1 10.2 6.1 5.8 32.6 40.7 57.0 71.2 97.7
500 13.5 18.8 6.3 5.3 5.0 16.5 18.4 22.8 22.8 33.3

Power (H1 : φ = 0.80)
50 26.6 43.1 75.6 98.8 100.0 60.4 89.3 – – –
150 32.1 51.2 98.5 99.9 100.0 32.3 86.0 97.2 97.5 98.7
500 38.7 79.2 99.1 100.0 100.0 83.3 98.1 100.0 100.0 100.0
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Table 2. Mean bias, median bias, size and power for φ = 0.95.

N/T
FDML GMM

5 10 20 30 50 5 10 20 30 50

Mean bias (× 100)
50 −9.397 −3.618 −0.593 0.018 0.042 2.526 −0.551 – – –
150 −6.623 −2.045 −0.075 0.129 0.034 −0.148 −1.419 −1.165 −0.842 0.355
500 −4.297 −0.785 0.172 0.074 0.053 −1.053 −0.876 −0.314 0.192 −0.141

Median bias (× 100)
50 −5.272 −1.964 −0.184 −0.055 −0.071 3.286 3.543 – – –
150 −3.379 −1.419 −0.261 −0.003 0.079 −3.679 −0.010 −0.301 −0.369 1.268
500 −2.458 0.424 −0.033 −0.047 0.056 −0.310 −0.111 −0.113 −0.076 −0.023

Size
50 14.9 15.9 17.9 19.3 12.5 68.6 87.1 – – –
150 14.4 14.2 19.5 16.8 7.5 51.3 63.4 76.4 80.2 98.6
500 18.5 13.9 17.7 9.4 3.6 29.4 36.8 38.4 41.0 50.1

Power (H1 : φ = 0.85)
50 23.5 37.0 68.0 95.3 99.6 89.0 94.8 – – –
150 31.2 46.8 96.3 99.4 99.9 86.1 91.5 96.3 97.5 99.6
500 35.7 64.2 98.9 99.8 100.0 87.0 95.2 100.0 100.0 100.0

Table 3. Mean bias, median bias, size and power for φ = 0.99.

N/T
FDML GMM

5 10 20 30 50 5 10 20 30 50

Mean bias (× 100)
50 −12.133 −5.181 −2.394 −1.382 −0.711 1.429 0.066 – – –
150 −8.169 −3.529 −1.550 −0.850 −0.361 1.411 0.082 0.090 0.064 −0.262
500 −5.734 −2.599 −0.923 −0.465 −0.183 0.479 0.059 0.027 −0.315 −0.224

Median bias (× 100)
50 −8.922 −3.323 −1.660 −0.798 −0.384 0.915 0.925 – – –
150 −4.920 −2.098 −1.037 −0.265 −0.207 0.973 0.790 0.809 0.785 0.908
500 –3.219 −1.659 −0.547 -0.270 −0.165 0.861 0.636 0.349 0.149 0.082

Size
50 18.1 15.2 12.5 13.1 14.5 77.6 92.0 – – –
150 15.5 13.2 13.3 13.0 12.5 71.4 87.9 93.0 96.2 99.1
500 13.5 15.1 13.5 13.6 14.7 67.6 80.5 82.9 86.6 89.4

Power (H1 : φ = 0.89)
50 15.0 33.7 57.8 90.0 97.2 97.8 99.0 – – –
150 26.9 41.7 89.2 95.2 98.1 97.8 98.7 99.6 99.6 99.3
500 36.1 48.2 95.1 97.5 99.8 98.5 98.1 100.0 100.0 100.0

The absolute biases are generally larger when φ is closer to unity; this applies for both
estimators. For φ = 0.90 and φ = 0.95, the FDML generally outperforms the GMM in terms
of bias except when T is low. When φ = 0.99, the GMM estimator is better for virtually
every combination of N and T; the exceptions being the mean bias for the combination of
T = 50 and N = 500, as well as the median biases for the T = 30 when N = 150 and 500.
The absolute mean and median biases are close to zero for the GMM when φ = 0.99. The
FDML performs relatively poorly when φ is this close to unity, especially when T < 20.

Considering that the Blundell-Bond version of the GMM is more or less tailor-made
for the situation with close-to-non-stationary data, the bias results do not come as a major
surprise. Also, due to the close relationship between φ̂FDML and the poor initial estimate
obtained from the Anderson-Hsiao estimator, one would expect higher absolute FDML bias
when φ is closer to unity, given the discussion in Section 2. This is confirmed by the Monte
Carlo results. The mean and median biases are generally negative for the FDML, while for
GMM, they tend to be negative for φ = 0.90 and φ = 0.95, and positive for φ = 0.99.

While the performance of the GMM is superior to the FDML in terms of bias, the size
is considerably higher than 5% for the GMM, irrespective of the value of φ. Additionally,
the size of the GMM estimator is increasing both with the AR parameter φ and with the
number of time periods, T. This effect is not observed in the likelihood estimator. The
results further show that the size problem for the GMM is exacerbated when φ is very close
to one. For example, when φ = 0.99, the size is above 96% even for N = 150 and T = 30.
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Hence, if imposed such that |φ| < 1, the value of φ is an important factor in explaining the
performance of size.

Regarding the power, it is considerably lower for the FDML, especially for small
values of T. Additionally, the power of the FDML is deteriorating as φ approaches unity.
However, when T = 30 and 50, the power of both estimators is close to 100%.

5. Concluding Remarks

This paper compares the bias, size and power of the system CU-GMM and FDML
estimators of the AR coefficient in the dynamic panel model when the process is highly
persistent, that is, when AR coefficient is local to unit root. This setting is particularly
important in empirical finance, as most financial data is persistent.

The main finding of the paper is the relatively large increase in absolute bias of the
FDML as the value of the AR parameter approaches unity. Moreover, the absolute bias
of the CU-GMM is lower for most combinations of N and T. However, the CU-GMM is
shown to suffer from severe size distortions, implying the existence of a trade-off between
precision and size. The size is increasing both with the value of the AR parameter and with
the number of time periods T. This result is a further contribution of this paper. The power
of both the FDML is considerably lower than that of the GMM when T is small. However,
the power of both estimators is shown to be close to 100% with N and T sufficiently large.

Overall, although the FDML has slightly higher bias than the CU-GMM when φ is
close to unity, its high power and correct size makes it a viable option to the hitherto
dominating GMM-based methods in most empirical settings. Thus, the findings in this
paper have broader implications for applications in the financial management field. In
empirical research, FDML estimates could be reported in lieu, or alongside, GMM estimates
when using the AR(1) dynamic panel model. Additionally, the FDML allows practitioners
to estimate the dynamic panel model when the number of time periods is close to the
number cross-sectional units (N).4 This is a fairly common situation when using financial
management data.

Finally, since dynamic panel models are highly useful in the financial sector, the results
of this paper have implications for decision-makers within the sector. This is because
precision in econometric estimates is crucial for making correct investment decisions.
Specifically, finance practitioners specialized in global quantitative strategy may use the
FDML as an alternative to the CU-GMM when, for example, monitoring for bubbles in
equity prices, or for comparing capital structure and payout policy between firms.

A limitation of the study is that there are several other GMM-based estimators widely
used by practitioners, for instance the one and two step estimators. However, the continu-
ously updating weight matrix is tailor-made for the situation with local to unit root data,
making it the obvious competitor to the FDML in the present setting.
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Notes
1 For additional examples of bias-reducing methods for GMM estimators of dynamic panel models, see Choi et al. (2010) or

Mehic (2020).
2 I consider processes for which the autoregressive parameter is greater than 0.9 to be highly persistent. The maximum values for

the autoregressive parameter were 0.8 in Elhorst (2010) and Hsiao and Zhang (2015), and 0.9 in Hayakwa and Pesaran (2015).
3 The parameterization in (15), where the individual effects are multiplied by (1− φ0), is a standard approach in the literature

when dealing with almost non-stationary data (Han and Phillips 2013; Bun et al. 2017). Without this correction, the individual
effects would have too much of an impact on the results when the true value φ0 is close to unity.

4 In Tables 1–3, this situation occurs, for instance when N = 50 and T = 20. Here, the CU-GMM cannot be estimated, as there are
too few instruments. However, the FDML can be estimated with low bias and high power in this setting, even with φ = 0.99.
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