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Abstract: One of the notable features of bitcoin is its extreme volatility. The modeling and forecasting
of bitcoin volatility are crucial for bitcoin investors’ decision-making analysis and risk management.
However, most previous studies of bitcoin volatility were founded on econometric models. Research
on bitcoin volatility forecasting using machine learning algorithms is still sparse. In this study, both
conventional econometric models and a machine learning model are used to forecast the bitcoin’s
return volatility and Value at Risk. The objective of this study is to compare their out-of-sample
performance in forecasting accuracy and risk management efficiency. The results demonstrate that
the RNN outperforms GARCH and EWMA in average forecasting performance. However, it is
less efficient in capturing the bitcoin market’s extreme events. Moreover, the RNN shows poor
performance in Value at Risk forecasting, indicating that it could not work well as the econometric
models in explaining extreme volatility. This study proposes an alternative method of bitcoin
volatility analysis and provides more motivation for economic researchers to apply machine learning
methods to the less volatile financial market conditions. Meanwhile, it also shows that the machine
learning approaches are not always more advanced than econometric models, contrary to common
belief.

Keywords: bitcoin; GARCH; machine learning; recurrent neural network; volatility; risk management

1. Introduction

Since Satoshi Nakamoto proposed the first cryptocurrency in 2009, the cryptocur-
rency market has received much attention. Bitcoin is the most successful and popular
globally, accounting for over 50% of the whole cryptocurrency market capitalization in
April 2019. Bitcoin’s enthusiasm is due to its innovational features of decentralization and
anonymity. Some public companies have started to hold bitcoin as an asset, and some
financial institutions consider bitcoin as part of their investment strategy by allocating it in
their portfolios. Many industries are interested in the blockchain technology behind bitcoin
and have even started to launch their own cryptocurrencies. The agricultural industry is
an excellent example, applying blockchain in agricultural insurance, product transactions,
supply chain, and smart agriculture (Xiong et al. 2020). Covantis, a company co-owned by
a global agribusiness group, has launched a blockchain platform for global commodities
trading. Some cryptocurrencies are connected to agricultural industry trading in the mar-
ket, for instance, Carboncoin, Blocery, and Herbalist Token. Although the application of
blockchain technology and the cryptocurrencies related to agribusiness are in the infancy
stage, it is still necessary for agribusiness researchers to understand this market. Therefore,
examining insight into the bitcoin’s behavior is a good starting point for understanding the
Agri-crypto market. Researchers’ analysis of bitcoin has received growing interest. David
Yermack (2015) studied bitcoin’s features and functions, and concluded that bitcoin appears
to be more like a speculative investment than a real currency due to its high volatility.
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So far, academic researchers have an agreement that bitcoin serves as a financial asset rather
than a real currency. Therefore, it is necessary to look into its economic properties. There
are two themes to explore: its price and risk.

People are excited about the tales of wealth that bitcoin can make a millionaire
overnight. However, high return always goes with high risk. If people look at the bitcoin
price history from 2009 until now, its violent fluctuations will be discovered. Investors
have to be aware of these vast fluctuations and consider them when making investment
decisions. As a financial asset, bitcoin is famous for its extreme volatility. Many factors
could affect its fluctuation, i.e., transaction volume and frequency (Wątorek et al. 2021).
Focusing on asset return volatility is a key to portfolio constructing, asset pricing, risk
measuring, and managing. In particular, the asset return’s volatility is a simple but widely
used risk measurement. Researchers notice the fat tail of bitcoin return, indicating the
high probability of significant losses. For better risk control, a sufficient amount of capital
covering the potential losses of the asset trading at a given confidence level in the given
period is required. This required value is called Value at Risk (VaR). A more accurate
Value at Risk implies a higher risk management efficiency. The asset return’s volatility is a
key factor in Value at Risk calculation. Therefore, the modeling and forecasting of bitcoin
volatility are crucial for bitcoin investors’ decision-making analysis and risk management.

Economic researchers have been making efforts to improve the bitcoin return’s volatil-
ity forecasting accuracy, and econometric methods are usually applied. Earlier studies
mainly explored bitcoin volatility by using GARCH family models. Bouoiyour and Selmi
(2015, 2016) compared different GARCH type models on sub-period bitcoin volatility, and
Katsiampa (2017) compared the GARCH family models over the whole period. Balcilar
et al. (2017) found the bitcoin trading volume fails to predict bitcoin volatility by studying
their causal relationship. Troster et al. (2019) considered the heavy tail character of bitcoin
return and compared bitcoin’s return and volatility forecasting performance of GARCH
and GAS model. They found that the heavy tail models outperform normally distributed
models, and the heavy tailed GAS model provides better Value at Risk forecasting. There-
fore, in terms of research techniques, the econometrics models are usually and maturely
applied in bitcoin volatility forecasting.

However, research on bitcoin volatility forecasting using machine learning algorithms
is still sparse. S. Athey (2019) pointed out that machine learning would dramatically impact
the field of economics shortly. Unlike the economic models, where the researcher picks
a specific model based on economic principles and estimates the parameters, a machine
learning algorithm is usually data-driven modeling focused on the selection process. Thus,
a machine learning model is not fixed or predetermined but will be refined during a train-
ing process. Applying machine learning methods to solve economic issues can potentially
make a difference in the economic and financial fields. Some researchers have noticed
this literature gap and started to apply machine learning approaches in cryptocurrency
trading. A survey by Fang et al. (2021) indicates that up to 2019, among the research on
cryptocurrency that involves technical methods, 13.8% applied machine learning methods.
However, most of these researches use machine learning methods to predict cryptocur-
rency prices instead of volatility. Therefore, this study contributes to the literature gap
by applying a machine learning method to bitcoin volatility forecasting. In this study,
both conventional econometric models and a machine learning model are used to forecast
bitcoin return volatility, and their forecasting performance is evaluated. This study aims to
compare their performance and discover if machine learning can improve econometrics
time series forecasting. The successful development of machine learning techniques in
time series forecasting encourages people to apply them in the financial market. Moreover,
machine learning’s success in stock market prediction leads us to believe that it may also
work well for cryptocurrency price forecasting. Also, the empirical studies show that the
machine learning method is more efficient than the ARIMA model in bitcoin price predic-
tion. McNally et al. (2018) compared the forecasting performance of the recurrent neural
network (RNN), long short term memory (LSTM) network, and ARIMA on bitcoin price
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and reported that the machine learning models outperformed ARIMA. Alessandretti et al.
(2018) examined the forecasting performance on cryptocurrency portfolios and reported
that machine learning methods overwhelm the standard benchmark simple moving av-
erage. It makes sense for the machine learning method to be superior to the traditional
economic model (simple moving average and ARIMA). The machine learning model is
proposed in a more general scope that considers both linear and nonlinear features. It also
preserves more temporal information of a time series during training.

As discussed above, machine learning methods are more advanced than traditional
economic models in time series forecasting theoretically and empirically. However, this
assertion needs to be made cautiously. First of all, economic models involve economic
intuition, while machine learning mainly deals with data. In the economic world, economic
intuition is the key to economic analysis. In contrast, machine learning captures information
only from data. However, the information contained in the data is limited in analyzing
economic issues. Secondly, the performance of machine learning depends on the amount of
data. Its performance is dramatically improved as the data amount getting larger. However,
in this study, the bitcoin market history is relatively short. Finally, machine learning is
sensitive to fluctuations. Compared to other approaches, machine learning is more efficient
in identifying time-series trends and patterns. However, this leads to the problem that a
shock or abnormal perturbation will be treated more seriously. Nevertheless, in the real
world, many factors affect the market reaction to a shock or an abnormal perturbation, and
the fluctuation sensitivity might cause overreaction problems in the forecasting, especially
for the volatility analysis.

This study compares the forecasting performance between traditional econometric
models and machine learning methods in forecasting accuracy and risk management
efficiency. Investors are interested in the bitcoin volatility forecasting accuracy performance
because they need information on how volatile the market will be in the future. Meanwhile,
since the bitcoin market investors face significant risks every day, they are also concerned
about risk management. This study contributes to the bitcoin volatility analysis literature
in four ways. First, this is the first study that uses the RNN approach with GRU cell for
bitcoin volatility forecasting. Second, the GARCH and the RNN are the most popular
methods in their field. However, no research work gives detailed descriptions of how they
perform differently in the bitcoin market. This study straightforwardly compares the two
methods and gives a clear preference for applying either one under different situations.
Third, in addition to volatility forecasting accuracy, this study also examines the Value at
Risk efficiency, providing more applicable guidance for investors to implement in practice.
Four, this study is not the first one to investigate whether the machine learning method is
more advanced in financial time series forecasting. However, it contributes to the existing
literature by providing more evidence on the limitations of applying machine learning
approaches to solve economic issues.

This article is structured as follows. First, the econometric models are presented.
It starts with the naive model, an exponentially weighted moving average (EWMA) as
a benchmark, and then moves to a more complex but conventionally applied model,
generalized autoregressive conditional heteroscedasticity (GARCH) model, to forecast
bitcoin return volatility. Then a machine learning model based on Recurrent Neural
Network (RNN) is proposed. The next step is to evaluate the out-of-sample performance of
the three models. The root mean squared error (RMSE) and mean absolute error (MAE) are
used to evaluate their forecasting accuracy performances, and the Value at Risk (VaR) is
used to compare their risk management efficiency. Because bitcoin return’s true conditional
volatility is unobservable, the bitcoin daily squared return and Garman-Klass volatility
(Garman and Klass 1980) are used as proxies for the realized volatility.

2. Materials and Methods

In this section, the econometric methodology is discussed first, and then the recurrent
neural network model, which is a machine learning methodology, will be presented. Engle,
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proposed the autoregressive conditional heteroscedasticity model (ARCH) in 1982, which
assumes that the volatility of asset returns is time-varying instead of a constant. Bollerslev
(1986) generalized the ARCH model and developed a more commonly used GARCH
model. In this study, the GARCH model is applied as the econometric method.

The bitcoin return time series is used rather than the raw bitcoin price data. The bitcoin
daily return is defined as the difference in the daily bitcoin closing price’s natural logarithm.
Bitcoin daily opening, high, low, and closing prices are used to estimate the realized bitcoin
volatility. All the data are available on the website: CoinMarketCap.com, accessed on 8 July
2021. The data ranges from 30 April 2013 to 21 May 2021, with 2944 observations. Figure 1
illustrates the bitcoin daily return and bitcoin daily squared return respectively, and Table
1 shows the descriptive statistics of the bitcoin daily return.
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Figure 1. Bitcoin daily return and bitcoin daily squared return. (a) Bitcoin daily return; (b) bitcoin squared daily return.

Table 1. Summary Statistics of Bitcoin Daily Returns in the Sample Period.

Description BTC

Sample size 2944
Mean 0.000819

Variance 0.000343
Std. Dev. 0.018524
Skewness −0.55305
Kurtosis 11.38964

Note: This table displays the summary statistics of bitcoin daily return from 30 April 2013 to 21 May 2021; BTC
denotes bitcoin daily return.

Before going further to the econometric modeling, the stationary of the time series
must be checked. The augmented Dickey-Fuller-test (ADF) and Phillips-Perron (PP) unit
root test are used to check for the stationary of bitcoin daily return series, and Table 2
indicates that the financial time series is stationary.

Table 2. Unit Root Tests.

Without Trend With Trend

ADF PP ADF PP

BTC daily return −55.1 −55.2 −55.2 −55.1
Critical values (1%) −3.43 −3.43 −3.96 −3.96

Note: ADF and PP test statistics are much smaller than the 1% critical value, indicating the bitcoin daily return
from 30 April 2013 to 21 May 2021 is stationary at 1% significance level.

2.1. Econometric Methodology

Figure 1 shows notable fluctuations in bitcoin daily return. It is also found that large
changes follow large turbulence and small changes follow calm periods. This phenomenon

CoinMarketCap.com
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in time series asset return is known as “volatility clustering”. The bitcoin daily squared
return plot in Figure 1 provides more evidence that changes tend to be clustered together.

Table 3 shows the results of the Ljung-Box Q-test for the bitcoin daily squared return.
Table 3 indicates that the bitcoin daily squared return is serially correlated, suggesting the
existence of conditional heteroscedasticity in bitcoin price volatility. Thus, the econometric
model needs to capture the feature of heteroscedasticity.

Table 3. Ljung-Box Q-Test for Bitcoin Daily Return.

No. of Lags Lag 10 Lag 15 Lag 20

p-value 0.000496 *** 0.000693 *** 0.000006 ***
Note: Triple asterisk (***) denotes variable significant at 1% level.

The basic structure of the econometric model is as follows:

rt = µt + Zt (1)

µt = E(rt|Ft−1 ) (2)

h2
t = Var( rt|Ft−1) = E

[
(rt − µt)

2|Ft−1

]
= E

(
Z2

t

∣∣∣Ft−1

)
(3)

where rt = log pt
pt−1

, µt is the conditional mean, h2
t is the conditional variance, and Ft−1

denotes the past information.

2.1.1. Conditional Mean

ARMA (p, q) process is applied to model the conditional mean:

µt = φ0 +
p

∑
i=1

φirt−i +
q

∑
j=1

θjZt−j (4)

with the autoregressive order p and moving average order q.
After applying the ARMA (p,q) process, the estimated parameters and the residuals are

obtained. As discussed above, the bitcoin daily return exhibits volatility clustering, which
indicates the conditional heteroscedasticity volatility. The ARCH effects of the residuals
are tested. If there is an ARCH effect in the residuals, the conditional variance models will
be specified in the next section.

2.1.2. Conditional Variance

Given the conditional mean model and using Equation (3), the residuals Zt = rt − µt
are obtained. Then the conditional variance models can be built. Two different models are
presented in the following section. It starts with EWMA model, then moves to the GARCH
model to forecast bitcoin return volatility.

2.1.3. Exponentially Weighted Moving Average (EWMA)

The exponentially weighted moving average is one of the simplest models for volatil-
ity forecasting. It models the time-varying variance and captures past information and
historical variance. Although the exponentially weighted moving average model incor-
porates neither conditional mean nor conditional variance in the sense of GARCH, it is
presented here as a benchmark to evaluate the performance of the other models.

The exponentially weighted moving average model is presented as:

σ2
t+1 = λσ2

t + (1− λ)r2
t (5)

where λ is set to be 0.94 in RiskMetrics model, and r2
t is the bitcoin daily squared return.
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2.1.4. GARCH Model

Bollerslev developed the generalized autoregressive conditional heteroscedasticity
model (GARCH) in 1986. Both the ARCH process and GARCH process model the variations
of a financial assets’ volatility, and the GARCH process allows the conditional variance to
be an ARMA process. The GARCH process is as follows:

Zt = htεt, {εt} ∼ I ID(0, 1) (6)

h2
t = α0 +

m

∑
i=1

αiZ2
t−i +

n

∑
j=1

β jh2
t−1 (7)

where {Zt} is the residual series of the best-fitting ARMA (p, q) model. Thus, the condi-
tional variance of the residual series essentially acts like an ARMA process. It is expected
that the standardized squared residuals obtained from the best fitted ARMA-GARCH
model should not be autocorrelated, and there should not remain any ARCH effects. The
ARCH LM test is used to check whether this is true or not in this study.

2.2. Recurrent Neural Network (RNN)

The sequencing model for predicting bitcoin return volatility is built on the concept of
Recurrent Neural Networks (RNN). RNN deals well with sequence problems and has a
remarkable architecture that considers the order of data. Each RNN has a type of memory
unit concatenated into multi-stages and each of which will turn previous states and current
input to activations and pass necessary information forward to the next stage. In this
study, a GRU (Gated Recurrent Units) cell is employed to serve as the memory unit. The
cost function is redesigned based on a tangent function. This model does not build any
embedding or probability layer inside usual configurations in some engineering tasks.
Besides, by considering some uncertainty of the volatility, the range is equally cut into
250 intervals to convert a real volatility value to a vector with a dimension of 250. This
conversion serves as an encoder for an RNN cell’s input. The whole architecture of the
RNN model is listed in Figure 2. In general, the encoding process will turn a fixed length
of sequential data into the same length of vectors for RNN, fed into multiple layers of
perceptron (MLP). The MLP will decode states from RNN into sequential vectors and
transfer them to a predictor for output.
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3. Results

In this section, the forecasting results of the EWMA model, GARCH model, and
RNN model are presented. Then, their out-of-sample forecasting accuracy performance
are evaluated and compared. Before the evaluation, appropriate proxies for the realized
volatility have to be found.
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3.1. Forecasting

The sample data is divided into two parts, the in-sample period from 30 April 2010,
to 2 August 2020 (2652 observations) and the out-of-sample period from 3 August 2020,
to 21 May 2021 (292 observations).

In the econometric GARCH model, the ARMA order is selected by AIC and BIC, and
the best-fitted conditional mean model was found to be ARMA (2,2). Then, the residuals’
ARCH effects are tested, and the result indicates there remains an ARCH effect in the
residual series. Finally, the best-fitted ARMA-GARCH model is obtained. The ARMA-
GARCH parameters are estimated in a rolling window. Table 4 presents the estimated
parameters of the ARMA (2,2)-GARCH (1,2) model of the in-sample data.

Table 4. ARMA (2,2)-GARCH (1,2) estimated parameters.

Parameters Estimated Value t-Value p-Value

φ0 0.001 3.280 0.001 ***
φ1 1.424 128.130 0.000 ***
φ2 −0.434 −39.606 0.000 ***
θ1 −1.458 −300,530 0.000 ***
θ2 0.474 1452 0.000 ***
α0 0.000 1.851 0.064 *
α1 0.191 8.254 0.000 ***
β1 0.413 2.965 0.003 **
β2 0.394 3.120 0.002 ***

Note: Asterisk (*), double asterisk (**), and triple asterisk (***) denote variables significant at 10%, 5%, and 1%
levels respectively.

The autocorrelation in the standardized residuals of the fitted ARMA-GARCH model
is checked, and the result indicates that there is no remaining ARCH effect in the residuals.

For the RNN model, 30 days samples of the volatility were used to predict the next
1 day, 5 days, and 10 days with an out-of-sample method. For example, the first 30 days
of volatility values were used to predict the 31st. The sequential data generated by this
process is called tuple 1; then, the 2nd to 31st volatility values are used to predict the
32nd, and it is called tuple 2. The total data length was 2031. By rolling this process, 1994
tuples were generated. In the out-of-sample method, the first 1794 (90%) observations were
appointed to training, and the remaining 200 observations were used as a test volume.

A more detailed implementation is illustrated in Figure 3. Two layers of RNN with
GRU cells are built as a core. The first layer has 512 units, while the second shrink to
256 units. Sequential data were fed in cells on the bottom from left to right. The predicated
data were collected on the top from left to right.

Both training and testing were taken on the GTX 1070 GPU. An SGD (Stochastic
Gradient Descend) algorithm that shuffles the whole dataset is used in each iteration; the
RMSProp gradient update algorithm was chosen as an optimizer; the learning rate and
batch size were set to 0.0001 and 20, respectively. As stated before, the model 1000 epochs
are trained on the 1794 tuples, and the 200 tuples are tested every five epochs.
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3.2. Volatility Proxies

One difficulty evaluating the forecasting performance is that the true conditional
volatility of the bitcoin return is unobservable. Thus, a proxy for the realized bitcoin return
volatility has to be found. The most commonly used proxy for volatility is the bitcoin
daily squared return. Thus, the first volatility proxy in this study is the daily squared
return. However, it may lead to poor out-of-sample performance (Andersen and Bollerslev
1998). To get a more robust forecasting performance comparison result, a second volatility
proxy is necessary. The cumulative squared intra-day returns are a more efficient proxy for
volatility (Chou et al. 2010), but it requires high-frequency bitcoin prices in one day, which
is not available in this case. Garman-Klass volatility (Garman and Klass 1980) is used as
the second proxy for bitcoin return volatility. This proxy includes the information of daily
high, low, opening, and closing prices. Garman and Klass (1980)’s estimator in practical is
presented as:

σ̂2
GK = 0.5[ln(BTCHt/BTCLt)]

2 − [2 ln 2− 1][ln(BTCCt/BTCOt)]
2 (8)

where BTCHt and BTCLt are the highest bitcoin price and lowest bitcoin price at the trading
day, while BTCCt and BTCOt are the closing price and opening price, respectively.

3.3. Out-of-Sample Performance

To compare the three models’ out-of-sample performance, the root mean squared error
(RMSE) and mean absolute error (MAE) are used to evaluate and rank them. RMSE and
MAE are the most commonly used metric for model evaluation. MAE is a good indicator
of average model performance (Willmott and Matsuura 2005), while RMSE deals well
with outliers by penalizing large errors more (Chai and Draxler 2014). Table 5 exhibits the
WEMA (benchmark) model, GARCH model, and RNN model’s out-of-sample performance.
The out-of-sample performances at 1 day ahead, 5 days ahead, and 10 days ahead are
presented in Table 5.
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Table 5. Out-of-sample Performance.

RMSE MAE

1st Proxy 2nd Proxy 1st Proxy 2nd Proxy

1 day ahead
EWMA 2.4797 × 10−6 4.5816 × 10−4 3.1640 × 10−4 3.8195 × 10−3

GARCH 2.4795 × 10−6 4.5814 × 10−4 3.3930 × 10−4 3.7762 × 10−3

RNN 2.4985 × 10−6 4.5818 × 10−4 2.8091 × 10−4 4.0179 × 10−3

5 days ahead
EWMA 2.4969 × 10−6 4.6213 × 10−4 3.1742 × 10−4 3.8721 × 10−3

GARCH 2.4760 × 10−6 4.5814 × 10−4 3.4605 × 10−4 3.7607 × 10−3

RNN 2.5063 × 10−6 4.5897 × 10−4 2.8533 × 10−4 4.0535 × 10−3

10 days ahead
EWMA 2.4779 × 10−6 4.5817 × 10−4 3.2214 × 10−4 3.8277 × 10−3

GARCH 2.4741 × 10−6 4.5813 × 10−4 3.5656 × 10−4 3.7426 × 10−3

RNN 2.5065 × 10−6 4.5897 × 10−4 2.8426 × 10−4 4.0480 × 10−3

Note: The lowest RMSE and MAE of each model is in bold.

Comparing the RMSE, the GARCH model performs best with the lowest RMSE, and
the RNN model performs worst. When using the first proxy, the 1 (5, 10) day ahead RMSE
of the RNN model are 0.76% (1.21%, 1.29%) larger than the GARCH model; when using the
second proxy, the 1 (5, 10) day ahead RMSE of RNN model is 0.009% (0.18%, 0.18%) larger
than the GARCH model. Comparing the MAE, the RNN model outperforms GARCH and
EWMA with the lowest MAE in the first proxy but is outperformed in the second proxy.
When using the first proxy, the 1 (5, 10) day ahead MAE of the GARCH model is 17.21%
(17.55%, 20.28%) larger than the RNN model; when using the second proxy, the MAE
of RNN is 6.02% (7.22%, 7.54%) larger than GARCH model. It can be seen from Table 5,
when using the first proxy, RNN performs better in MAE but performs poorly in RMSE.
One explanation for this is that since the RMSE punishes more on the outliers than MAE,
implying the RNN model generates more outliers than the econometrics models. Figure 4
presents the standard deviation of the first proxy (daily squared return) and the standard
deviation of one day ahead volatility forecasting of each model. Figure 5 shows the standard
deviation of the second proxy (Garman-Klass volatility) and the standard deviation of
one day ahead volatility forecasting of each model. EWMA1/5/10, GARCH1/5/10, and
RNN1/5/10 denote the 1/5/10 day(s) ahead of the volatility forecasted by each model.

It can be seen from Figures 4 and 5 that the RNN model does better in capturing the
volatility trends and clustering than the econometric models1; however, it underestimates
the volatility. The second proxy is less volatile than the first one. Thus, the Garman-Klass
volatility proxy does not perform as well as the bitcoin daily squared return proxy. The
RNN model is not as efficient as we expected. It does better in corresponding to the
volatility dynamics, but it underestimates the volatility and hurts the forecasting accuracy.
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3.4. Value at Risk (VaR)

After analyzing the bitcoin volatility forecasting accuracy, it comes to the issue of risk
management. Investors are also concerned about which method performs better in risk
management. To provide more helpful information about the bitcoin market in terms of risk
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management, the Value at Risk (VaR) is a suitable measurement. The bitcoin Value at Risk
is defined as the maximum amount of money that the bitcoin investors could lose at a given
confidence level over a defined period. J.P. Morgan proposed the Value at Risk concept
in 1994. There are two categories of methodology for VaR calculation: parametric models
and nonparametric models. The most used nonparametric VaR model is the Monto Carlo
method, which is complicated, while the parametric VaR is simpler for investors to apply.
The parametric models are mainly considered and discussed in this article. Mathematically,
the forecasted VaR of bitcoin is defined as:

Pr(rt ≤ VaRt(α)|Ft−1) = α (9)

where rt is the bitcoin daily return, and Ft−1 is the past information. The α is the given
confidence level, 1%, 2.5%, and 5%. Thus, the VaR estimation involves the assumption
of bitcoin daily return distribution. The traditional VaR calculation assumes the portfolio
return is normally distributed. However, it is empirically documented that financial asset
return distributions always exhibit heavy tails. Table 1 lists the summary statistics for
bitcoin daily returns, which shows there is excess kurtosis in the sample data. Therefore,
the Student’s t-distribution assumption is applied in this study instead of the normal one.
The forecasting of daily bitcoin Value at Risk under Student’s t-distribution is estimated as:

VaRt(α) = E(rt|Ft−1) + tv
ασt

√
v

v− 2
(10)

where tv
α is the Student’s t-distribution critical value at confident level α (1%, 2.5%, and

5%); E(rt|Ft−1) is the conditional mean generated by ARMA (2,2); σt is the standard
deviation of volatility forecasted by the three models at time t. v is the estimated degree of
freedom. Following Heikkinen and Kanto (2002) and Andreev and Kanto (2004), the degree
of freedom is allowed to be non-integer. Applying method of moments, the consistent
estimator of the degree of freedom is estimated by:

v̂ = 4 +
6
k̂

, ∀v > 4 (11)

where k̂ is the sample excess kurtosis.
Since the EWMA model and RNN model do not involve conditional mean, then the

E(rt|Ft−1) of the two models are supposed to be zero. Therefore, the Value at Risk of
EWMA and RNN models is estimated as:

VaRt(α) = tv
ασt

√
v

v− 2
(12)

The sample excess kurtosis k̂ is 8.39, then the estimated degree of freedom v̂ is 4.72;
the critical value tv

α at confident level 1%, 2.5%, and 5% is −3.45, −2.62, −2.04, respectively.
Then the 1 day ahead, 5 days ahead and 10 days ahead VaR at 1%, 2.5%, and 5%

confidence level is calculated by the conditional expected return and forecasted volatility,
which are generated from the EWMA model, ARMA (2,2)-GARCH (1,2) model and RNN
model, respectively. Figure 6 presents the realized returns and one day ahead VaR (1%)2

forecasts for each of the three models.3
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Table 6 gives the out-of-sample coverage α̂ for each model to compare the Value at
Risk forecasting performance. The α̂ is calculated by the number of realized losses that
exceed the forecasted Value at Risk on that day divided by the number of totals out of
sample observations:

α̂ =
No. (loss > VaRt(α))

No.(out o f sample obs.)
(13)

Table 6. Out of Sample Coverage of Each Model.

EWMA GARCH RNN

1 day ahead
α = 1% 2.06% 2.06% 16.15%

α = 2.5% 2.75% 2.75% 18.9%
α = 5% 4.47% 5.15% 23.37%

5 days ahead
α = 1% 1.72% 2.06% 21.31%

α = 2.5% 3.44% 2.75% 25.43%
α = 5% 6.19% 4.47% 26.80%

10 days ahead
α = 1% 1.72% 1.72% 18.90%

α = 2.5% 3.78% 2.41% 23.71%
α = 5% 5.16% 4.12% 28.18%

Note: The smallest |α− α̂| in each model is in bold.

The closer α̂ to α, the more accurate VaR would be, making it easier for investors to
manage the bitcoin market risk. Thus, the model with the smallest |α− α̂| provides the
best risk coverage.

Table 6 indicates that the sample coverage α̂ of the GARCH model is closest to the
given confidence level α, while the sample coverage of the RNN model appears to be the
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most volatile, with the largest distance between α̂ and α. Thus, the RNN model performs
poorly in Value at Risk forecasting, even worse than the benchmark EWMA model.

After getting the forecasted Value at Risk of each model, two approaches to Value at
Risk backtesting are conducted: unconditional coverage test and conditional coverage test.

The unconditional coverage test was proposed by Kupiec in 1995. It tests whether
the violation rate of the Value at Risk model is equal to the theoretical rate. Christoffersen
introduced the conditional coverage test in 1998, which examines whether the VaR violation
process is independent. Table 7 reports the VaR backtesting results of each model.

Table 7. VaR backtesting results of unconditional coverage test of Kupiec and conditional coverage
test of Christoffersen p-value.

1 Day Ahead 5 Days Ahead 10 Days Ahead

LRuc LRcc LRuc LRcc LRuc LRcc

0.99
Quantile
EWMA 0.11 0.25 0.26 0.49 0.26 0.49
GARCH 0.11 0.25 0.11 0.25 0.26 0.49

RNN 0.00 0.00 0.00 0.00 0.00 0.00

0.975
Quantile
EWMA 0.79 0.43 0.33 0.40 0.20 0.29
GARCH 0.79 0.43 0.79 0.43 0.92 0.84

RNN 0.00 0.00 0.00 0.00 0.00 0.00

0.95
Quantile
EWMA 0.67 0.80 0.37 0.67 0.90 0.94
GARCH 0.90 0.96 0.67 0.80 0.48 0.63

RNN 0.00 0.00 0.00 0.00 0.00 0.00
Note: LRuc denotes the p value of unconditional coverage Kupiec test and LRcc denotes the conditional coverage
Christoffersen test. The p-value of the EWMA model and GARCH model show that they fail to reject the null
hypothesis, indicating the VaR is correctly estimated. However, the RNN model fails in the two tests.

4. Discussion

Bitcoin is the most successful and popular cryptocurrency in the market, with around
130 billion daily trading volumes as of April 2019. Bitcoin has historically had more
significant fluctuations in price than most other financial assets. Therefore, the analysis
of bitcoin return volatility is crucial for investors’ decision-making and risk management.
Both economic models and the machine learning method are used to forecast the bitcoin
return volatility.

The machine learning method in time series forecasting is expected to be superior to
the traditional econometrics models. The earlier empirical studies in stock price forecasting
and cryptocurrency prices forecasting provided evidence of this statement. By comparing
the out-of-sample performance of each volatility forecasting model, the result indicates that
the RNN model is more sensitive and corresponds more quickly to the volatility change
than the traditional econometrics models. The RNN outperforms GARCH and EWMA in
MAE evaluation criteria in forecasting accuracy but is overwhelmed in RMSE criteria. Since
MAE does well in average model performance, while RMSE provides more information
on outliers, the two opposite performances could be regarded as evidence that the RNN
model is less efficient in capturing the bitcoin market extreme events.

In addition to the bitcoin volatility forecasting, the RNN model is outperformed by
the GARCH and EWMA model in risk management efficiency in the framework of Value
at Risk. The Value at Risk essentially focuses on the tail events of bitcoin return. Therefore,
the RNN’s poor performance in VaR provides another evidence of the robust results that it
could not work well as econometric models in explaining extreme volatility. It underesti-
mates the fluctuations in the more volatile price period. In other words, it underestimates
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the risk. This result is consistent with the previous study that Seq2Seq RNNs improve the
bitcoin price forecasting accuracy over the ARIMA model during less volatile periods but
shows poor performance in extreme cases (Rebane et al. 2018).

This study proposed an alternative way of volatility analysis. It is widely believed
and empirically proved by earlier studies in the financial market that the machine learning
approach is more advanced in time series forecasting. However, this study shows some-
thing different. The RNN model is less efficient than traditional econometric models in
bitcoin volatility forecasting and risk management. The econometric models are superior
in analyzing extreme market conditions, while the machine learning approach is more
suitable for less volatile market conditions.

Many investors have considered including bitcoin in their investment portfolio.
This study provides implications for the investors on trading strategy and risk manage-
ment. For the financial institutions required to hold sufficient risk capital to cover potential
losses on the portfolio, the econometric models are recommended for a good Value at Risk
estimation.
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Figure A9. Out of sample realized return vs. 10 days ahead VaR (2.5%) of EWMA, GARCH and RNN model.
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Figure A10. Out of sample realized return vs. 1 day ahead VaR (5%) of EWMA, GARCH and RNN model.
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Figure A12. Out of sample realized return vs. 10 days ahead VaR (5%) of EWMA, GARCH and RNN model.

Notes
1 The standard deviation of the first and second proxy and the standard deviation of the 5 days ahead and 10 days ahead volatility

forecasting of each model are presented in Appendix A.
2 The figures of realized return and 5/10 days ahead VaR (1%) of each model are presented in Appendix A.
3 The figures of realized return and 1/5/10 day(s) ahead VaR (2.5% and 5%) of each model are presented in Appendix A.
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