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Abstract: This paper investigates the American option price in a two-state regime-switching model.
The dynamics of underlying are driven by a Markov-modulated Geometric Wiener process. That
means the interest rate, the appreciation rate, and the volatility of underlying rely on hidden states of
the economy which can be interpreted in terms of Markov chains. By means of the homotopy analysis
method, an explicit formula for pricing two-state regime-switching American options is presented.
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1. Introduction

Pricing financial derivative is an ative field of research in mathematical finance. The pi-
oneering work of Black and Scholes (1973) and Merton (1973) laid the foundations of field
and gave rise tto a branch of the research in option pricing theory. The most options traded
in the financial markets are American-style options. An American option grants its holder
with the right to exercise the option before or on its expiry date. For pricing American
options, one needs to determine the option price as well as its optimal exercise boundary.
In the Black–Scholes framework, there is an analytical solution for pricing finite-horizon
American options, which was first presented by Zhu (2006). Prior to the work of Zhu (2006),
McKean (1965) and Merton (1973) pointed out that the problem of pricing American option
is equivalent to a free-boundary problem. There are many methods, including analytical
and numerical approximations, to solve this kind of free boundary problem. For instance,
analytical approximation works include Johnson (1983); MacMillan (1986); Omberg (1987);
Barone-Adesi and Whaley (1987); Barone-Adesi and Elliott (1991); Carr (1998) and Bunch
and Johnson (2000). While numerical approximation work include Brennan and Schwartz
(1977); Geske and Shastri (1985); Geske and Johnson (1984); Carr and Faguet (1996), and
Hon and Mao (1997). An alternative approach aparting from a free boundary problem is
called the decomposition method, see Jacka (1991); Kim (1990); Carr et al. (1992). Using
the decomposition method, the price of an American option can be written as the sum of
its European counterpart and the early exercise premium. Carr et al. (1992) proposed a
variant decomposition approach, in which the price of American option can be written
as its intrinsic value plus its time value. The early exercise premium is expressed in an
integral form, and it implicitly relies on the early exercise boundary. The only known
explicit solution for the optimal exercise boundary was found by Zhu (2006) in the form
of infinite series. There are many approximation methods in the literature. In particular,
the asymptotic behaviour of the optimal exercise boundary near maturity has attracted lots
of attention as a promising way to derive an explicit formula, see Alobaidi and Mallier
(2001); Chevalier (2005); Evans et al. (2002). However, these short-maturity asymptotic
approximations of the optimal exercise boundary are not sufficiently precise under realistic
model parameters, see Mallier (2002). The other numerical schemes for calculating the
early exercise premium include Huang et al. (1996) and Ju (1998).
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Recently, there is active research in the applications of regime switching models
followed by an unobservable Markov chain to a variety of financial problems. For an
overview of unobservable Markov chains and their financial applications, we refer to
Elliott et al. (1994) and Elliott and Kopp (1999). Some financial applications of regime
switching include Elliott and van der Hoek (1997) for asset allocation, Elliott et al. (2001)
for interest rate models, Buffington and Elliott (2002a, 2002b) for pricing European and
American options, Elliott et al. (2003) for volatility estimation, Guo (2001a) for option
pricing, Elliott et al. (2005) for option pricing via an Esscher transformation. In addition,
Guo (2001b) investigated Russian options in the regime switching model. Guo and Shepp
(2001) investigated the perpetual American lookback options. Guo and Zhang (2004)
priced the perpetual American options with regime switching. Jobert and Rogers (2006)
priced the finite maturity American put and barrier options with regime switching using a
lattice approach. Huang (2011) formulated the regime-switching American problem as an
optimal control problem and used discretization methods to solve it. Lu and Putri (2020)
applied Laplace transform to regime-switch the American option and obtained a semi-
analytical solution. Egami and Kevkhishvili (2020) reduced an optimal stopping problem
with an arbitrary value function in a two-regime environment to a pair of optimal stopping
problems without regime switching. So far, there is no analytical formula for the finite-
horizon regime switching American option.

Regime switching models have been used in finance practice and have recently started
gaining increasing popularity. One of the key issues is how to identify the states of economy
in regime switching models. In this regard, two recent publications have discussed this
issue (see He and Zhu (2018) and He and Zhu (2021), in addition to using real market data
in calibration, so that a practical use of regime switching models is clearly demonstrated
through convincing empirical evidence. Another example that has clearly demonstrated
the use of regime switching models in finance practice is the two earlier papers that were
published by Elliott et al. (2003) and Elliott and Royal (2007), who used filtering methods
to estimate the state of the economy from historical stock market data. In these two publi-
cations, a log-normal dynamics with Markov-switching volatility and a regime switching
variance Gamma dynamics were adopted in their regime switching models, respectively.

We will extend the work of Zhu (2006) to obtain an explicit formula for pricing
finite-horizon regime switching American options by means of the homotopy analysis
method (HAM). HAM was first proposed by Ortega and Rheinboldt (1970) and has been
successfully applied to solve a variety of heat transfer problems, see Liao (1997); Liao and
Zhu (1999); and fluid-flow problems, see Liao and Zhu (1996); Liao and Campo (2002).
Zhu (2006) applied HAM to derive an explicit pricing formula for American options in
the Black–Scholes–Merton framework. Gounden and O’Hara (2010) extended the work of
Zhu to pricing an American-style Asian option of floating strike type in the Black–Scholes–
Merton model. Leung (2013) applied HAM to obtain an explicit formula for lookback
options under a stochastic volatility model. Chan and Zhu (2015) used HAM to derive an
explicit formula for American-style convertible bonds with regime switching.

In this paper, we derive an explicit formula for pricing American options with regime
switching. The paper is organized, as follows. Section 2 describes the model and formulates
the problem. Section 3 presents the pricing of American options based on the HAM
approach. The final section concludes.

2. The Model Formulation

Let (Ω,F ,P) be a complete probability space, where P is an actual probability mea-
sure. Let T be the time index set [0, T] of the model. Let {Wt}t∈T be a standard Wiener
process on (Ω,F ,P). We consider a continuous-time Markov chain {Xt}t∈T on (Ω,F ,P)
with a finite state space X := (x1, x2, . . . , xN). Without a loss of generality, we can iden-
tify the state space of {Xt}t∈T to be a finite set of unit vectors {e1, e2, . . . , eN}, where
ei = (0, . . . , 1, . . . , 0) ∈ RN . We assume that {Xt}t∈T and {Wt}t∈T are independent.
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Denote A for the generator [aij]i,j=1,2,...,N . Subsequently, according to Elliott et al.
(1994), the semi-martingale representation theorem is in the form of {Xt}t∈T :

Xt = X0 +
∫ t

0
AXsds + Mt . (1)

Here, {Mt}t∈T is an RN-valued martingale increment process with respect to the
filtration that is generated by {Xt}t∈T .

The interest rate {r(t, Xt)}t∈T of the money market account is given by:

rt := r(t, Xt) =< r, Xt > , (2)

where r := (r1, r2, . . . , rN) with ri > 0 for each i = 1, 2, . . . , N and < ·, · > denotes the inner
product inRN .

In this case, the dynamics of underlying {Bt}t∈T for the money market account are
given by:

dBt = rtBtdt , B0 = 1 . (3)

We suppose that the stock appreciation rate {µt}t∈T and the volatility {σt}t∈T of S
also rely on {Xt}t∈T and they are given by:

µt := µ(t, Xt) =< µ, Xt > , σt := σ(t, Xt) =< σ, Xt > . (4)

Here, µ := (µ1, µ2, . . . , µN) and σ := (σ1, σ2, . . . , σN) with σi > 0 for each i =
1, 2, . . . , N.

The dynamics of underlying {St}t∈T are then given by the following Markov-modulated
geometric Wiener process:

dSt = µtStdt + σtStdWt , S0 = s . (5)

Here, W := {Wt} is a standard Wiener process on a complete probability space
(Ω,F ,P) with respect to the filtration {FW

t }, which is the P-augmentation of the natural
filtration that is generated by W.

Free Boundary Problem

Let us consider an American put option with expiry T and exercise price K. In this
subsection, we consider a special case with the number of regimes N, being 2 in order to
simplify our discussion. We adopt the approach in Buffington and Elliott (2002b) to derive
the results in this section. Given that St = S and that Xt = X, the price of the American
put option at time t is given by:

V(t, T, S, X) = sup
τ∈[t,T]

EQ

[
exp

(
−
∫ T

t
rudu

)
(K− S)+

∣∣∣∣St = S, Xt = X
]

, (6)

where the supremum is taken over the set of stopping times τ taking values in [t, T].
Let V := V(t, T, S) = (V(t, T, S, e1), V(t, T, S, e2)) = (V1, V2). When Xt = ei (i = 1, 2),

the continuation region is given by:

C i = {(S, t) ∈ R+ × [0, T]|V(t, T, S, ei) > (K− S)+} , (7)

and the stopping region is given by:

S i = {(S, t) ∈ R+ × [0, T]|V(t, T, S, ei) = (K− S)+} . (8)

Follow the lines of Buffington and Elliott (2002b), we write C i
t for the t-section of C i,

for each i = 1, 2 and t ∈ [0, T]. Let S fi
(t) = S f (t, ei) be the critical price of the American
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put when Xt = ei (i = 1, 2); that is, when the state Xt = ei and the price of the underlying
at time t falls below S fi

(t), it is rational for the holder of the American put to exercise the
option at time t. Note that S fi

(T) = K, for each i = 1, 2. Subsequently, by Elliott and Kopp
(1999) and Buffington and Elliott (2002b),

C i
t = (S fi

(t), ∞) , i = 1, 2 . (9)

We shall consider the case N = 2.
Yi (2008) showed that, if σ1 > σ2 then V1 ≥ V2 and S f1(t) ≤ S f2(t) for each t ∈ [0, T] in

a two-state regime switching model. When S > S f2(t), (S, t) is in the common continuation
region C1 ∪ C2 and V = (V1, V2) satisfies the following pair of coupled P.D.E.s:

∂V1

∂t
+ r1S

∂V1

∂S
+

1
2

σ2
1 S2 ∂2V1

∂S2 − r1V1+ < V, Ae1 >= 0 ,

∂V2

∂t
+ r2S

∂V2

∂S
+

1
2

σ2
2 S2 ∂2V2

∂S2 − r2V2+ < V, Ae2 >= 0 . (10)

When S ≤ S f1(t),

V1 = V(t, T, S, e1) = K− S . (11)

When S ≤ S f2(t),

V2 = V(t, T, S, e2) = K− S . (12)

On the optimal curve S fi
(t) (i = 1, 2), it is required that Vi satisfies a high-contact condition:

Vi(t, T, S fi
(t)) = K− S fi

(t) , (13)

and a smooth-pasting condition:

∂Vi
∂S

(t, T, S fi
(t)) = −1 . (14)

When S is in the transition region {(S, t)|S f1(t) ≤ S ≤ S f2(t)}, V2 = K − S and V1
satisfies the following P.D.E.:

∂V1

∂t
+ r1S

∂V1

∂S
+

1
2

σ2
1 S2 ∂2V1

∂S2 − r1V1 + a11V1 − a11(K− S) = 0 , (15)

and boundary conditions

V1(t, T, S f1(t)) = K− S f1(t) , (16)

∂V1

∂S
(t, T, S f1(t)) = −1 . (17)

V1(T, T, S) = V(T, T, S, e1) = max{K− S, 0}.
(18)

Clearly, there are two free boundary functions, S f1(t) and S f2(t), and two option
prices, V1(S, t) and V2(S, t), as listed in the above PDE systems. Which one of these is used
to determine if an option should be exercised or continuously held has not been clearly
stated in the literature. A flow chart could be useful for financial practitioners who wish to
use our solutions to price American put options in a two-state regime switching setting.
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Assumming that all of the model parameters, including σ1 and σ2, have been extracted
from market data and assumming that one knows the current status of economy, i.e., we
are either in State 1 or State 2, before one decides to use a regime-switching model to price
an American option. Subsequently, the actual pricing exercise needs be divided into two
stages, relying on the current status of economy when a pricing task is conducted. If we are
in a higher status of economy, i.e., in State 2, using the S(1)

f2
obtained in Section 3.1 would

be sufficient, because, in this case, once S drops below S(1)
f2

from the above, the put option

should be exercised as a result of the fact that S(1)
f1
(t) ≤ S(1)

f2
(t). On the other hand, if we

are in a lower status of economy, i.e., in State 1, an additional PDE system may need to
be solved relying on the current underlying value. For the range of S(1)

f1
(t) ≤ S ≤ S(1)

f2
(t),

the solution that is shown in Section 3.1 can no longer be used and one needs to use the
solution shown in Section 3.2, in which V2 has already “landed” on the payoff function.
This pricing procedure can be better demonstrated with the following flow chart, see
Figure 1.

Note that we use superscripts in the flow chart to denote the free boundaries that were
obtained in the corresponding stage. For simplicity, they will all be removed in the next
section without any ambiguity, as we have denoted each stage by a separate subsection.
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Figure 1. An illustrative flow chart for the usage of our solutions.
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3. HAM Approach

It was noted earlier that American options can be formulated as free boundary prob-
lems. Closed-form solutions of free boundary problems are notoriously difficult to derive.
However, by employing the homotopy analysis method, an exact and closed-form solution
can be derived, in the form of infinite series. We have defined the common continuation
region and the transition region in Section 2. Each problem in these regions is solved below.

3.1. The Common Continuation Region

Firstly, let us discuss the American put value function in the common continuation
region where S > S f2(t) and V1, V2 satisfy the equations:

∂V1
∂t + r1S ∂V1

∂S + 1
2 σ2

1 S2 ∂2V1
∂S2 − r1V1+ < V, Ae1 >= 0

V1(t, T, S f1(t)) = K− S f1(t)
∂V1
∂S (t, T, S f1(t)) = −1

V1(T, T, S) = V(T, T, S, e1) = max{K− S, 0}
limS→∞V1(t, T, S) = 0

(19)



∂V2
∂t + r2S ∂V2

∂S + 1
2 σ2

2 S2 ∂2V2
∂S2 − r2V2+ < V, Ae2 >= 0

V2(t, T, S f2(t)) = K− S f2(t)
∂V2
∂S (t, T, S f2(t)) = −1

V2(T, T, S) = V(T, T, S, e2) = max{K− S, 0}
limS→∞V2(t, T, S) = 0

(20)

Note that Vi and S fi
are coupled. To solve these systems effectively, we shall make all

variables dimensionless by introducing dimensionless variables

V′i =
Vi
K

, S′ =
S
K

, τ′i =
σ2

i
2
(T − t) for i = 1, 2.

With all of the primes dropped from now on, the dimensionless systems read

− ∂V1
∂τ1

+ γ1S ∂V1
∂S + S2 ∂2V1

∂S2 − γ1V1 = λ1(V2 −V1)

V1(τ1, S f1(τ1)) = 1− S f1(τ1)
∂V1
∂S (τ1, S f1(τ1)) = −1

V1(0, S) = V(0, S, e1) = max{1− S, 0}
limS→∞V1(τ1, S) = 0

(21)



− ∂V2
∂τ2

+ γ2S ∂V2
∂S + S2 ∂2V2

∂S2 − γ2V2 = λ2(V1 −V2)

V2(τ2, S f2(τ2)) = 1− S f2(τ2)
∂V2
∂S (τ2, S f2(τ2)) = −1

V2(0, S) = V(0, S, e2) = max{1− S, 0}
limS→∞V2(τ2, S) = 0

(22)

Here, λi =
2aii
σ2

i
, i = 1, 2 and γi =

2ri
σ2

i
, i = 1, 2, which can be viewed as an interest rate

relative to the volatility of the underlying asset price.
Take the Laudau transformation

xi = ln
( S

S fi
(τi)

)
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to change the moving boundary to fixed boundary conditions, thus yielding:

∂V1
∂τ1
− (γ1 − 1) ∂V1

∂x1
− ∂2V1

∂x2
1
+ γ1V1 = λ1(V1 −V2) +

1
S f1

(τ1)

dS f1
(τ1)

dτ1

∂V1
∂x1

V1(τ1, 0) = 1− S f1(τ1)
∂V1
∂x1

(τ1, 0) = −S f1(τ1)

V1(0, x1) = V(0, x1, e1) = 0
limx1→∞V1(τ1, x1) = 0

(23)



∂V2
∂τ2
− (γ2 − 1) ∂V2

∂x2
− ∂2V2

∂x2
2
+ γ2V2 = λ2(V2 −V1) +

1
S f2

(τ2)

dS f2
(τ2)

dτ2

∂V2
∂x2

V2(τ2, 0) = 1− S f2(τ2)
∂V2
∂x2

(τ2, 0) = −S f2(τ2)

V2(0, x2) = V(0, x2, e2) = 0
limx2→∞V2(τ2, x2) = 0

(24)

Now, to solve (23) and (24) by the homotopy analysis method, we introduce an embed-
ding parameter p ∈ [0, 1] and construct unknown functions V̄i(τi, xi, p) and S̄ fi

(τi, p), i =
1, 2 that satisfy the following differential systems:

(1− p)L1[V̄1(τ1, x1, p)− V̄0
1 (τ1, x1)] = −p

{
A1[V̄1(τ1, x1, p), S̄ f1(τ1, p)]

}
V̄1(0, x1, p) = (1− p)V̄0

1 (0, x1)
V̄1(τ1, 0, p) + S̄ f1(τ1, p) = 1
∂V̄1
∂x1

(τ1, 0, p) + S̄ f1(τ1, p) = (1− p)
[

1 + ∂V̄0
1

∂x1
(τ1, 0)− V̄0

1 (τ1, 0)
]

limx1→∞V̄1(τ1, x1, p) = 0

(25)



(1− p)L2[V̄2(τ2, x2, p)− V̄0
2 (τ2, x2)] = −p

{
A2[V̄2(τ2, x2, p), S̄ f2(τ2, p)]

}
V̄2(0, x2, p) = (1− p)V̄0

2 (0, x2)
V̄2(τ2, 0, p) + S̄ f2(τ2, p) = 1
∂V̄2
∂x2

(τ2, 0, p) + S̄ f2(τ2, p) = (1− p)
[

1 + ∂V̄0
2

∂x2
(τ2, 0)− V̄0

2 (τ2, 0)
]

limx2→∞V̄2(τ2, x2, p) = 0

(26)

Here, Li is a differential operator that is defined as

Li =
∂

∂τi
− (γi − 1)

∂

∂xi
− ∂2

∂x2
i
+ γi, (27)

and Ai is a functional defined as

A1[V̄1(τ1, x1, p), S̄ f1(τ1, p)]

= L1(V̄1)− λ1(V̄1 − V̄2)−
1

S̄ f1(τ1, p)
dS̄ f1(τ1, p)

dτ1

∂V̄1

∂x1
(τ1, x1, p) (28)

A2[V̄2(τ2, x2, p), S̄ f2(τ2, p)]

= L2(V̄2)− λ2(V̄2 − V̄1)−
1

S̄ f2(τ2, p)
dS̄ f2(τ2, p)

dτ2

∂V̄2

∂x2
(τ2, x2, p) (29)

Equations (25) and (26) are known as the zeroth order deformation equations and they
determine the continuous deformation of V̄i(τi, xi, p). To construct Equations (25) and (26),
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we want to find a continuous map, such that the solution we are seeking becomes the result
of a continuous deformation from an initial and known function. Here, the initial state of
the continuous deformation is at p = 0. With p = 0, we have, from Equations (25) and (26),

L1[V̄1(τ1, x1, 0)] = L1[V̄0
1 (τ1, x1)]

V̄1(0, x1, 0) = V̄0
1 (0, x1)

V̄1(τ1, 0, 0) + S̄ f1(τ1, 0) = 1
∂V̄1
∂x1

(τ1, 0, 0) + S̄ f1(τ1, 0) =
[

1 + ∂V̄0
1

∂x1
(τ1, 0)− V̄0

1 (τ1, 0)
]

limx1→∞V̄1(τ1, x1, 0) = 0

(30)



L2[V̄2(τ2, x2, 0)] = L2[V̄0
2 (τ2, x2)]

V̄2(0, x2, 0) = V̄0
2 (0, x2)

V̄2(τ2, 0, 0) + S̄ f2(τ2, 0) = 1
∂V̄2
∂x2

(τ2, 0, 0) + S̄ f2(τ2, 0) =
[

1 + ∂V̄0
2

∂x2
(τ2, 0)− V̄0

2 (τ2, 0)
]

limx2→∞V̄2(τ2, x2, 0) = 0

(31)

Clearly, the solutions of the differential systems (30) and (31) are in forms of{
V̄1(τ1, x1, 0) = V̄0

1 (τ1, x1)
S̄ f1(τ1, 0) = 1− V̄0

1 (τ1, 0) = S̄0(τ1)
(32)

{
V̄2(τ2, x2, 0) = V̄0

2 (τ2, x2)
S̄ f2(τ2, 0) = 1− V̄0

2 (τ2, 0) = S̄0(τ2)
(33)

so long as the initial guess V̄0
i (τi, xi) satisfies the condition

limxi→∞V̄0
i (τi, xi) = 0. (34)

Note that, other than this condition, theoretically, there are no other requirements for
the initial guess V̄0

i (τi, xi) to satisfy. However, a faster convergence of the series is expected
if we select a function that has already satisfied an additional condition Li[V̄0(τi, xi)] = 0.

With p = 1, we have

L1[V̄1(τ1, x1, 1)] = λ1(V̄1(τ1, x1, 1)− V̄2(τ2, x2, 1)) + 1
S̄ f1

(τ1,1)
dS̄ f1

(τ1,1)
dτ1

∂V̄1
∂x1

(τ1, x1, 1)

V̄1(0, x1, 1) = 0
V̄1(τ1, 0, 1) = 1− S̄ f1(τ1, 1)
∂V̄1
∂x1

(τ1, 0, 1) = −S̄ f1(τ1, 1)
limx1→∞V̄1(τ1, x1, 1) = 0



L2[V̄2(τ2, x2, 1)] = λ2(V̄2(τ2, x2, 1)− V̄1(τ1, x1, 1)) + 1
S̄ f2

(τ2,1)
dS̄ f2

(τ2,1)
dτ2

∂V̄2
∂x2

(τ2, x2, 1)

V̄2(0, x2, 1) = 0
V̄2(τ2, 0, 1) = 1− S̄ f2(τ2, 1)
∂V̄2
∂x2

(τ2, 0, 1) = −S̄ f2(τ2, 1)
limx2→∞V̄2(τ2, x2, 1) = 0

Comparing with (23) and (24), it is easy to see that the solution we seek is nothing but{
V1(τ1, x1) = V̄1(τ1, x1, 1)
S f1(τ1) = S̄ f1(τ1, 1) (35)
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{
V2(τ2, x2) = V̄2(τ2, x2, 1)
S f2(τ2) = S̄ f2(τ2, 1) (36)

In order to determine the values of V̄i(τi, xi, 1) and S̄ fi
(τi, 1), i = 1, 2, we can apply a

Taylor’s series expansion of p to the functions V̄i(τi, xi, p) and S̄ fi
(τi, p){

V̄1(τ1, x1, p) = ∑∞
n=0

V̄n
1 (τ1,x1)

n! pn

S̄ f1(τ1, p) = ∑∞
n=0

S̄n(τ1)
n! pn

(37)

{
V̄2(τ2, x2, p) = ∑∞

n=0
V̄n

2 (τ2,x2)
n! pn

S̄ f2(τ2, p) = ∑∞
n=0

S̄n(τ2)
n! pn

(38)

where {
V̄n

1 (τ1, x1) =
∂n

∂pn V̄1(τ1, x1, p)|p=0

S̄n(τ1) =
∂n

∂pn S̄ f1(τ1, p)|p=0
(39)

{
V̄n

2 (τ2, x2) =
∂n

∂pn V̄2(τ2, x2, p)|p=0

S̄n(τ2) =
∂n

∂pn S̄ f2(τ2, p)|p=0
(40)

To determine the coefficients in the above Taylor series expansion, we derive a set of
governing equations by differentiating the zeroth-order (25) and (26), with respect to p and
then set p = 0. After this process, we get

L1[V̄1
1 (τ1, x1)] = −L1[V̄0

1 (τ1, x1)] + Ã1(τ1, x1, 0)
V̄1

1 (0, x1) = −V̄0
1 (0, x1)

V̄1
1 (τ1, 0) + S̄1(τ1) = 0

∂V̄1
1

∂x1
(τ1, 0) + S̄1(τ1) = V̄0

1 (τ1, 0)− ∂V̄0
1

∂x1
(τ1, 0)− 1

limx1→∞V̄1
1 (τ1, x1) = 0

(41)

and 

L1[V̄n
1 (τ1, x1)] = n ∂n−1Ã1

∂pn−1 |p=0

V̄n
1 (0, x1) = 0

V̄n
1 (τ1, 0) + S̄n(τ1) = 0, if n ≥ 2

∂V̄n
1

∂x1
(τ1, 0) + S̄n(τ1) = 0

limx1→∞V̄n
1 (τ1, x1) = 0

(42)

Additionally,

L2[V̄1
2 (τ2, x2)] = −L2[V̄0

2 (τ2, x2)] + Ã2(τ2, x2, 0)
V̄1

2 (0, x2) = −V̄0
2 (0, x2)

V̄1
2 (τ2, 0) + S̄1(τ2) = 0

∂V̄1
2

∂x2
(τ2, 0) + S̄1(τ2) = V̄0

2 (τ2, 0)− ∂V̄0
2

∂x2
(τ2, 0)− 1

limx2→∞V̄1
2 (τ2, x2) = 0

(43)
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and 

L2[V̄n
2 (τ2, x2)] = n ∂n−1Ã2

∂pn−1 |p=0

V̄n
2 (0, x2) = 0

V̄n
2 (τ2, 0) + S̄n(τ2) = 0, if n ≥ 2

∂V̄n
2

∂x2
(τ2, 0) + S̄n(τ2) = 0

limx2→∞V̄n
2 (τ2, x2) = 0

(44)

Here, Ãi = Li[V̄i] − Ai, i = 1, 2. After eliminating S̄n(τi) from the two boundary
conditions at xi = 0 in the systems, then the systems can be written in a general form,

L1[V̄n
1 (τ1, x1)] = f n

1 (τ1, x1)
V̄n

1 (0, x1) = ψn
1 (x1)

∂V̄n
1

∂x1
(τ1, 0)− V̄n

1 (τ1, 0) = φn
1 (τ1)

V̄n
1 (τ1, ∞) = 0

(45)

where

f n
1 (τ1, x1) =

{
−L1[V̄0

1 (τ1, x1)] + Ã1(τ1, x1, 0), if n = 1

n ∂n−1Ã1
∂pn−1 |p=0, if n ≥ 2

(46)

ψn
1 (x1) =

{
−V̄0

1 (0, x1), if n = 1
0, if n ≥ 2

(47)

φn
1 (τ1) =

{
V̄0

1 (τ1, 0)− ∂V̄0
1

∂x1
(τ1, 0)− 1, if n = 1

0, if n ≥ 2
(48)

Additionally, 
L2[V̄n

2 (τ2, x2)] = f n
2 (τ2, x2)

V̄n
2 (0, x2) = ψn

2 (x2)
∂V̄n

2
∂x2

(τ2, 0)− V̄n
2 (τ2, 0) = φn

2 (τ2)

V̄n
2 (τ2, ∞) = 0

(49)

where

f n
2 (τ2, x2) =

{
−L2[V̄0

2 (τ2, x2)] + Ã2(τ2, x2, 0), if n = 1

n ∂n−1Ã2
∂pn−1 |p=0, if n ≥ 2

(50)

ψn
2 (x2) =

{
−V̄0

2 (0, x2), if n = 1
0, if n ≥ 2

(51)

φn
2 (τ2) =

{
V̄0

2 (τ2, 0)− ∂V̄0
2

∂x2
(τ2, 0)− 1, if n = 1

0, if n ≥ 2
(52)

Now, let us apply the following transformation

V̄n
i (τi, xi) = exp

{
− (γi − 1)xi/2− (γi + 1)2τi/4

}
Ūn

i (τi, xi), (53)
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so that (45) and (49) can be expressed in the form of a standard nonhomogeneous
diffusion system:

∂Ūn
1

∂τ1
− ∂2Ūn

1
∂x2

1
= exp

{
(γ1 − 1)x1/2 + (γ1 + 1)2τ1/4

}
f n
1 (τ1, x1)

Ūn
1 (0, x1) = exp{(γ1 − 1)x1/2}ψn

1 (x1)
∂Ūn

1
∂x1

(τ1, 0)− 1
2 (γ1 + 1)Ūn

1 (τ1, 0) = exp{(γ1 + 1)2τ1/4}φn
1 (τ1)

limx1→∞Ūn
1 (τ1, x1) = 0

(54)


∂Ūn

2
∂τ2
− ∂2Ūn

2
∂x2

2
= exp

{
(γ2 − 1)x2/2 + (γ2 + 1)2τ2/4

}
f n
2 (τ2, x2)

Ūn
2 (0, x2) = exp{(γ2 − 1)x2/2}ψn

2 (x2)
∂Ūn

2
∂x2

(τ2, 0)− 1
2 (γ2 + 1)Ūn

2 (τ2, 0) = exp{(γ2 + 1)2τ2/4}φn
2 (τ2)

limx2→∞Ūn
2 (τ2, x2) = 0

(55)

An explicit solution of Equations (54) and (55) at each order (i.e., with each n) can now
be found by splitting the linear problem into three problems, a method that is commonly
used in solving linear PDEs. For further details of the solution procedure we refer to
Carslaw and Jaeger (1959). The final explicit solution at each order is then:

Ūn
1 (τ1, x1) =

∫ ∞

0
exp{(γ1 − 1)ξ1/2}ψn

1 (ξ1)G(x1, ξ1, τ1)dξ1

−
∫ τ1

0
exp{(γ1 + 1)2τ1/4}φn

1 (η1)G(x1, 0, τ1 − η1)dη1

=
∫ τ1

0

∫ ∞

0
exp

{
(γ1 − 1)x1/2 + (γ1 + 1)2τ1/4

}
f n
1 (η1, ξ1)G(x1, ξ1, τ1 − η1)dξ1dη1,

(56)

where

G(x1, ξ1, τ1) =
1

2
√

πτ1

{
exp

[
−(x1 − ξ1)

2

4τ1

]
+ exp

[
−(x1 + ξ1)

2

4τ1

]
− (γ1 + 1)

√
πτ1 exp

[
(γ1 + 1)2

4
+

(γ1 + 1)(x1 + ξ1)

2

× erfc
(

x1 + ξ1

2
√

τ1
+

1
2
(γ1 + 1)

√
τ1

)]}
(57)

Additionally,

Ūn
2 (τ2, x2) =

∫ ∞

0
exp{(γ2 − 1)ξ2/2}ψn

2 (ξ2)G(x2, ξ2, τ2)dξ2

−
∫ τ2

0
exp{(γ2 + 1)2τ2/4}φn

2 (η2)G(x2, 0, τ2 − η2)dη2

=
∫ τ2

0

∫ ∞

0
exp

{
(γ2 − 1)x2/2 + (γ2 + 1)2τ2/4

}
f n
2 (η2, ξ2)G(x2, ξ2, τ2 − η2)dξ2dη2,

(58)

where

G(x2, ξ2, τ2) =
1

2
√

πτ2

{
exp

[
−(x2 − ξ2)

2

4τ2

]
+ exp

[
−(x2 + ξ2)

2

4τ2

]
− (γ2 + 1)

√
πτ2 exp

[
(γ2 + 1)2

4
+

(γ2 + 1)(x2 + ξ2)

2

× erfc
(

x2 + ξ2

2
√

τ2
+

1
2
(γ2 + 1)

√
τ2

)]}
(59)
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and erfc(x) denotes the complementary error function.
For the choice of an initial guess V0

i (τi, xi), i = 1, 2, any continuous functions satisfying
the limiting condition can be used, we select the corresponding European option value as
the initial guess with three apparent advantages given as discussed in Zhu (2006):

1. the boundary condition as xi → ∞ is automatically satisfied;
2. Li[V̄0

i (τi, xi)] will become 0; which we expect will foster a faster convergence of the
series and it also help to simply f 1

i (τi, xi) as the first term of f 1
i (τi, xi) will vanish; and,

3. also, as V̄0
i satisfies the condition, V̄0

i (0, xi) = 0 so ψ1
i (xi) = 0 and as ψn

i (xi) = 0 for
all n ∈ N \ {1}, the integral containing ψn

i (xi) is eliminated.

Zhu et al. (2012) provides the analytic solution of a European put option with a
two-state regime switching:

V0
i (t, S)

= Ke−ri(T−t) +
1

4π
√

2

√
SKe−

1
2 (ri+a21+a12+

σ2
1+σ2

2
8 )(T−t)

∫ ∞

0

(−1)i−12 f̂1(ρ)(a21 + a12)

M(ρ)(ρ4 + 1
16 )(σ

2
1 − σ2

2 )

×
{

eXi(ρ)

[
(2ρ2 − 1

2
) sin( f̂2(ρ) + θ(ρ)−Yi(ρ))− (2ρ2 +

1
2
) cos( f̂2(ρ) + θ(ρ)−Yi(ρ))

]
− e−Xi(ρ)

[
(2ρ2 − 1

2
) sin( f̂2(ρ) + θ(ρ) + Yi(ρ))− (2ρ2 +

1
2
) cos( f̂2(ρ) + θ(ρ) + Yi(ρ))

]}
+

2 f̂1(ρ)

M(ρ)

{
eXi(ρ)

[
sin( f̂2(ρ) + θ(ρ)−Yi(ρ)) + cos( f̂2(ρ) + θ(ρ)−Yi(ρ))

]
− e−Xi(ρ)

[
sin( f̂2(ρ) + θ(ρ) + Yi(ρ)) + cos( f̂2(ρ) + θ(ρ) + Yi(ρ))

]}
+

f̂1(ρ)

ρ4 + 1
16

{
eXi(ρ)

[
(2ρ2 − 1

2
) sin( f̂2(ρ)−Yi(ρ))− (2ρ2 +

1
2
) cos( f̂2(ρ)−Yi(ρ))

]
+ e−Xi(ρ)

[
(2ρ2 − 1

2
) sin( f̂2(ρ) + Yi(ρ))− (2ρ2 +

1
2
) cos( f̂2(ρ) + Yi(ρ))

]}
dρ,

(60)

for i = 1, 2, where

τ =
σ2

1 − σ2
2

4
(T − t), α =

2(a12 − a21)

σ2
1 − σ2

2
, µ2 =

4a12a21

(σ2
1 − σ2

2 )
2

,

M(ρ) =

{[
(

1
4
+ α)2 − ρ4 + µ2]2 + 4ρ4(

1
4
+ α)2

} 1
4

,

θ(ρ) =
1
2

tan−1
[

2ρ2( 1
4 + α)

( 1
4 + α)2 − ρ4 + µ2

]
,

Xi(ρ) = (−1)i−1M(ρ)τ cos θ(ρ), Yi(ρ) = (−1)i−1M(ρ)τ sin θ(ρ)

and

f̂1(ρ) = e−
ρ√
2
| ln( S

K )+r1(T−t)|, f̂2(ρ) =
ρ2

4
(σ2

1 + σ2
2 )(T − t)− ρ√

2
| ln( S

K
) + r1(T − t)|.

The vanishing of ψn
i (xi) allows us to write the solution Ūn

i (τi, xi) in a simple and
closed form:
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Ūn
1 (τ1, x1) = − 2√

π
e(γ1+1)2τ1/4

∫ ∞

0
e−(γ1+1)η1/2

∫ ∞

(x1+η1)/2
√

τ1

φn
1

(
τ1 −

(x1 + η1)
2

4ξ2
1

)
× e−[(γ1+1)(x1+η1)/4ξ1]

2−ξ2
1 dξ1dη1 +

∫ τ1

0

{
e(γ1+1)2η1/4
√

π

[
e(γ1−1)x1/2

×
∫ x1/2

√
τ1−η1

−x1/2
√

τ1−η1

f n
1 (η1, 2

√
τ1 − η1ξ1 + x1)e(γ1−1)

√
τ1−η1ξ1−ξ2

1 dξ1

+
∫ ∞

x1/2
√

τ1−η1

[
e(γ1−1)x1/2 f n

1 (η1, 2
√

τ1 − η1ξ1 + x1)

+ e−(γ1−1)x1/2 f n
1 (η1, 2

√
τ1 − η1ξ1 − x1)

]
× e(γ1−1)

√
τ1−η1ξ1−ξ2

1 dξ1

]
− (γ1 + 1)

√
τ1 − η1e−(γ1−1)x1/2+(γ1+1)2τ1/4

∫ ∞

x1/2
√

τ1−η1

f n
1 (η1, 2

√
τ1 − η1ξ1 − x1)

× e2γ1
√

τ1−η1ξ1 erfc
(

ξ1 +
(γ1 + 1)

2
√

τ1 − η1

)
dξ1

}
dη1,

(61)

Ūn
2 (τ2, x2) = − 2√

π
e(γ2+1)2τ2/4

∫ ∞

0
e−(γ2+1)η2/2

∫ ∞

(x2+η2)/2
√

τ2

φn
2

(
τ2 −

(x2 + η2)
2

4ξ2
2

)
× e−[(γ2+1)(x2+η2)/4ξ2]

2−ξ2
2 dξ2dη2 +

∫ τ2

0

{
e(γ2+1)2η2/4
√

π

[
e(γ2−1)x2/2

×
∫ x2/2

√
τ2−η2

−x2/2
√

τ2−η2

f n
2 (η2, 2

√
τ2 − η2ξ2 + x2)e(γ2−1)

√
τ2−η2ξ2−ξ2

2 dξ2

+
∫ ∞

x2/2
√

τ2−η2

[
e(γ2−1)x2/2 f n

2 (η2, 2
√

τ2 − η2ξ2 + x2)

+ e−(γ2−1)x2/2 f n
2 (η2, 2

√
τ2 − η2ξ2 − x2)

]
× e(γ2−1)

√
τ2−η2ξ2−ξ2

2 dξ2

]
− (γ2 + 1)

√
τ2 − η2e−(γ2−1)x2/2+(γ2+1)2τ2/4

∫ ∞

x2/2
√

τ2−η2

f n
2 (η2, 2

√
τ2 − η2ξ2 − x2)

× e2γ2
√

τ2−η2ξ2 erfc
(

ξ2 +
(γ2 + 1)

2
√

τ2 − η2

)
dξ2

}
dη2.

(62)

Once V̄n
i (τi, xi), i = 1, 2 are found at each order by substituting Equations (61) and (62)

back into Equation (53), S̄n(τi) can easily be found from the third equation of Equations (41)–(44), i.e.,

S̄n(τ1) = −V̄n
1 (τ1, 0), (63)

S̄n(τ2) = −V̄n
2 (τ2, 0). (64)

Upon finding the coefficients V̄n
i (τi, xi) and S̄n(τi) from (43), (61)–(64), the final solu-

tion can be written in terms of a series of infinitely many terms, as{
V1(τ1, x1) = V̄1(τ1, x1, 1) = ∑∞

n=0
V̄n

1 (τ1,x1)
n!

S f1(τ1) = S̄ f1(τ1, 1) = ∑∞
n=0

S̄n(τ1)
n!

(65)
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{
V2(τ2, x2) = V̄2(τ2, x2, 1) = ∑∞

n=0
V̄n

2 (τ2,x2)
n!

S f2(τ2) = S̄ f2(τ2, 1) = ∑∞
n=0

S̄n(τ2)
n!

(66)

We also derive the exact, analytic, and closed-form formula for the optimal exercise
boundaries S fi

(τi), i = 1, 2 in the form:

S f1(τ1) =
2√
π

e−(γ1−1)x1/2−(γ1+1)2τ1/4
∞

∑
n=0

1
n!

{
e(γ1+1)2τ1/4

×
∫ ∞

0
e−(γ1+1)η1/2

∫ ∞

η1/2
√

τ1

φn
1

(
τ1 −

η2
1

4ξ2
1

)
× e−[(γ1+1)η1/4ξ1]

2−ξ2
1 dξ1dη1

+
∫ τ1

0

[
e(γ1+1)2η1/4

∫ ∞

0
f n
1 (η1, 2

√
τ1 − η1ξ1)e(γ1−1)

√
τ1−η1ξ1−ξ2

1 dξ1

−
√

π

2
(γ1 + 1)

√
τ1 − η1e(γ1+1)2τ1/4

∫ ∞

0
f n
1 (η1, 2

√
τ1 − η1ξ1)

× e2γ1
√

τ1−η1ξ1 erfc
(

ξ1 +
(γ1 + 1)

2
√

τ1 − η1

)
dξ1
]
dη1

}
,

(67)
and

S f2(τ2) =
2√
π

e−(γ2−1)x2/2−(γ2+1)2τ2/4
∞

∑
n=0

1
n!

{
e(γ2+1)2τ2/4

×
∫ ∞

0
e−(γ2+1)η2/2

∫ ∞

η2/2
√

τ2

φn
2

(
τ2 −

η2
2

4ξ2
2

)
× e−[(γ2+1)η2/4ξ2]

2−ξ2
2 dξ2dη2

+
∫ τ2

0

[
e(γ2+1)2η2/4

∫ ∞

0
f n
2 (η2, 2

√
τ2 − η2ξ2)e(γ2−1)

√
τ2−η2ξ2−ξ2

2 dξ2

−
√

π

2
(γ2 + 1)

√
τ2 − η2e(γ2+1)2τ2/4

∫ ∞

0
f n
2 (η2, 2

√
τ2 − η2ξ2)

× e2γ2
√

τ2−η2ξ2 erfc
(

ξ2 +
(γ2 + 1)

2
√

τ2 − η2

)
dξ2
]
dη2

}
.

(68)

3.2. Transition Region

Let us consider the transition region between the two stopping curves:

Γ : {(S, t) : S f1(t) ≤ S ≤ S f2(t)}

In this region V2 = V(t, T, S, e2) = K− S and V1 satisfies the Black–Scholes–Merton equation

∂V1

∂t
+ r1S

∂V1

∂S
+

1
2

σ2
1 S2 ∂2V1

∂S2 − r1V1 + a11V1 − a11(K− S) = 0 , (69)

with a terminal condition

V1(T, T, S) = V(T, T, S, e1) = max{K− S, 0}.
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Additionally, continuity on S f1(t) gives:

V1(t, T, S) = K− S f1(t)

and smoothness on S f1(t) gives:

∂V1

∂S
(t, T, S f1(t)) = −1.

(70)

To solve this system effectively, we shall make all of the variables dimensionless by
introducing dimensionless variables

V′1 =
V1

K
, S′ =

S
K

, τ′1 =
σ2

1
2
(T − t)

and also make the Laudau transformation

x1 = ln
( S′

S f1(τ1)

)
.

With all of the primes dropped from now on, the dimensionless systems with fixed
boundary conditions read

∂V1
∂τ1
− (γ1 − 1) ∂V1

∂x1
− ∂2V1

∂x2
1
+ γ1V1 = λ1(K− ex1 S f1(τ1)−V1) +

1
S f1

(τ1)

dS f1
(τ1)

dτ1

∂V1
∂x1

V1(τ1, 0) = 1− S f1(τ1)
∂V1
∂x1

(τ1, 0) = −S f1(τ1)

V1(0, x1) = 0
limx1→∞V1(τ1, x1) = 0

(71)

We will use the homotopy analysis method to solve this nonlinear system of equa-
tions. We introduce an embedding parameter p ∈ [0, 1] and construct unknown functions
V̄1(τ1, x1, p) and S̄ f1(τ1, p). The zeroth-order deformation is given by

(1− p)L1[V̄1(τ1, x1, p)− V̄0
1 (τ1, x1)] = −p

{
Â1[V̄1(τ1, x1, p), S̄ f1(τ1, p)]

}
V̄1(0, x1, p) = (1− p)V̄0

1 (0, x1)
V̄1(τ1, 0, p) + S̄ f1(τ1, p) = 1
∂V̄1
∂x1

(τ1, 0, p) + S̄ f1(τ1, p) = (1− p)
[

1 + ∂V̄0
1

∂x1
(τ1, 0)− V̄0

1 (τ1, 0)
]

limx1→∞V̄1(τ1, x1, p) = 0

(72)

Here, L1 is a differential operator that is defined as

L1 =
∂

∂τ1
− (γ1 − 1)

∂

∂x1
− ∂2

∂x2
1
+ γ1, (73)

and Â1 is a functional defined as
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Â1[V̄1(τ1, x1, p), S̄ f1(τ1, p)]

= L1(V̄1)− λ1(V̄1 + ex1 S̄ f1(τ1, p)− K)− 1
S̄ f1(τ1, p)

dS̄ f1(τ1, p)
dτ1

∂V̄1

∂x1
(τ1, x1, p).

(74)
With p = 1, we have

L1(V̄1)− λ1(V̄1 + ex1 S̄ f1(τ1, 1)− K)− 1
S̄ f1

(τ1,1)
dS̄ f1

(τ1,1)
dτ1

∂V̄1
∂x1

(τ1, x1, 1) = 0

V̄1(0, x1, 1) = 0
V̄1(τ1, 0, 1) = 1− S̄ f1(τ1, 1)
∂V̄1
∂x1

(τ1, 0, 1) = −S̄ f1(τ1, 1)
limx1→∞V̄1(τ1, x1, 1) = 0

(75)

When comparing with (71), it is easy to see that the solution we seek is nothing but{
V1(τ1, x1) = V̄1(τ1, x1, 1)
S f1(τ1) = S̄ f1(τ1, 1) (76)

If p = 0, then we have

L1[V̄1(τ1, x1, 0)] = L1[V̄0
1 (τ1, x1)]

V̄1(0, x1, 0) = V̄0
1 (0, x1)

V̄1(τ1, 0, 0) + S̄ f1(τ1, 0) = 1
∂V̄1
∂x1

(τ1, 0, 0) + S̄ f1(τ1, 0) =
[

1 + ∂V̄0
1

∂x1
(τ1, 0)− V̄0

1 (τ1, 0)
]

limx1→∞V̄1(τ1, x1, 0) = 0

(77)

Clearly, the solution of the differential system (77) is{
V̄1(τ1, x1, 0) = V̄0

1 (τ1, x1)
S̄ f1(τ1, 0) = 1− V̄0

1 (τ1, 0) = S̄0(τ1)
(78)

so long as the initial guess V̄0
1 (τ1, x1) satisfies the condition

limx1→∞V̄0
1 (τ1, x1) = 0. (79)

The initial guess V̄0
1 (τ1, x1) is given in Equation (60). To determine the values of

V̄1(τ1, x1, 1) and S̄ f1(τ1, 1), we can apply a Taylor’s series expansion of p to the functions
V̄1(τ1, x1, p) and S̄ f1(τ1, p){

V̄1(τ1, x1, p) = ∑∞
n=0

V̄n
1 (τ1,x1)

n! pn

S̄ f1(τ1, p) = ∑∞
n=0

S̄n(τ1)
n! pn

(80)

where {
V̄n

1 (τ1, x1) =
∂n

∂pn V̄1(τ1, x1, p)|p=0

S̄n(τ1) =
∂n

∂pn S̄ f1(τ1, p)|p=0
(81)
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In order to determine the coefficients in the above Taylor series expansion, we derive
a set of governing equations by differentiating the zeroth-order (72), with respect to p and
then setting p = 0. After this process, we obtain

L1[V̄1
1 (τ1, x1)] = −L1[V̄0

1 (τ1, x1)] + Ā1(τ1, x1, 0)
V̄1

1 (0, x1) = −V̄0
1 (0, x1)

V̄1
1 (τ1, 0) + S̄1(τ1) = 0

∂V̄1
1

∂x1
(τ1, 0) + S̄1(τ1) = V̄0

1 (τ1, 0)− ∂V̄0
1

∂x1
(τ1, 0)− 1

limx1→∞V̄1
1 (τ1, x1) = 0

(82)

and 

L1[V̄n
1 (τ1, x1)] = n ∂n−1Ā1

∂pn−1 |p=0

V̄n
1 (0, x1) = 0

V̄n
1 (τ1, 0) + S̄n(τ1) = 0, if n ≥ 2

∂V̄n
1

∂x1
(τ1, 0) + S̄n(τ1) = 0

limx1→∞V̄n
1 (τ1, x1) = 0

(83)

Here, Ā1 = L[V̄1]− Â1. After eliminating S̄n(τ1) from the two boundary conditions
at x1 = 0 in the systems, then the systems can be written in a general form,

L1[V̄n
1 (τ1, x1)] = f̃ n

1 (τ1, x1)
V̄n

1 (0, x1) = ψn
1 (x1)

∂V̄n
1

∂x1
(τ1, 0)− V̄n

1 (τ1, 0) = φn
1 (τ1)

V̄n
1 (τ1, ∞) = 0

(84)

where

f̃ n
1 (τ1, x1) =

{
−L1[V̄0

1 (τ1, x1)] + Ā1(τ1, x1, 0), if n = 1

n ∂n−1Ā1
∂pn−1 |p=0, if n ≥ 2

(85)

ψn
1 (x1) =

{
−V̄0

1 (0, x1), if n = 1
0, if n ≥ 2

(86)

φn
1 (τ1) =

{
V̄0

1 (τ1, 0)− ∂V̄0
1

∂x1
(τ1, 0)− 1, if n = 1

0, if n ≥ 2
(87)

Now, we apply the following transformation

V̄n
1 (τ1, x1) = exp

{
− (γ1 − 1)x1/2− (γ1 + 1)2τ1/4

}
Ūn

1 (τ1, x1), (88)

so that (84) can be written in the form of a standard nonhomogeneous diffusion system:
∂Ūn

1
∂τ1
− ∂2Ūn

1
∂x2

1
= exp

{
(γ1 − 1)x1/2 + (γ1 + 1)2τ1/4

}
f̃ n
1 (τ1, x1)

Ūn
1 (0, x1) = exp{(γ1 − 1)x1/2}ψn

1 (x1)
∂Ūn

1
∂x1

(τ1, 0)− 1
2 (γ1 + 1)Ūn

1 (τ1, 0) = exp{(γ1 + 1)2τ1/4}φn
1 (τ1)

limx1→∞Ūn
1 (τ1, x1) = 0

(89)

The final explicit solution at each order is then:
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Ūn
1 (τ1, x1) =

∫ ∞

0
exp{(γ1 − 1)ξ1/2}ψn

1 (ξ1)G(x1, ξ1, τ1)dξ1

−
∫ τ1

0
exp{(γ1 + 1)2τ1/4}φn

1 (η1)G(x1, 0, τ1 − η1)dη1

=
∫ τ1

0

∫ ∞

0
exp

{
(γ1 − 1)x1/2 + (γ1 + 1)2τ1/4

}
f̃ n
1 (η1, ξ1)G(x1, ξ1, τ1 − η1)dξ1dη1,

(90)
where

G(x1, ξ1, τ1) =
1

2
√

πτ1

{
exp

[
−(x1 − ξ1)

2

4τ1

]
+ exp

[
−(x1 + ξ1)

2

4τ1

]
− (γ1 + 1)

√
πτ1 exp

[
(γ1 + 1)2

4
+

(γ1 + 1)(x1 + ξ1)

2

× erfc
(

x1 + ξ1

2
√

τ1
+

1
2
(γ1 + 1)

√
τ1

)]}
. (91)

Once V̄n
1 (τ1, x1), are found at each order by substituting Equations (90) back into

Equation (88), S̄n(τ1) can easily be found from the third equation of Equations (82) and
(83), i.e.,

S̄n(τ1) = −V̄n
1 (τ1, 0). (92)

Upon finding the coefficients V̄n
1 (τ1, x1) and S̄n(τ1) from (88), (90), and (92), the final

solution can be written in terms of a series of infinitely many terms as{
V1(τ1, x1) = V̄1(τ1, x1, 1) = ∑∞

n=0
V̄n

1 (τ1,x1)
n! ,

S f1(τ1) = S̄ f1(τ1, 1) = ∑∞
n=0

S̄n(τ1)
n! .

(93)

4. Conclusions

By means of the homotopy analysis method, an exact analytical pricing formula for
the American option under a two-state regime-switching economy is derived. It is shown
that the optimal exercise boundary, which is the key difficulty in the valuation of American
options, can be explicitly expressed in the form of infinite series. In addition, we provide a
flow chart to show when a particular formula should be used for the easiness of using our
solutions to price American put options under a two-state regime switching model.
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