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Abstract: We use point processes to analyze market order arrivals on the intraday market for hourly
electricity deliveries in Germany in the second quarter of 2015. As we distinguish between buys
and sells, we work in a multivariate setting. We model the arrivals with a Hawkes process whose
baseline intensity comprises either only an exponentially increasing component or a constant in
addition to the exponentially increasing component, and whose excitation decays exponentially. Our
goodness-of-fit tests indicate that the models where the intensity of each market order type is excited
at least by events of the same type are the most promising ones. Based on the Akaike information
criterion, the model without a constant in the baseline intensity and only self-excitation is selected
in almost 50% of the cases on both market sides. The typical jump size of intensities in case of the
arrival of a market order of the same type is quite large, yet rather short lived. Diurnal patterns
in the parameters of the baseline intensity and the branching ratio of self-excitation are observable.
Contemporaneous relationships between different parameters such as the jump size and decay rate
of self and cross-excitation are found.

Keywords: hawkes process; model selection; parameter interpretation; contemporaneous relation-
ship; intraday electricity market

1. Introduction

On the spot market for power deliveries in Germany (operated by EPEX SPOT SE),
contracts with hourly delivery are traded in an auction with gate closure at 12 noon on the
day before the delivery day. This is followed by continuous trading from 3 pm on the day
before the delivery day until half an hour before delivery start (5 minutes before delivery
start in the area of the local transmission system operator). The latter market is typically
referred to as intraday market (IDM). Participants on the IDM may choose between placing
limit orders (LOs), which are collected in the limit order book (LOB), and market orders
(MOs), which execute one or more LOs from the LOB partially or entirely. More details on
the organization of the IDM may be found in EPEX SPOT SE (2020).

On markets with continuous trading, events such as the placement of a buy MO occur
randomly in time. They may be modeled with point processes for which the homogeneous
Poisson process is the most basic example. Point processes are characterized by their
intensity function, which is linked to the probability of an event occurring. The intensity
function of the homogeneous Poisson process is a constant. More sophisticated point
processes have a time-varying and potentially stochastic intensity. The Hawkes process
is a stochastic-intensity point process, which has the property that its intensity function
may undergo excitation. That means the arrival of an event causes the intensity to jump
change, with this jump change decaying again over time. Hence, the intensity function of
the Hawkes process has two components, namely the baseline intensity which triggers
arrivals not due to excitation and the excitation part. In Hawkes (1971), where the process
was originally introduced, it is assumed that the jumps are positive.
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The analysis of event arrivals on markets with continuous trading has been subject to
research as soon as data on arrivals become available. Jain and Joh (1988) is an early work
that states that the average diurnal pattern of trade volumes is U-shaped. Their findings
motivated the widely-cited work of Admati and Pfleiderer (1988) in which a theoretic
explanation for the concentration of transactions is provided, more specifically diurnal
patterns and random clustering of transactions. In Easley and O’Hara (1992), an alternative
explanation for such clustering is presented. In Biais et al. (1995), empirical evidence for
random clustering of transactions is provided. The authors of that paper conjecture that
such clusters may be due to market participants splitting their MOs, market participants
mimicking other market participants, or market participants reacting to new information
in timely proximity, see also Gould et al. (2013).

Engle and Russell (1998) present a model for the durations between consecutive
transactions on a financial market, which has both diurnal patterns and random clustering
of transactions incorporated. They state that the Hawkes process is not appropriate for
modeling arrivals of financial transactions due to the fact that it is in real time and not in
event time. This causes some transactions to have the same impact on the intensity at some
point in time no matter how many transactions there have been between that transaction
and the same point in time. Nevertheless, the Hawkes process made its way to being
applied to event data from financial markets. Apparently, it was Bowsher (2007) who first
used a bivariate Hawkes process to model the times of transactions and mid price changes.

Following Bowsher, the Hawkes process has been frequently used in the context of
modeling events on markets with continuous trading. Bacry et al. (2015) and Hawkes (2018)
provide overviews of research on the Hawkes process in finance and market microstructure
in particular. In Bacry and Muzy (2014), for example, market order arrivals and changes of
market prices are modeled with the Hawkes process. Da Fonseca and Zaatour (2014) pro-
vide explicit formulas for the moments of the intensity of a particular Hawkes process and
the number of arrivals over time. Yet another interesting example is Rambaldi et al. (2017),
where the process of orders arriving on a futures market is divided into subprocesses
depending on order size.

It is not that the Hawkes process is only used in the context of continuous trading.
In Errais et al. (2010), for example, it is used to model corporate defaults. Eyjolfsson
and Tjøstheim (2018) is an example where the Hawkes process is used in the context of
electricity price modeling.

A paper of particular importance for this work is Chen and Hall (2013) where the
authors use a Hawkes process with time-varying baseline intensity to model transaction
arrivals for some stock. Time dependence of the rate at which transactions on the IDM
occur is also observable, see Scharff and Amelin (2016), Narajewski and Ziel (2019), and
Kremer et al. (2020). Favetto (2020) and Kramer and Kiesel (2021) are works on modeling
market order arrivals on the IDM with the Hawkes process, which also departed from
analysis in Section 2.

One contribution of this work is empirical evidence for higher intensity of MO arrivals
close to gate closure and clustering in MO arrivals. Building on these observations, we
address the question whether the Hawkes process is suited to model the clustering. We
leave the question whether other models that result in clustering of MO arrivals may also
be suited to future research. The same holds true for the assessment whether one clustering
model outperforms another. The goodness-of-fit of the Hawkes process turns out to be
clearly better compared to the same model without excitation. On that basis, we identify
some characteristics of the estimated Hawkes processes for each contract. Examples are a
strong but short-lived self-excitation, more offspring due to MOs on the same market side
than on the other market side, and a strongly negative relationship between the time-zero
level of the exponential growth component of the baseline intensity and its growth rate.

The remainder of this article is organized as follows: In Section 2, we provide empirical
analyses that are aimed at informing on the time dependence of the baseline intensity and
the prevalence of clustering. Then we introduce the multivariate Hawkes process and
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outline how we estimate the parameters, assess goodness-of-fit, and compare models with
different assumptions regarding the dependence structure between different event types
with each other, see Section 3. The results are provided in Section 4. Furthermore, we
analyze the estimated parameters in that section. Section 5 concludes with a summary and
discussion of our results.

2. Empirical Analysis

We used data obtained from EPEX SPOT SE. It comprises all LOs and MOs for hourly
contracts with delivery start in the second quarter of 2015 (also referred to as “Q2/2015”)
which had Germany as the delivery area. All orders with delivery areas other than Germany
that also appeared in the LOB for deliveries in Germany are missing. That means LOs with
Germany as the delivery area that were executed by MOs with other delivery areas are
contained in the data. However, LOs with delivery areas other than Germany that were
executed by MOs with Germany as the delivery area are not contained.

We limited our empirical analyses to buy and sell MOs. In regards to the buy side, we
consider the time at which sell LOs executed by a buy MO were removed from the LOB to
be the timestamp of that MO. On the sell side, it is the time at which buy LOs executed by
a sell MO were removed from the LOB. The time at which an executed LO is removed from
the LOB is usually around 10 milliseconds after the time of arrival of the MO. We consider
all MOs for contracts with delivery start at the same full hour of the day together, not just
those for the same contract, even though our results in Section 4.1 imply that considering
the MOs for each contract individually is more promising. The reason is that the number
of MOs per contract is typically too small for our empirical analyses to be meaningful. We
are convinced that the results of our empirical analyses are also informative with regards
to the per-contract consideration.

Let us first consider frequencies of arrival times together with durations between those
arrival times and the subsequent arrival times of buy and sell MOs. Given some point in
time and some duration which is less than or equal to the duration between the point in
time under consideration and the end of trading, this analysis provides information on how
likely it is to observe an event at that point in time and how likely it is that the duration
under consideration is the duration until the next event arrival. These probabilities allow
conclusions to be drawn about the process that generated the arrivals. The homogeneous
Poisson process is an example of such a process. In that case the probability of an event
arrival at some point in time is always the same, just as the probability that some duration
is the duration until the next event arrival.

In concrete terms, we determine for each buy (sell) MO how long it took for the next
buy (sell) MO to arrive. Then we plot two-dimensional histograms with arrival times
of buy (sell) MOs on the horizontal axis and interarrival durations on the vertical axis.
Figure 1 shows the results for the buy and sell side. The upper triangle of the plot is shaded
because these timestamp-duration pairs are not reachable. The plots reveal that more MOs
are placed close to gate closure than after market opening, also causing the interarrival
times to decrease as gate closure approaches. The simulation study in Appendix A illus-
trates that neither the simulated arrivals of a homogeneous Poisson process nor those of a
Hawkes process as defined in Section 3.1 with constant baseline intensity result in com-
parable patterns. Instead, the simulated arrivals of a non-homogeneous Poisson process
with increasing intensity close to gate closure as well as those of a Hawkes process with
increasing baseline intensities close to gate closure result in similar patterns. One may also
observe that in the hours after market opening durations in the region of the maximum
durations occur only rarely. This indicates that in the hours before gate closure, the baseline
intensities reach levels that are high enough to make the incident of no event very unlikely.
The simulation study in Appendix A also illustrates this connection. Hence, a suitable
model for the baseline intensity should allow for a rather short time window before gate
closure during which the baseline intensity is substantially higher.
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(b) Sell side.

Figure 1. Two-dimensional histograms of times at which buy (left) and sell (right) market orders were placed (horizontal
axis) and durations between the time at which a market order was placed on one side and the time of the next market order
on that side (vertical axis). Data: All contracts with hourly delivery in Q2/2015. For each contract the time at which trading
ends is set to the time at which trading ends for the hourly contract with delivery start at 21:00:00 UTC.
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Let us now analyze empirical evidence for clustering in the arrivals of buy and sell
MOs that may be due to self or cross-excitation. In Hewlett (2006), an empirical analysis is
provided which indicates that clustering prevails in buy and sell MO arrivals on foreign
exchange markets. The analysis involves splitting the time after the arrival of each buy and
sell MO into intervals of a fixed length and open on the left side, and counting the number
of buy and sell MOs in these intervals. Then the mean numbers of buy and sell MO arrivals
in each interval after the arrival of a buy or sell MO are computed. A decrease in the mean
number of buy (sell) MO arrivals after the arrival of a buy (sell) MO with increasing lag
implies that buy (sell) MOs tend to arrive in clusters, which may be due to self-excitation.
A decrease in the mean numbers of buy (sell) MO arrivals after the arrival of a sell (buy)
MO with increasing lag implies that buy (sell) MOs tend to arrive in clusters, which may
be due to cross-excitation.

We consider all buy and sell MOs which were placed for hourly contracts with delivery
start in Q2/2015. Once again, we consider the contracts with delivery during one particular
hour of the day together. We analyze a period of five minutes after a buy (sell) MO and
split this period into intervals of five seconds. The red lines in Figure 2 reflect the results
for buy MOs and the blue lines for sell MOs. The average number of buy (sell) MO arrivals
after the arrival of a buy (sell) MO is high in the first interval and initially decreases from
one interval to the next at a high rate, no matter which market side or delivery hour is
considered. The average number of buy (sell) MO arrivals after the arrival of a sell (buy)
MO is much smaller in the first interval but also decreases visibly at the beginning. Hence,
clustering prevails in MO arrivals, which may be due to self- and/or cross-excitation. As
the Hawkes process allows for such excitation, we analyze whether the dynamics of MO
arrivals can be captured with that process in the following section.
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Figure 2. Mean number of buy and sell market orders in time intervals of 5 s after the arrival of a buy market order (left)
and after the arrival of a sell market order (right). Data: All contracts with delivery start at 13:00:00 UTC in Q2/2015.

3. Model
3.1. Definition

By (Ω,F , P) we denote a probability space with P the physical probability measure
which is equipped with a filtration (Ft)t≥0 that satisfies the usual conditions. The stochastic
process under consideration is defined on (Ω,F , (Ft)t≥0, P).

We want to model the arrivals of MOs for a specific contract that is traded on the
IDM, the trading start of which we fix as t = 0. Referring to Daley and Vere-Jones (2003),
these arrivals may be thought of as occurrences of a phenomenon at random points in time
{ti}, i = 1, 2, . . . > 0, which may be modeled with so-called point processes. We assume
that ti+1 − ti > 0, i = 1, 2, . . ., which implies that the point process under consideration is
orderly. As described in Brémaud (1981), a point process has a counting process (Nt)t≥0
associated with it that reflects the number of occurrences up to and including t. The
counting process Nt has support over the positive half line and N0 = 0.

We want to distinguish between d types of MOs, meaning that the point process under
consideration is multivariate. As a consequence, the associated counting process is also
d-dimensional. We denote the latter by (Nt)t≥0. Each type’s process may be referred to as
a marginal process, whereas the process comprising all types is called the pooled process.
The orderliness of the pooled process implies that the marginal processes are also orderly.

As pointed out in Section 2, MOs on the IDM tend to arrive in clusters. A point process
by which the events arrive in clusters is the Hawkes process. Its intensity may be excited
by event arrivals. The definition for the multivariate Hawkes process which we provide
in the following is based on Cox and Isham (1980). Let ∆N := Nt+h − Nt with h > 0 and
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D := {1, . . . , d}. A multivariate point process with associated counting process (Nt)t≥0 is a
multivariate Hawkes process if:

P
({

∆Nj = 1
}
∩ {∆Nk = 0, k ∈ D \ {j}}

∣∣Ft
)
= λt,j h + o(h), j ∈ D (1)

P
({

∆Nj > 1
}
∩ {∆Nk = 0, k ∈ D \ {j}}

∣∣Ft
)
= o(h), j ∈ D (2)

and if (λt)t≥0, a d-dimensional stochastic process, which is referred to as the conditional
intensity, has the form:

λt = µ(t) +
∫ t

0
φ(t− u)dNu, (3)

where µ(t) : R≥0 → Rd
>0 is referred to as the baseline intensity function and φ(t) : R>0 →

Rd×d
≥0 is referred to as the excitation function.

In order to define a specific multivariate Hawkes process, its conditional intensity has
to be specified. In finance literature, cubic B-splines with fixed knots have been used to
model the baseline intensity functions, see e.g., Engle and Russell (1998) or Chen and Hall
(2013). They appear to be particularly useful for capturing intensity patterns like the U
shape discussed in Jain and Joh (1988). We suspect a baseline intensity that comprises a
constant and increases exponentially towards gate closure, and choose a model that is as
sparse as possible, i.e.:

µj(t) = νj + γje
ηjt, j ∈ {1, . . . , d}, (4)

where ν ≥ 0, γ > 0, η ≥ 0 are d-dimensional vectors. We refer to ν as the constant of
the baseline intensity, to γ as the growth component at time zero or time-zero growth
component of the baseline intensity, and to η as the growth rate of the baseline intensity.
The time-varying baseline intensity causes the Hawkes process, which is considered here
to be non-stationary.

Concerning the excitation function, a prominent example is the exponential one which
we assume for all the components of φ(t), i.e.,

φjk(t) = αjke−β jkt, j, k ∈ {1, . . . , d}, (5)

where α ≥ 0, β > 0 are d × d-dimensional matrices. The matrix α comprises the sizes
by which the conditional intensities of the different types jump up in case of an event of
any of the types and is therefore referred as the jump size. The matrix β comprises the
rates at which these jumps decay and is therefore referred to as the decay rate. Given the
exponential form of the components of β, the half-life of a jump αjk, i.e., the amount of
time it takes until half of it is decayed again, is ln 2/β jk. The average number of events of
type j triggered by an event of type k is referred to as branching ratio and may be obtained
by evaluating

∫ ∞
0 φjk(u)du. In case of an exponential excitation function, the branching

ratio is αjk/β jk. Branching ratios larger than 1 imply that the event type responsible for
excitation causes an explosion of the marginal process in the sense that Nj,s − Nj,t = ∞
for s− t > 0. For N to be non-explosive, it does not suffice that all branching ratios are
smaller than 1. Instead, component-wise division of α by β has to yield a matrix which has
a spectral radius strictly smaller than 1, see Theorem 7 in Brémaud and Massoulié (1996).

It is possible to make assumptions on the components of α and β. This may be useful,
for example, when the objective is to model the impact of MOs on the mid price and
one has reasons to believe that they neither cause the mid price to grow nor to decline in
expectation in the long run. Another example is that the intensities of all contracts with
delivery during a particular hour of the day are assumed to be the same as is done in
Section 2. To suppress the excitation of the intensity of event type j by event type k, αjk
needs to be set to 0. The model without restrictions and those with restrictions are nested,
with the former referred to as full model and the latter as restricted models.
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3.2. Estimation

We estimate the model parameters by maximum likelihood. While it would be possible
to estimate the parameters of all d marginal processes together, we choose not to do so, the
reason being that the optimization algorithm appears to converge more often if there are
less parameters to be estimated.

Let L(j)(θ(j)) denote the likelihood function associated with λj, where θ(j) is the
parameter vector. If both self- and cross-excitation are allowed, the likelihood function is
a mapping of Rd+1

>0 ×Rd+2
≥0 → R. Following Daley and Vere-Jones (2003), we minimize

the negative logarithm of L(j) relative to the likelihood function of the unit-rate Poisson
process which is denoted by L(0), i.e.,

− ln
L(j)

L(0)
= −

Nj,T

∑
i=1

ln λj,ti +
∫ T

0

(
λj,u − 1

)
du, (6)

where T is the time at which trading ends. As already stated in Section 3.1, we fix the time
at which trading starts as t = 0. Hence, the time at which trading ends for some contract
depends on the hour of the day during which delivery takes place.

Minimization of the negative log likelihood function yields the vector of estimated
parameters, which we denote by θ̂(j). We use the implementation of the sequential least
squares quadratic programming (SLSQP) algorithm from the Python package scipy for
minimization. The reason for that is that this algorithm allows parameter constraints, which
is useful in our setting because all parameters are non-negative. Furthermore, we multiply
the parameters with powers of 10 in such a way that the parameters to be estimated are of
similar order of a magnitude.

3.3. Goodness-of-Fit

Let (Λt)t>0 denote the compensator of some multivariate point process with associated
counting process Nt and conditional intensity λt, i.e.,

Λt =
∫ t

0
λudu. (7)

By (Ñt)t>0, we denote the following transformation of the counting process Nt:

Ñt = N(Λ−1
t ). (8)

According to Daley and Vere-Jones (2003), the so-called random time change theorem
states that the point process with which the transformed counting process is associated is a
unit-rate Poisson process. Hence, if the durations between the event times which are used
to estimate the parameters of the process and which are subsequently transformed with
the compensator are i.i.d. unit-rate exponentially distributed, the data may be considered
to be fitting to the model associated with the compensator. In this context, Lallouache and
Challet (2016) use the (two-sided) Kolmogorov–Smirnov (KS) test with null hypothesis
of identical distributions and the (one-sided) excess dispersion (ED) test from Engle and
Russell (1998) with null hypothesis of no excess dispersion to test for unit-rate exponential
distribution, and the Ljung–Box (LB) test to test for no autocorrelation. In Bowsher (2007),
the same question is addressed. However, as a multivariate Hawkes process is considered,
the author remarks that in addition it is necessary to pool the transformed event times
of the marginal processes and test the resulting durations for no autocorrelation. In this
analysis, only those events are considered, the timestamps of which are smaller than the
timestamp of the last event of the marginal process which has the youngest last event. The
LB test may be used again to test durations for no autocorrelation.
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3.4. Model Selection

It is possible to make assumptions on the parameters of the process under consid-
eration, as already stated in Section 3.1. An example for such an assumption is that one
of the marginal processes of a bivariate Hawkes process has only self-excitation, yielding
a different dependence structure compared to a bivariate Hawkes process with self- and
cross-excitation in that marginal process. Ex ante it is not clear which dependence structure
should be considered when inferring about what is modeled. This is particularly true when
processes with different dependence structures have acceptable goodness-of-fit. However,
some analyses may require selecting a model from a set of candidate models first, e.g.,
when analyzing the parameters controlling self- and cross-excitation of a multivariate
Hawkes process.

The procedure for model selection which we adopt here is from Burnham and An-
derson (2002) and builds upon information theory. The starting point is to acknowledge
that there is a true model for the point process under consideration, which is unknown.
We want to know how close to the true model different approximating models are. This
distance is referred to as Kullback–Leibler (KL) information. The KL information may
be split into an unknown constant and the relative directed distance between the true
and an approximating model. It is the latter quantity which governs differences in the
distance between the true model and different approximating models. The problem with
computing this quantity is that knowledge of the parameters of the approximating model
is required, which is not the case. This may be handled by estimating the parameters with
maximum likelihood (see Section 3.2) and considering the expected KL information, where
the expectation is with respect to the parameters. An estimation of this relative expected
KL information is the Akaike information criterion (AIC), which is defined as:

AIC = −2 ln L(θ̂) + 2K, (9)

where L(·) is the likelihood function, θ̂ is the vector of estimated parameters, and K is the
number of parameters with potentially different values. Among the approximating models,
the one with the smallest AIC is the one that is estimated to be closest to the true model.

With the AIC of each approximating model at hand, it is possible to compute each
model’s AIC difference, i.e., the difference between a model’s AIC and the AIC of the model
with the smallest AIC. The model with the smallest AIC (also referred to as the best model)
has an AIC difference of 0 and all other models have AIC differences of at least 0. The case
of equal AICs and hence more than one model with zero AIC difference is theoretically pos-
sible but does not materialize in our analyses. In case of nested models, the AIC difference
of the full model is bounded above by twice the difference in number of parameters because
the likelihood of the full model is at least the same as the likelihood of the restricted model.
The AIC difference of the restricted model is not bounded above because the amount
by which the likelihood of the full model can exceed that of the restricted model is not
bounded. The magnitudes of the AIC differences of the approximating models which have
an AIC greater than the smallest AIC bear information on the extent to which the models
are worse than the best model. In this context, Burnham and Anderson (2002) provide as a
rule of thumb that an AIC difference up to 2 means that there is still substantial support for
the worse model, an AIC difference between 4 and 7 means that there is considerably less
support, and an AIC difference beyond 10 means that there is essentially no support.

We avoid to compare the model selection results with those that are obtained when
deploying the Bayesian information criterion (BIC), which is another popular information
criterion. If the true model is among the candidates, the BIC selects that model with
probability 1 as the sample size goes to infinity. At the same time, derivation of the BIC
does not require the true model to be among the candidates, see p. 293 et seq. in Burnham
and Anderson (2002). In that case, however, the sort of parsimony which the BIC yields
is unknown. The AIC does not have this weakness because the true model is considered
to be unknown anyway. While our model in Section 3.1 has features which address the
empirical characteristics identified in Section 2, we are very sure that it is not the true
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model. A simple example in this context is that our model fails to allow for zero intensity
of MO arrivals if no LOs are available on the opposite side of the LOB. That is why we only
consider the AIC in model selection.

4. Results
4.1. Model Subset

We analyze arrivals of buy and sell MOs on the IDM. With regards to the baseline
intensity we consider the model which comprises the constant ν and the model which does
not. Concerning excitation, the first model that we consider is the one where neither the
events of the same type nor the events of the other type cause excitation of each type’s
conditional intensity. In such a case, the process is a non-homogeneous Poisson process
(NHPP). Then we consider the models where only one of the two types causes excitation
of each type’s conditional intensity. This may be either the same type (self-excitation) or
the other one (cross-excitation). Finally, we consider the model where both types cause
excitation of each type’s conditional intensity. In order to identify the set of models that we
analyze in detail, we estimate the parameters of all models first, assess their goodness-of-fit
to obtain the set of candidate models, and select a model for each contract on the basis of
AIC differences.

Table 1 shows the results of goodness-of-fit testing. More specifically, for all potential
models it is specified how often in relative terms the null hypothesis of the KS test and
the ED test is rejected at 5% significance level. Furthermore, it is specificed how often the
null hypothesis of the LB test of no autocorrelation in the first five lags is rejected at 5%
significance level. Let us first consider the case where an individual set of parameters is
estimated for each contract, see Table 1a. The optimization algorithm which gives the MLE
converges for the majority of the models. It converges more often if the baseline intensity
does not comprise a constant. In case of no excitation, the null hypothesis of the KS and
ED test is rejected frequently. The same holds true in case of only cross-excitation. In case
of only self-excitation or self- and cross-excitation, the null hypothesis of the KS test is
rejected only a few times and the null hypothesis of the ED test is rejected slightly more
often. The null hypothesis of the LB test is rejected more often in case of no excitation or
only cross-excitation. However, the share is substantially smaller compared to the KS and
ED test. The null hypotheses of all tests are rejected less frequently if the baseline intensity
comprises a constant. We conclude that the models with only self-excitation or with self-
and cross-excitation appear to be promising for modeling the data at hand. Furthermore,
we cannot drop the models without constant in the baseline intensity.

Estimation of one model for all contracts with delivery during the same hour of the
day may be an alternative to estimating an individual model for each contract. We test the
goodness-of-fit of these models by considering each contract separately again and counting
the number of rejections of the KS test, the ED test, and the LB test and relating it to the
number of successfully estimated models. Table 1b shows the results. The shares of rejected
null hypotheses in case of the model without excitation or with only cross-excitation are
similar compared to when an individual model is estimated for each contract. The shares in
case of the model with only self-excitation or with self- and cross-excitation, however, are
in the region of being four times larger. We conclude that the models with self-excitation or
self- and cross-excitation and individual parameters for each contract are more promising
than those with the same parameters for all contracts with delivery in the same hour of
the day.
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Table 1. Results of goodness-of-fit tests for the marginal processes. The column “side” specifies
whether buy or sell market orders (MOs) are considered, “constant” whether the baseline intensity
comprises a constant, and “excitation” the excitation structure. Each model is estimated 2184 times.
The column “convergence” comprises the shares of successful estimations. The columns “pKS < 0.05”
and “pED < 0.05” comprise the shares of successfully estimated models where the null hypothesis of
the Kolmogorov–Smirnov (KS) and excess dispersion (ED) test is rejected at a 5% significance level,
respectively. The column “pLB < 0.05” comprises the shares of successfully estimated models where
the null hypothesis of the Ljung–Box (LB) test for the first five lags is rejected at a 5% significance
level.

a. Individual parameters for each contract.

Side Constant Excitation Convergence pKS < 0.05 pED < 0.05 pLB < 0.05

buy w/o none 96.06% 92.42% 88.18% 13.06%
self 95.56% 6.13% 16.48% 7.76%
cross 82.92% 92.77% 87.58% 11.98%
self, cross 71.29% 4.56% 13.74% 6.42%

with none 87.55% 91.68% 85.20% 11.24%
self 83.06% 4.96% 12.13% 6.67%
cross 62.77% 93.07% 84.61% 12.98%
self, cross 69.23% 4.43% 9.92% 6.42%

sell w/o none 97.25% 92.94% 88.51% 14.27%
self 96.02% 5.15% 18.07% 8.73%
cross 83.10% 92.84% 87.49% 12.18%
self, cross 70.88% 3.62% 13.37% 7.17%

with none 87.96% 92.45% 84.75% 12.34%
self 84.62% 3.63% 12.88% 7.31%
cross 67.08% 92.70% 85.53% 13.45%
self, cross 71.75% 3.25% 10.98% 6.89%

b. Equal parameters per hour of delivery.

Side Constant Excitation Convergence pKS < 0.05 pED < 0.05 pLB < 0.05

buy w/o none 100.00% 91.03% 82.83% 15.61%
self 100.00% 23.95% 39.15% 10.26%
cross 95.83% 90.92% 83.09% 15.53%
self, cross 91.67% 24.63% 39.31% 10.04%

with none 100.00% 90.34% 81.64% 15.06%
self 95.83% 24.51% 35.64% 9.27%
cross 100.00% 90.48% 81.59% 15.48%
self, cross 79.17% 24.12% 36.96% 9.31%

sell w/o none 100.00% 91.76% 85.81% 17.45%
self 100.00% 21.11% 36.95% 10.67%
cross 100.00% 91.90% 85.16% 17.08%
self, cross 91.67% 20.83% 36.21% 10.39%

with none 100.00% 91.39% 83.15% 16.25%
self 100.00% 21.70% 33.42% 9.84%
cross 100.00% 91.62% 82.74% 16.35%
self, cross 95.83% 23.94% 33.49% 9.89%

Table 2 shows the results of testing for no autocorrelation in durations between the
pooled transformed event times of the marginal processes. The frequencies of successfully
estimated models are smaller compared to those in Table 1a because convergence of
the optimization for both marginal processes is required. This is particularly true for
combinations that involve self- and cross-excitation. The null hypothesis of the LB test of
no autocorrelation in the first five lags is rejected slightly more frequently compared to
when the transformed event times of the marginal processes are considered on their own.
However, the frequencies are still rather small. This leads us to the overall conclusion from
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goodness-of-fit testing that the models without or with constant in the baseline intensity
and with self-excitation or self- and cross-excitation should be contained in the set of
candidate models for model selection.

Table 2. Results of goodness-of-fit tests for the pooled processes. The columns “constant” and “excitation” under “buy”
specify for buy MOs whether the baseline intensity comprises a constant and the excitation structure, analogously for sell
MOs. Each model is estimated 2184 times. The column “convergence” comprises the shares where both the model for buy
and sell MOs are estimated successfully. The columns “pKS < 0.05” and “pED < 0.05” comprise the numbers of successfully
estimated models in relative terms where the null hypothesis of the KS and ED test is rejected at a 5% significance level,
respectively. The column “pLB < 0.05” comprises the numbers of successfully estimated models in relative terms where the
null hypothesis of the LB test for the first five lags is rejected at a 5% significance level.

Buy Sell

Const. Excitation Const. Excitation Convergence pKS < 0.05 pED < 0.05 pLB < 0.05

w/o self w/o self 91.85% 3.49% 20.94% 11.02%
self, cross 67.67% 3.32% 18.13% 9.95%

with self 80.91% 2.43% 15.11% 10.53%
self, cross 68.96% 2.86% 15.67% 10.09%

w/o self, cross w/o self 68.73% 3.13% 18.45% 10.13%
self, cross 50.09% 1.65% 15.63% 9.32%

with self 59.94% 2.14% 14.06% 10.08%
self, cross 50.55% 1.99% 14.22% 9.06%

with self w/o self 79.90% 2.92% 15.13% 9.40%
self, cross 58.65% 2.73% 14.44% 8.74%

with self 70.60% 2.20% 12.32% 10.05%
self, cross 59.84% 2.30% 12.47% 9.26%

with self, cross w/o self 66.53% 3.30% 14.38% 9.36%
self, cross 47.99% 2.48% 13.17% 9.06%

with self 59.16% 1.93% 10.45% 8.75%
self, cross 50.00% 1.56% 10.81% 8.24%

With the set of candidate models at hand, we can consider model selection. The results
on the basis of AIC differences are shown in Table 3. Both on the buy and sell side, the
model without constant in the baseline intensity and only self-excitation is selected in
almost half of the cases. The model without constant in the baseline intensity and self- and
cross-excitation on the one hand and the model with constant and only self-excitation on
the other hand are selected in around 20% of the cases. The model with constant and self-
and cross-excitation is selected less frequently.

One question that arises at this point is how the AIC differences of the models that are
not selected are distributed. The histograms in Figure 3 shed light on this question. Please
note that AIC differences which should in theory be smaller than or equal to a theoretical
maximum sometimes violate this bound. Such violation implies that the model is even
worse than the model whose AIC difference obeys the bound. AIC differences which
exceed their theoretical maximum are not shown in Figure 3.

The first plot, for example, shows frequencies of AIC differences of the model with
constant in the baseline intensity and only self-excitation if the model without constant
and only self-excitation is selected. In that case, the frequency of the bin which comprises
the maximum AIC difference exceeds the other frequencies by far. The same holds true
whenever a more restrictive model is chosen over a less restrictive one. When the selected
model cannot be said to be more restrictive than the model that is not selected, the AIC
differences are frequently smaller than 4. The rule of thumb from Burnham and Anderson
(2002) states that in these cases there is still considerable support for the model that is not
selected. Requiring the AIC difference of the more restrictive models to be at least 4 to select
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the less restrictive one, the shares of the different candidate models are those in Table 3.
While the share of the model without constant and only self-excitation grows from less
than 50% to more than 70%, that of the model with constant and self- and cross-excitation
declines from more than 10% to slightly more than 2%.

Table 3. Relative frequencies that the different models are selected on the basis of AIC differences.

a. Without rule of thumb.

Side Constant Self Self, Cross

buy w/o 47.7% 21.1%
with 20.6% 10.6%

sell w/o 45.3% 22.9%
with 19.7% 12.1%

b. With rule of thumb.

Side Constant Self Self, Cross

buy w/o 74.2% 12.4%
with 11.2% 2.2%

sell w/o 72.8% 13.3%
with 11.4% 2.5%
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Figure 3. Histograms of AIC differences conditional on whether the best model is the one with
self-excitation (left) or the one with self and cross-excitation (right). Cases where the AIC difference
of the model with self- and cross-excitation is greater than the maximum are removed from the data.

In order to strengthen the grounds on which we interpret parameters and make
statistical inference, we opt for model selection on the basis of the rule of thumb from
Burnham and Anderson (2002). This means in concrete terms that if the model with
constant and self- and cross-excitation has the smallest AIC, we only select it if both the
AIC difference of the model without constant and only self-excitation and of the model
without constant and self- and cross-excitation are greater than 4. We only select the latter
two models if the AIC difference of the model without constant and only self-excitation
is greater than 4. Furthermore, we exclude all models with decay rate greater than 103 or
branching ratio of self- or cross-excitation greater than 1.

4.2. Baseline Intensity

In this subsection, we analyze the parameters which control the baseline intensity of
the arrivals of buy and sell MOs on the IDM. Concerning the time-zero growth component,
γ, the comparability between contracts with delivery during different hours of the day
is limited for modeling reasons. The magnitude of γ is linked to the length of the time
window during which a contract is traded. This link may be understood by considering two
contracts with delivery start at adjacent full hours and assuming equal baseline intensities
in the last hour of trading. Since the contract with later delivery start is traded for a longer
period of time, its time-zero growth component needs to be smaller for the assumption
to hold. In order to eliminate this feature from the time-zero growth component of the
baseline intensity, we transform γ as follows:

γ̃j = γje
ηjτ , j ∈ {1, . . . , d}, (10)

where τ is the difference between the point in time at which trading ends for the contract
under consideration and the point in time at which trading ends for some reference contract.
Thus, time is changed in such a way that trading of all contracts ends at the same time
and the duration between t = 0 and end of trading is the same for all contracts. We use
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the contract with delivery start at midnight as reference contract, hence end of trading is
T = 8.25 h. When we refer to the time-zero growth component of the baseline intensity
in the following we mean the transformed one. The constant and the growth rate of the
baseline intensity are not affected by the different lengths of the trading windows.

Table 4 shows medians of the constant, the time-zero growth component, and the
growth rate of the baseline intensity. The medians of the models for buying MOs are
quite close to those of the models for selling MOs. By contrast, the medians of the models
without constant in the baseline intensity deviate substantially from those of the models
with constant. The majority of the deviations between the medians of the models with only
self-excitation and with self- and cross-excitation are also substantial. We use two-sample
KS tests to check for statistical support. More specifically, we use the one-dimensional
version of the test to assess whether statistical evidence may be found that constants, time-
zero growth components, and growth rates are drawn from the same distribution. The
results in the form of p-values are presented in Table 5. While the null hypothesis of equal
distributions on the buy and sell side is not rejected at a 5% significance level for any of the
baseline intensity parameters, it is rejected at the same level for all of them when comparing
models without and with a constant in baseline intensity. When comparing models with
only self-excitation and models with self- and cross-excitation, the null hypothesis is always
rejected at a 5% significance level on the sell side and in more than half of the cases on the
buy side.

Let us also address the question whether the parameters exhibit patterns which
depend on the delivery hour of the contract. To do so, we plot the median of the constant,
the time-zero growth component, and the growth rate of the baseline intensity conditional
on the hour of delivery start. Given that statistical evidence against equal parameter
distributions is not found when comparing the different market sides, we only distinguish
between models without and with constant in the baseline intensity and models with
self-excitation and those with self- and cross-excitation. The results are shown in Figure 4.
The median constant of the model with only self-excitation is on a rather high level between
midnight and 4 am, peaks between 5 and 6 am, and then decreases to a level which is well
below the one at the beginning of a day. For the model with self- and cross-excitation, it is
more difficult to identify a pattern because less data are available. The median time-zero
growth component of the model with only self-excitation grows with increasing delivery
start and exhibits a short decline between 7 and 10 am. This decline goes along with an
increase of the growth rate which is otherwise decreasing. That means the later delivery
starts, the less market participants tend to concentrate their activity in terms of placing
MOs on the time shortly before the end of trading.

Table 4. Medians of the parameters of the baseline intensity function and the function controlling self- and cross-excitation of
buy and sell market order arrivals as well as medians of the branching ratios and half-lifes resulting from these parameters.

Baseline Self Cross

Side Const. Exc. ν γ̃ η α β α
β

ln(2)
β α β α

β
ln(2)

β

buy w/o self 0.23 0.56 173.5 479.8 0.38 5.20
self, cross 0.25 0.50 169.1 518.7 0.35 4.81 27.2 311.2 0.12 8.02

with self 0.16 0.05 0.82 204.7 562.0 0.37 4.44
self, cross 0.09 0.13 0.63 190.1 547.1 0.36 4.56 54.8 627.5 0.09 3.98

sell w/o self 0.22 0.56 182.1 484.5 0.39 5.15
self, cross 0.28 0.44 199.3 568.4 0.36 4.39 27.1 282.8 0.11 8.82

with self 0.19 0.04 0.85 196.2 523.9 0.37 4.76
self, cross 0.10 0.10 0.68 237.0 551.3 0.39 4.53 47.6 585.2 0.09 4.26
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Table 5. p-values of KS tests with null hypothesis of equally distributed constants, time-zero growth
components, and growth rates of the baseline intensity as well as jump sizes and decay rates of self-
and cross-excitation.

a. Models for buy side and sell side.

Baseline Self Cross

Const. Excitation ν γ̃ η α β α
β α β α

β

w/o self 0.268 0.818 0.060 0.410 0.010
self, cross 0.101 0.056 0.012 0.273 0.010 0.603 0.524 0.574

with self 0.106 0.097 0.187 0.856 0.237 0.845
self, cross 0.236 0.794 0.713 0.163 0.773 0.427 0.700 0.490 0.773

b. Models without and with constant in baseline intensity.

Baseline Self Cross

Side Excitation γ̃ η α β α
β α β α

β

buy self 0.000 0.000 0.004 0.005 0.065
self, cross 0.010 0.000 0.213 0.812 0.099 0.000 0.004 0.095

sell self 0.000 0.000 0.052 0.007 0.003
self, cross 0.003 0.000 0.467 0.694 0.156 0.011 0.001 0.004

c. Models with self-excitation and models with self and cross-excitation.

Baseline Self

Side Const. ν γ̃ η α β α
β

buy w/o 0.091 0.000 0.720 0.227 0.001
with 0.004 0.059 0.035 0.766 0.575 0.566

sell w/o 0.008 0.000 0.010 0.003 0.001
with 0.000 0.041 0.002 0.137 0.729 0.312
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(a) Constant.
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(b) Time-zero growth component.
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(c) Growth rate.

Figure 4. Median baseline intensity parameters conditional on the hour of delivery start.

4.3. Excitation

Here, we study the parameters of self- and cross-excitation. Let us begin with the
typical order of magnitude of the jump sizes due to self-excitation. Table 4 provides this
information in the form of medians. On the buy side, the median jump size due to self-
excitation of the model without constant in the baseline intensity but with self-excitation
173.5, which means that after the arrival of a buy MO the conditional intensity jumps
up by 173.5 arrivals per hour. The null hypothesis of the KS test of equally distributed
jump sizes on the buy and sell side is rejected at 5% significance level only for the model
without constant in the baseline intensity but with self- and cross-excitation, see Table 5a.
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In that case the median jump size is smaller on the buy side than on the sell side. The
null hypothesis of the KS test of equally distributed jump sizes of the model without and
with a constant is rejected at a 5% significance level only on the buy side and if the model
features only self-excitation, see Table 5b. The median jump size of the model with constant
and self-excitation on the buy side is larger than that of the model without a constant.
Table 5c reveals that the null hypothesis of the KS test of equally distributed jump sizes of
the model with self-excitation and the model with self- and cross-excitation is rejected at a
5% significance level only on the sell side and in case of the model without constant in the
baseline intensity. The median jump size of the latter is greater than that of the former.

The median rate at which jumps due to self-excitation decay on the buy side is 479.8 for
the model without constant in the baseline intensity but with self-excitation. The median
half-life of a jump, which is a quantity that depends on the decay rate, is 5.20 s. That means
the jumps decay rather quickly. The null hypothesis of the KS test of equal distributed
decay rates on the buy and sell side is not rejected at a 5% significance level for any of
the models. Evidence against equally distributed decay rates of the models without and
with constant in the baseline intensity is found at a 5% significance level only in case of the
models with self-excitation. The median decay rate of the model without constant but with
self-excitation is greater than that of the model with constant. The null hypothesis of the
KS test of equally distributed decay rates of the models with only self-excitation and the
models with self- and cross-excitation is rejected at a 5% significance level only on the sell
side, where the median decay rate of the model with self- and cross-excitation is greater.

The branching ratio, which may be interpreted as the average number of arrivals due
to the excitation caused by an arrival, depends on the jump size and the rate at which a
jump decays, see Section 3.1 for details. The median branching ratio due to self-excitation of
the model for buy MOs without a constant in the baseline intensity but with self-excitation
is 0.38. That means the arrival of a buy MO causes on average another 0.38 buy MOs to
arrive. The null hypothesis of the KS test of equally distributed branching ratios on the
buy and sell side is rejected at a 5% significance level if the baseline intensity does not
comprise a constant but are not rejected at the same level if the baseline intensity comprises
a constant. The null hypothesis of the KS test of equally distributed branching ratios of
the model without a constant in the baseline intensity and with constant rejected at a 5%
significance level only on the sell side and in case of only self-excitation. Evidence against
equally distributed branching ratios of the model with only self-excitation and the model
with self and cross-excitation at a 5% significance level is found only when the baseline
intensity does not comprise a constant.

The median jump size of cross-excitation of the model without constant is 27.2 arrivals
per hour on the buy side and 27.1 on the sell side. These figures are substantially smaller
than the median jump sizes of self-excitation on the two market sides. The null hypothesis
of the KS test of equally distributed jump sizes due to cross-excitation on the buy and sell
side is not rejected at a 5% significance level. The same holds true for the model with a
constant, where the median jump size is 54.8 on the buy side and 47.6 on the sell side. The
null hypothesis of the KS test of equally distributed jump sizes of the model without and
with constant in the baseline intensity is rejected at a 5% significance level on both market
sides. Evidence against equally distributed jump sizes of the model with self-excitation
and the model with self- and cross-excitation at a 5% significance level is only found on the
sell side and for the model without a constant in the baseline intensity. The same results
hold for the rates at which jumps due to cross-excitation decay, the medians of which vary
between 282.8 and 627.5. The median half-life of cross-excitation of the model without
constant in the baseline intensity is 8.02 s on the buy side and 8.82 s on the sell side. In
case of the model with constant in the baseline intensity the half-life is only 3.98 s on the
buy side and 4.26 s on the sell side. Hence, it typically takes longer for a jump due to
cross-excitation to decay compared to a jump due to self-excitation if the baseline intensity
does not comprise a constant and slightly less long if the baseline intensity comprises
a constant. The median branching ratio of the model without constant in the baseline
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intensity is 0.12 on the buy side and 0.11 on the sell side and slightly less on both market
sides in case of the model with constant. That means the arrival of a buy MO triggers
on average more buy MO arrivals than the arrival of a sell MO. Evidence against equally
distributed branching ratios at a 5% significance level is only found when comparing the
model without a constant with the one with a constant on the sell side.

We also want to shed light on the question whether self and cross-excitation depend
on the delivery hour. Instead of studying the excitation parameters themselves, we focus
on the branching ratio. Concerning self-excitation, we distinguish between the models
with only self-excitation and the models with self- and cross-excitation. Furthermore, we
separate the models with only self-excitation into those without constant in the baseline
intensity and those with constant. We do not distinguish between the two market sides
despite the evidence in favor of unequally distributed branching ratios on the buy and sell
side in case of the models without constant in the baseline intensity. The reason for this
is that we suspect the difference not to be due to different dependencies on the delivery
hour. Figure 5a shows median branching ratios conditional on the delivery hour. The
median branching ratios of self-excitation are lower during late evening and night hours
and increase during the morning hours. Concerning cross-excitation, we only distinguish
between the models without constant in the baseline intensity and those with constant, see
Figure 5b. The patterns are not really recognizable.
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(a) Self-excitation.
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(b) Cross-excitation.

Figure 5. Median branching ratios conditional on the hour of delivery start.

4.4. Contemporaneous Relationships

In this subsection, we analyze contemporaneous relationships between the parameters
of the intensities of buy and sell MO arrivals. Before doing so, we subtract the median
parameters per delivery hour which are discussed in the previous two subsections. Based
on the conclusions from these subsections, we distinguish between the models without and
with constant in the baseline intensity and between the models with only self-excitation
and the models with self- and cross-excitation. That means we do not distinguish between
models for the buy and sell side.

Figure 6 shows scatter plots in the lower triangle and two-dimensional histograms
in the upper triangle of pairs of different parameters of the model with constant in the
baseline intensity and only self-excitation. The plots on the diagonal are histograms of the
parameters of that model. Concerning the baseline intensity parameters, a relationship be-
tween the time-zero growth component and the growth rate may be observed. Small values
of the time-zero growth component tend to be associated with large values of the growth
rate and vice versa. This negative relationship appears to be non-linear. Furthermore, pairs
which deviate from this relationship appear to exhibit another relationship: Small values
of the time-zero growth component appear to be associated with medium-sized values
of the growth rate and small values of the growth rate with medium-sized values of the
time-zero growth component, i.e., also a negative relationship. The jump size and decay
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rate also exhibit a clear relationship: The greater the jump size is, the greater the decay rate
tends to be.
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Figure 6. Histograms (diagonal), scatter plots (lower triangle) and two-dimensional histograms (upper triangle) of the
parameters of the model with self-excitation.

As at least some of the parameter relationships appear to be non-linear, we use
Kendall’s tau to quantify the relationships and their p-values to judge about their sig-
nificance. According to Agresti (2010), Kendall’s tau measures the association between
rankings of two variables and builds on the difference between concordant and discor-
dant pairs of observations. Concordant pairs are those where one component of one pair
being ranked higher (lower) than the same component of the other pair goes along with
the other component of the first pair also being ranked higher (lower) than the same of
component of the second pair. In case of discordant pairs, it is the opposite. Kendall’s
tau is inconsistent, as it is phrased in Bergsma and Dassios (2014), in the sense that it may
fail to detect non-monotonic associations. Its range of values is [−1, 1], with −1 implying
completely different rankings and 1 implying completely identical rankings. The difference
between concordant and discordant pairs is asymptotically normally distributed, which
makes testing the association of two variables straightforward. In particular, knowledge
of the distributions of the variables under consideration or their joint distribution is not
required.

In case of the model without a constant in the baseline intensity but with self-excitation,
Kendall’s tau for the time-zero growth component and the growth rate of the baseline
intensity amounts to −0.554 and is significant at a 5% level, see Table 6a. Kendall’s tau
for the jump size and the decay rate of self-excitation of the same model amounts to 0.769
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and is also significant at a 5% level. The strongly positive relationship between the jump
size and decay rate goes along with a positive relationship between the jump size and
branching ratio and a negative relationship between the decay rate and branching ratio,
which are both significant at a 5% level. The negative relationship exceeds the positive
one in absolute terms. The growth rate of the baseline intensity and the branching ratio of
self-excitation exhibit a negative relationship which is rather weak but significant at a 5%
level. Hence, to a limited extent, stronger growth of the baseline intensity towards gate
closure goes along with fewer arrivals due to self-excitation.

Table 6. Kendall’s taus and associated p-values for pairs of parameters of the models with self-
excitation.

a. Without constant in baseline intensity. N = 3052.

Baseline Self

γ̃ η α β α
β

baseline γ̃ 1.000
<0.001

η −0.554 1.000
<0.001 <0.001

self α 0.010 0.056 1.000
0.386 <0.001 <0.001

β 0.010 0.056 0.769 1.000
0.429 <0.001 <0.001 <0.001

α
β 0.017 −0.083 0.042 −0.176 1.000

0.161 <0.001 <0.001 <0.001 <0.001

b. With constant in baseline intensity. N = 482.

Baseline Self

ν γ̃ η α β α
β

baseline ν 1.000
<0.001

γ̃ −0.002 1.000
0.949 <0.001

η 0.071 −0.522 1.000
0.020 <0.001 <0.001

self α −0.024 0.003 0.012 1.000
0.431 0.934 0.698 <0.001

β −0.033 −0.011 0.006 0.693 1.000
0.284 0.730 0.848 <0.001 <0.001

α
β 0.010 0.022 −0.026 0.156 −0.106 1.000

0.731 0.466 0.392 <0.001 <0.001 <0.001

In case of the model with a constant in the baseline intensity and self-excitation,
Kendall’s tau for the relationship between the time-zero growth component and the growth
rate of the baseline intensity on one hand and for the relationship between the jump size
and decay rate of self-excitation on the other hand are similar in size compared to the model
without constant, see Table 6b. The same holds true for the relationship between the jump
size and decay rate on one hand and the branching ratio on the other hand, apart from the
fact that the relationship involving the former is now larger in absolute terms. As opposed
to the model without a constant in the baseline intensity, relationships between the baseline
intensity parameters, and the branching ratio of self-excitation which are significant at a
5% level, are not found. However, Kendall’s tau for the constant and the grwoth rate of the
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baseline intensity amounts to 0.071 and is significant at a 5% level, which implies a weakly
positive relationship between the two parameters.

The models with self- and cross-excitation remain to be considered. Kendall’s taus
and p-values for the model without constant but with self- and cross-excitation are shown
in Table 7a. The results with regards to the baseline intensity and self-excitation parameters
are analogous to those for the model with only self-excitation apart from the fact that
Kendall’s tau for the relationship between the growth rate of the baseline intensity and
the branching ratio of self-excitation and for the relationship between the jump size and
branching ratio of self-excitation are not significant at a 5% level anymore. Concerning
cross-excitation, Kendall’s tau for the jump size and decay rate is also strongly positive and
significant at a 5% level. Furthermore, the jump size and decay rate of cross-excitation on
one hand and its branching ratio on the other hand have substantially negative Kendall’s
taus which are significant at 5% level. The same holds true for the branching ratio of
cross-excitation and the growth rate of the baseline intensity. Kendall’s tau for the jump
size of self-excitation and the jump size of cross-excitation is significant at a 5% level but
amounts only to 0.064, i.e., a weak positive relationship.

Table 7. Kendall’s taus and associated p-values for pairs of parameters of the models with self- and
cross-excitation.

a. Without constant in baseline intensity. N = 482.

Baseline Self Cross

γ̃ η α β α
β α β α

β

baseline γ̃ 1.000
<0.001

η −0.438 1.000
<0.001 <0.001

self α 0.021 0.106 1.000
0.497 <0.001 <0.001

β 0.006 0.107 0.700 1.000
0.853 <0.001 <0.001 <0.001

α
β 0.030 −0.049 0.057 −0.210 1.000

0.332 0.105 0.060 <0.001 <0.001

cross α 0.021 0.179 0.064 0.020 0.081 1.000
0.486 <0.001 0.035 0.521 0.008 <0.001

β 0.001 0.190 0.048 0.014 0.067 0.741 1.000
0.980 <0.001 0.117 0.654 0.028 <0.001 <0.001

α
β 0.037 −0.271 −0.017 −0.015 −0.009 −0.274 −0.432 1.000

0.219 <0.001 0.571 0.628 0.769 <0.001 <0.001 <0.001

b. With constant in baseline intensity. N = 90.

Baseline Self Cross

ν γ̃ η α β α
β α β α

β

basel. ν 1.000
<0.001

γ̃ −0.251 1.000
<0.001 <0.001

η 0.199 −0.617 1.000
0.006 <0.001 <0.001

self α −0.042 0.040 0.002 1.000
0.558 0.579 0.981 <0.001

β −0.038 0.059 −0.039 0.700 1.000
0.598 0.410 0.586 <0.001 <0.001

α
β −0.109 0.027 −0.002 0.184 −0.094 1.000

0.132 0.704 0.975 0.010 0.190 <0.001

cross α −0.161 0.092 −0.115 0.048 0.112 −0.039 1.000
0.026 0.203 0.111 0.505 0.120 0.589 <0.001

β −0.182 0.080 −0.120 0.010 0.046 −0.051 0.649 1.000
0.012 0.269 0.097 0.892 0.526 0.479 <0.001 <0.001

α
β 0.001 0.081 −0.097 0.022 −0.007 0.064 −0.113 −0.369 1.000

0.989 0.266 0.179 0.756 0.928 0.374 0.117 <0.001 <0.001
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In case of the model with constant in the baseline intensity and self- and cross-
excitation, Kendall’s tau of the branching ratio of self-excitation and the growth rate
of the baseline intensity is not significant at a 5% level, see Table 7b. The same holds true
for the branching ratio of cross-excitation and the growth rate of the baseline intensity.
While Kendall’s tau of the cross-excitation parameters on one hand and the constant of the
baseline intensity on the other hand are negative and significant at a 5% level, the branching
ratio of cross excitation and the growth rate of the baseline intensity have Kendall’s tau
close to 0 and not significant at a 5% level. The time-zero growth component and growth
rate of the baseline intensity on one hand and the constant of the baseline intensity have
Kendall’s taus which are significant at a 5% level. This a difference compared to the model
with constant and only self-excitation, where the statement is only true for the growth rate.
The time-zero growth component is negatively related to the constant and the growth rate
positively.

Finally, we want to investigate whether there is evidence for contemporaneous rela-
tionships between the buy and sell side. To do so, we consider the model without constant
but with self-excitation and identify all delivery contracts where this model is selected on
both market sides. The results in the form of Kendall’s taus and their p-values are presented
in Table 8. Concerning the relationships between the baseline intensity parameters on the
buy and sell side, some statistical evidence is found: Kendall’s taus of 0.266 and 0.178
for the time-zero growth components and growth rates of the baseline intensities on the
buy and sell side which are significant at a 5% level imply that high values on one market
side tend to go along with high values also on the other market side. By contrast, the
relationships between the time-zero growth component of the baseline intensity on the
buy (sell) side and the growth rate on the sell (buy) side are negative and significant at
a 5% level. The relationships between the self-excitation parameters on the buy and sell
side are rather weak. Kendall’s tau of the branching ratios on the two market sides is only
0.018 and not significant at a 5% level. Hence, the nature of the self-excitation on the buy
side may well be different from the nature of the self-excitation on the sell side. The same
conclusion may largely be drawn for the relationships between self-excitation parameters
on one market side and baseline intensity parameters on the other market side.

Table 8. Kendall’s tau and associated p-value for pairs of parameters of the model with self-excitation
or the model with self- and cross-excitation for the buy and sell side. N = 1087.

Sell

Baseline Self

γ̃ η α β α
β

buy baseline γ̃ 0.178 −0.087 −0.003 −0.002 −0.008
<0.001 <0.001 0.867 0.916 0.680

η −0.066 0.266 0.011 0.041 −0.058
0.001 <0.001 0.600 0.041 0.004

self α 0.011 −0.016 0.043 0.047 −0.011
0.576 0.432 0.035 0.021 0.573

β 0.022 0.009 0.029 0.053 −0.027
0.276 0.669 0.147 0.009 0.184

α
β 0.006 −0.062 0.001 0.002 0.018

0.764 0.002 0.965 0.906 0.381

5. Conclusions

In this article, we addressed the question whether the bivariate Hawkes process with
exponentially growing baseline intensity and exponential excitation function is suited to
model buy and sell market order arrivals on the intraday market for electricity deliveries
in Germany in all hours of the second quarter of 2015. More specifically, for each marginal
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process we considered a model for the intensity with only self-excitation, with only cross-
excitation, and with self- and cross-excitation. Furthermore, we considered a model
without any excitation. With regards to the baseline intensity, we considered a model
with exponential growth component and constant and a model without constant. The
result of testing the interarrival times of the compensated marginal processes and the
pooled compensated process for being independently drawn from the unit-rate exponential
distribution is that the models with constant in the baseline intensity or without and with
self-excitation or self- and cross-excitation are promising alternatives. Model selection
on the basis of AIC differences revealed that the model without constant in the baseline
intensity and only self-excitation was selected in almost 50% of the cases on both market
sides. Requiring that the AIC difference of a model that is more restricted than the selected
one was at least 4 causes the share of the same model to increase to almost 75%.

On the basis of the more restrictive model selection, we interpreted medians of the
parameters that control the baseline intensity of buy and sell market order arrivals. We
found that the constant of the baseline intensity, its time-zero growth component, and its
growth rate were similar on the buy and sell side. However, they appeared to be different
when comparing the model without constant in the baseline intensity with the one that had
a constant. The same holds true for the model with only self-excitation and the one with
self- and cross-excitation. Hypothesis tests for the equality of distributions support these
observations. The constant had a tendency to be higher during the first hours of the day
and lower from noon onwards. The time-zero growth component was largely positively
related to the hour of delivery start, whereas the growth rate exhibited a largely negative
relationship.

Concerning self-excitation, the median jump sizes were quite large and accompanied
by fast decay as indicated by half-lifes in the region of 5 s. The median jump sizes of
cross-excitation were up to an order of magnitude smaller than those of self-excitation.
The median decay rates of cross-excitation were only slightly smaller than those of self-
excitation in case of no constant in the baseline intensity and even larger in case of a
constant. This goes along with median half-lifes of cross-excitation exceeding those of
self-excitation if the baseline intensity did not comprise a constant. The median branching
ratios implied that self-excitation caused more offspring than cross-excitation.

For both the models with self-excitation and those with self- and cross-excitation,
hypothesis tests for equally distributed jump sizes and decay rates of self-excitation and
cross-excitation on the buy and sell side hardly provided evidence that they were not the
same. Concerning the branching ratios of self-excitation, however, evidence was found in
the case of the model without constant in the baseline intensity. On both market sides some
evidence was found that jump sizes, decay rates, or branching ratios of self-excitation of the
model without constant in the baseline intensity but with self-excitation and the model with
constant and and self-excitation were not equally distributed. The situation was similar for
cross-excitation. Some evidence was found that the parameters related to self-excitation of
the model without constant in the baseline intensity but with self-excitation and the model
with the same baseline intensity but with self- and cross-excitation not equally distributed,
for the branching ratios in particular. The branching ratio of self-excitation appeared to be
larger for contracts with delivery start during the day.

Finally, we studied contemporaneous relationships between different parameters. The
time-zero growth component of the baseline intensity had a strongly negative relationship
with the growth rate. Some evidence for a positive relationship between the constant of
baseline intensity and its growth rate was found. The jump size of self-excitation had a
strongly positive relationship with the decay rate, the same holds true for the jump size and
decay rate of cross-excitation. The relationship between the decay rate and branching ratio
was negative for both self-excitation and cross-excitation. In case of the model without
constant in the baseline intensity but with self-excitation, the growth rate of the baseline
intensity was negatively related to the branching ratio of self-excitation but not strongly.
The growth rate of the baseline intensity and the branching ratio of cross-excitation were
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negatively related in case of the model without constant in the baseline intensity. Evidence
for relationships between parameters on the buy and sell side was found for the time-zero
growth component of the baseline intensity and its growth rate.

The results of this work have implications in the context of modeling quantities on
the IDM which depend on market order arrivals. An example for such a quantity is the
modeling of the mid price of some delivery contract such that buy market orders may
cause an increase and sell market orders may cause a decrease. Using the Hawkes process
to model clustering of market order arrivals allows one to reproduce stylized facts of the
quantity under consideration which models with market order arrival processes without
clustering cannot. Another example are trading strategies which involve placing limit
orders to be executed by market orders. As clustering of market order arrivals on the buy
and sell side may well be asynchronous, short-term price trends are likely to occur. To be
able to price in such short-term price movements is beneficial for the performance of the
trading strategies.

Future research may address the question whether modeling approaches other than
excitation are better suited to capture the clustering on the intraday market for power
deliveries in Germany. We also left unanswered whether other models for the baseline
intensity and the excitation function including non-parametric ones may perform better
than those which we consider. Yet another approach that we have omitted to consider
is to model several contracts together, not just one contract or all contracts with delivery
during the same hour of the day as we have done. Furthermore, the question arises to what
extent the results are also representative for the more recent past. Conducting the empirical
analyses with data from Q2/2016 gave similar results compared to those presented here.
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Appendix A. Simulation Study on Event arrivals

In this appendix, we simulate arrivals of a number of point processes with different
intensities. We pursue two objectives. The first is to exemplify how the results of the analy-
sis of arrival times together with interarrival durations vary depending on the intensity.
Second, we want to illustrate how the results of the analysis of the number of event arrivals
after the arrival of an event vary depending also on the intensity.

In Chen and Stindl (2018), a simulation algorithm is described for the univariate
Hawkes process. The algorithm has two steps: First, the baseline intensity function is
used to simulate events of the zeroth generation. Then, the excitation function is used
to simulate each event’s offspring. Both simulations are carried out with Algorithm A1,
which in this form was dervied from code in the R package “IHSEP”. The arguments of
the function SIMNHPP are the current time, the time until when to simulate, the intensity
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function, and the maximum value taken by the intensity function over the interval under
consideration.

We extend that algorithm in two dimensions: On the one hand, we allow the underly-
ing process to have a history. This may be achieved by simulating future offspring from
historic events with Algorithm A1. On the other hand, we allow the underlying process
to be multivariate. This is achieved as follows: First, Algorithm A1 fed with the baseline
intensity function of each component of the multivariate Hawkes process is used to to
simulate events of the zeroth generation. Then, for each event of the zeroth generation the
offspring is simulated. The offspring may be events of the same component as the parent
or events of different components. Each of these offspring simulations are carried out with
Algorithm A1 once again.

Algorithm A1 Poisson simulation

1: function SIMNHPP(t, T, λ, λmax)
2: all ← empty vector
3: sum← 0
4: while sum < T do
5: d← Exp(1/λmax)
6: sum = sum + d
7: if sum ≤ T then
8: append sum to all
9: end if

10: end while
11: tsim ← empty vector
12: n← length of all
13: for i← 1, n do
14: if B(1, λ(alli)/λmax) = 1 then
15: append alli to tsim

16: end if
17: end for
18: return tsim

19: end function

Algorithm A2 describes in detail how a multivariate Hawkes process with history
may be simulated. The arguments of the function SIMHAWKES are the current time, the
time until to simulate the baseline intensity functions and their maximum values over the
interval under consideration, the excitation functions and there maximum values, and the
history of the process. The maximum values of the excitation functions are the jump sizes.

We consider a period of 21.25 h which starts at t = 0, hence T = 21.25. The baseline
intensity takes one of the following forms:

µconst(t) := 3,

µexp,mod(t) := 0.075 · e0.25·t,

µconst;exp,strong(t) := 0.05 + 0.000005 · e0.75·t,

µexp,strong(t) := 0.000005 · e0.75·t.

If the intensities of the point processes would only consist of these baseline intensities, the
expected number of arrivals in [0, T] would be 63.75, 60.56, 56.71, and 55.65, respectively.
We consider both the case of presence of self-excitation and the case of absence. In case of
presence, the self-excitation is of the exponential form, i.e.,

φ(t) = αe−βt

with α = 100 and β ∈ {200, 500}. Thus, we end up with 12 different models. For each
model, we simulate the event arrivals 104 times.
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Algorithm A2 Hawkes simulation

1: function SIMHAWKES(t, T, µ, µmax, φ, φmax, thist)
2: n← number of rows of µ
3: gen← 0
4: nextgen← 0
5: for i← 1, n do
6: tsim

i,gen ← empty vector for generation-gen timestamps of component i
7: for j← 1, n do
8: τ ← thist

j
9: for k← 1, length of τ do

10: s← τk + SIMNHPP(0, T − τk, φij, φmax
ij )

11: tsim
i,gen ← tsim

i,gen extended by those s which are greater than t
12: end for
13: end for
14: s← SIMNHPP(t, T, µi, µmax

i )

15: tsim
i,gen ← tsim

i,gen extended by s and sorted in ascending order

16: if length of tsim
i,gen 6= 0 then

17: nextgen← nextgen + 1
18: end if
19: end for
20: while nextgen 6= 0 do
21: gen← gen + 1
22: nextgen = 0
23: for i← 1, n do
24: tsim

i,gen ← empty vector for generation-gen timestamps of component i
25: for j← 1, n do
26: τ ← tsim

j,gen−1
27: for k← 1, length of τ do
28: s← τk + SIMNHPP(0, T − τk, φij, φmax

ij )

29: tsim
i,gen ← tsim

i,gen extended by s and sorted in ascending order
30: end for
31: end for
32: if length of tsim

i,gen 6= 0 then
33: nextgen = nextgen + 1
34: end if
35: end for
36: end while
37: return tsim

38: end function

At first, we consider the analysis of arrival times together with interarrival durations.
Figure A1 shows the results. Let us consider the case where the (baseline) intensity is
constant, see Figure A1a. The event arrivals are distributed equally over time. The bin in
which the shortest durations between the time of arrival of an event and the subsequent
one fall has the highest frequency, no matter what time is considered. The frequencies of the
interarrival duration in which the smaller bins, the larger the durations they cover, again no
matter what time is considered. Self-excitation does not invalidate these characteristics but
it does cause the frequencies of the bins, which cover the shortest durations to increase and
the difference between the frequencies of those bins and the following ones to be larger.
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Figure A1. Two-dimensional histograms of event arrival times (horizontal axis) and durations between event arrival
times and the arrival time of the next event (vertical axis) for different baseline intensities and self-excitation structures.
T = 21.25, N = 104.

If the (baseline) intensity comprises not only a constant but also a component which
grows visibly over the entire period of time under consideration, the interarrival durations
which are associated with arrival times close to t = 0 take values in the region of 12.5 h,
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see Figure A1b. While these durations are much larger than the maximum durations
taken in case of the constant (baseline) intensity, they are also well below the maximum
possible durations. With increasing time of arrival, the maximum values that are taken
by the interarrival durations decrease. Furthermore, the frequencies of the bins covering
small interarrival durations start on increase. As the (baseline) intensity is monotonously
increasing, the bins with the highest frequencies are those which are close to t = T and
which cover the smallest interarrival durations. The results in case of self-excitation are
similar.

What is the effect if the (baseline) intensity also grows exponentially but growth really
only becomes noticeable close to t = T? Figure A1c sheds light on this question. In the
hours after t = 0, a concentration of arrival time-interarrival duration pairs in the region of
8.75 to 3.75 h below the maximum duration may be observed. These pairs are likely to be
arrivals that are generated by the constant in the (baseline) intensity and which are followed
by arrivals in the phase in which the growth of the (baseline) intensity becomes noticeable.
This reasoning is supported by the fact that the arrival time-interarrival duration pairs
after t = 0 in case of the (baseline) intensity without a constant are too few to explain the
concentration, see Figure A1d. Once again, self-excitation causes the frequencies of the
bins covering the short interarrival durations to increase. In Figure A1c, these increases are
visible over the entire period under consideration because there are enough events over
that period that trigger other events. By contrast, the (baseline) intensity without constant
but with strong growth towards t = T does not produce this feature because arrivals after
t = 0 fail to occur sufficiently and frequently.

The plots in Figure A1 build upon numbers of observations in the region of 5× 105

and more. With Figure A2 where only 102 simulations are included in the analysis of arrival
times and interarrival durations, we address the question how the same plots change if less
data are available. In the case of the constant (baseline) intensity differences that would be
worth mentioning are not observable. A similar conclusion holds in case of the (baseline)
intensity that grows visibly over the entire period under consideration and also in case of
the (baseline) intensity that grows visibly only close to t = T and that does not comprise a
constant. The concentration of arrival time-interarrival duration pairs 8.75 to 3.75 h below
the maximum duration, however, is not clearly observable.
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Figure A2. Cont.
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Figure A2. Two-dimensional histograms of event arrival times (horizontal axis) and durations between event arrival
times and the arrival time of the next event (vertical axis) for different baseline intensities and self-excitation structures.
T = 21.25, N = 102.

Let us move on to the analysis of the event arrivals that follow the arrival of an event.
The results for the 12 models which we also considered in the analysis of arrival times and
interarrival durations are shown in Figure A3. If self-excitation is absent, the mean number
of events in intervals of 5 s after an event arrival appears to fluctuate randomly around
some level, no matter the intensity is, see Figure A3a. In the presence of self-excitation, the
mean number of events after an event arrival initially decreases clearly with the increasing
distance of the interval, see Figure A3b–d. The amounts by which the means decrease
become smaller with the distance of the interval and at some point the means seem only
to fluctuate around some level. The initial decline is steeper if β = 500, i.e., when the
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branching ratio is smaller. A clear indication that the growth in baseline intensity carries
through to the mean number of arrivals after an event arrival is not recognizable.
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Figure A3. Mean number of event arrivals in time intervals of 5 s over 5 min after an event arrival. T = 21.25, N = 103.
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